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Introduction: the strange metals

* In experimental condensed matter physics, there are many
materials with unusual and unexplained properties.

« The 'strange metal' phases of high-Tc superconductors are
metallic states of matter with very odd transport properties
(conductivities).

e.g. the electrical resistivity ppco X 1

« Holography gives us easy theoretical access to qualitatively
different kinds of states than those traditionally considered:
strongly interacting states with no quasiparticles. How are energy
and charge transported in these kinds of state?



Introduction: holography

* However, there are fundamental differences in the low energy
ohysics of the strange metals, compared to the common strongly
interacting field theory states with holographic duals.

« Most states studied holographically have translational symmetry:
the total momentum of the dual field theory state is conserved.

« This symmetry has a big effect on the conductivities of the state:
they are typically infinite, unlike in real strange metals.

 To learn anything about them from holography, we have to study
examples where momentum is not conserved (e.g. where
translational symmetry is broken).



Transport without quasiparticles

e The conductivitymatrix { J \ [ ¢ aT E
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controls the response of the system to small temperature gradients
and electric fields.

* |ts low energy properties are controlled by the long-lived
excitations that arise from approximate conservation laws.

* In a strongly interacting system with no quasiparticles, we expect
no long-lived excitations except those protected by approximate
symmetries e.g. translational symmetry.

e There are two qualitatively different situations: when /2 is
approximately conserved, and when it is totally unconserved.



Slow momentum dissipation

« When translational symmetry is broken weakly, momentum lives
longer than everything else, and controls the low energy transport.

e In this case, the DC conductivities can be calculated perturbatively,
and are all proportional to the momentum dissipation rate 1" :
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» At leading order, " depends only on properties of the
translationally invariant state.

e Fundamentally, to understand the transport, one just has to
understand the translationally invariant state.



Slow momentum dissipation ||

e In this limit, the AC conductivities have a simple “Drude-like”

form
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 The conductivities are controlled by 1" and the thermodynamic
properties of the state.



Fast momentum dissipation

* In the opposite limit, where translational symmetry is very strongly
broken, momentum dissipates very quickly.

e There are no parametrically long-lived excitations in the theory,
and the low energy conductivity has no peaks.
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 There is no 'extrinsic' scale 1" in this low energy theory: the DC
conductivities are intrinsic properties of the state.



Fast momentum dissipation |l

« Unlike before, this is not a small perturbation around a
translationally invariant state.

« To understand the state's transport properties, we need to
understand the nature of the states that form when translational
symmetry is strongly broken.

« e.g. a conjecture: the diffusion constants of a state like this are

bounded from below: A
DT = vi—
kB

« These two possibilities are at the ends of a spectrum: there is a
smooth crossover between them as momentum dissipates faster.

Hartnoll (2014)



Momentum dissipation in holography

e |t is very difficult to theoretically access the transport properties of
strongly interacting systems. This is where holography is very useful.

« Transport properties of systems like this can be determined from the
perturbations of black hole solutions of the dual classical gravity.

e In reality, translational symmetry is broken in a complicated manner
by periodic lattices and random distributions of impurities. This is
difficult to do in holography.

e There are some simple toy models, which capture the essential
physics. These break translational symmetry in a simple way such
that they retain a homogeneous metric.



Holography: toy models

« One general class of these systems are solutions of the action
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Bardoux, Caldarelli, Charmousis (2012), Andrade & Withers (2013),
Gouteraux (2014), Donos & Gauntlett (2014),...

e This is the usual Einstein-Maxwell-Dilaton action, plus massless
scalar fields that break translational symmetry ©; (7“7 t, fo) = mx’

e This is (purportedly) dual to a strongly interacting field theory state
with sources for the scalar operators dual to the fields ¥ .

e The finite DC conductivities of these states can be calculated

exactly from the near-horizon black hole solution.
Blake & Tong (2013), Donos & Gauntlett (2014)



The simplest holographic example

| am going to talk about the simplest example:
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e This action has the solution
dr? i
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« This is a neutral state, so the interesting conductivity is the heat

conductivity (energy conductivity): kDo = 47TS2T
m

 This very simple formula hides a variety of physical phenomena.



The simplest holographic case:

« The simplest case is when there is translational symmetry: m=0.

« At low energies and long distances, the strongly interacting field
theory obeys the laws of conformal, relativistic hydrodynamics.
These laws tell us how energy/heat is transported.

Policastro, Son, Starinets, Herzog, .....

» The equations of motion are simply the conservation of energy
and momentum.

« As momentum is conserved, the DC heat conductivity is infinite
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« The low energy excitations which carry heat are sound waves.



The simplest holographic case:

« At leading order in m, the effect of the translational symmetry
breaking is captured by changing the momentum conservation

equation to dth + 8jHij — _FPL

» This modified hydrodynamics has a Drude-like heat conductivity,
as expected, with Rpo — S/F Re(w)

e The pole at (w = () has movedto = —l .lr

Im(w)
e From the gravitational theory, the momentum dissipation rate is
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The simplest holographic case:

« We can also look at the spatially resolved heat conductivity:

e Over short distances, heat is
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carried by sound-like waves. _ oo} :
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» Over long distances, heat diffuses. ol ¢ _E
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diffusion

sound-like wave
« The low energy, long distance transport properties of the state in

this limit can be understood in terms of a simple, non-holographic
effective theory.



The simplest holographic case:

« When m~T, there is a qualitative change in the conductivity, even
though the DC value does not change.

Re(w)
The momentum dissipation rate lr
is comparable to the intrinsic

dissipation rate of the system.
Im(w)
« At very large m/T, momentum is not approximately conserved and
we remove it from our effective theory. Only energy is conserved:
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 This is a simple example of a strongly interacting state, with no
quasiparticles, in which momentum dissipates quickly.



Large m: diffusion constant

e For m>>T, there is agreement with this effective theory.
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distance scales.

* We can test the conjectured bound on the diffusion constant:
T2 \/ 3m? 37
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e DT can be made arbitrarily small by increasing m/T.




s this solution stable?

* When m=0, the solution is planar Schwarzschild-AdS4.
e At non-zero m/T, we wrote down the simplest solution. Is it stable?

« We can check its stability to linear perturbations at various points in

parameter space:

— When T=0, the near-horizon geometry is AdS2xR*. Al
perturbations satisfy the AdS2 BF bound for all (m,k).

—When m = /87T , there is a major symmetry enhancement such
that all guasinormal modes can be analytically computed exactly.
They are all stable.



The selt-dual point

e At this special value of m, there is a reduction in the number of
independent equations for perturbations of the metric + scalars:

Gl pe (@, K) Gy py (w0, k) = —? (K + 87°T)
e Due to this, the AC heat conductivity is exactly constant:
k(w) = 8r2T
 This is a gravitational analogue of electric/magnetic self-duality.

* In the field theory, it is the heat transport version of the very
simple charge transport properties of certain zero density states.

Herzog, Kovtun, Sachdev, Son (2007)



Summary and conclusions

« The transport properties are qualitatively different between systems
where momentum is almost conserved and where it is not.

» There are very simple toy models in holography of both cases.

* These can be understood via simple, non-holographic effective
theories.

Further work:
e Does a similar approach work for charged systems?

 Are there any common properties of holographic systems with fast
momentum dissipation?
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