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Silicon Bond Loss Experiment

• Preliminary measurements of the mechanicalPreliminary measurements of the mechanical      
loss factors of hydroxide-catalysis bonds on silicon 
have been made 

Two silicon (100) substrates were coaxially bonded– Two silicon (100) substrates were coaxially bonded 
[Ø65×50mm & Ø65×70mm]

• Comparisons made of the loss factors of the 
bonded sample with that of a 120 mm long witness 
sample 

• In order to bond silicon components using 
hydroxide catalysis bonding surfaces require SiO2hydroxide catalysis, bonding surfaces require SiO2 
layer
– Oxide layer formed by thermal oxidation in a quartz 

tube furnace at 1000°C in a wet N environment fortube furnace at 1000°C in a wet N2 environment for 
45 mins
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Silicon Bond Loss Experiment

• Ellipsometry was used to determine the p y
thickness of the oxide layers
– 65 × 50 mm → 171 nm
– 65 × 70 mm → 317 nm

• Surface measurements determined the flatness 
of the bonding surfaces to be:
– 65 × 70 mm → 118.57 nm
– 65 × 50 mm → 118.39 nm

• i.e. Bonding faces are ~ λ/5 flat
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Silicon Bond Loss Experiment
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Silicon Bond Loss Experiment

• Bumps removed for bondingu ps e o ed o bo d g
– ~300 nm remained on 50 mm sample

• Bond offset by ~2 mm to avoid wedging
• Same bonding solution as aLIGO

– Commercially available 
– NaOH ~14%, SiO2 ~27% by weight; 59%    

DI water
– Diluted 1:6 in de-ionised waterDiluted 1:6 in de ionised water

• The samples were aligned and bonded  
using 12.244 μl of bonding solution

• Mechanical loss measurements taken after 
4 week cure period
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Silicon Bond Loss Experiment

• For each resonant mode

– From I. Martin’s thesis φoxide = 1 × 10-4

• Energy ratios calculated using ANSYS® FEA package

• The flatness of the two bonding surfaces was used as an estimate of 
the bond thickness
– Thus for a bond thickness of 118.48 nm a preliminary average bond loss of 0.6 p y g

± 0.1 is estimated

• Comparable to previous results obtained by E Chalkley where a bondComparable to previous results obtained by E. Chalkley where a bond 
loss of 0.4 was determined from bonded cantilevers
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Silicon Bond Loss Experiment

• Experiment is currently being 
d i h ili (111)repeated using three silicon (111) 

substrates in collaboration with 
colleagues at Jenacolleagues at Jena
– At room temperature and at cryogenic 

temperatures down to 5K

• Essential to consider how the loss of 
th b t t h iththe substrates change with 
temperature
– Shown for the 70 mm massShown for the 70 mm mass

• Should provide information on the p
levels of the bond loss down to the 
temperatures at which a 3rd

ti d t t i ht tgeneration detector might operate
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Hydroxide Catalysis Bond 
Strength Tests

N BeveridgeN. Beveridge
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The Role of Hydroxide-Catalysis Bonding

• Developed by Gwo for Gravity Probe BSteel wires

Penultimate mass

• Used to bond silica interface pieces, 
‘ears’, on side of silica test masses

P id ldi i t f i

e u a e ass

Ear

Steel wire break-off prism
– Provides welding point for suspension 

fibresSilica fibres

• Currently used in GEO600, and being 
installed in the silica suspensions for 
Advanced LIGO and Advanced Virgo

End/input test mass

Ear
Advanced LIGO and Advanced Virgo
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Future Generation Detectors

• Reduction of thermal noise
– Cool test masses and suspensionsp

• Silicon and sapphire potential replacement 
t i l d t l di i ti t imaterials due to low dissipation at cryogenic 

temperatures
– Silica has high dissipation at low temperatureg p p

• Application of hydroxide-catalysis bonding in silicon 
isuspension

– Silicon – silicon bonds require an oxide layer
– What strength would bonds have?g
– What influence does temperature have on bond 

strength?
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Strength Test Set-up

ASTM C1161-02c four point ¼ point flexural strength testASTM C1161 02c four point ¼ point flexural strength test
P

• Silicon piece size: 5 x 10 x 20 mmL • Silicon piece size: 5 x 10 x 20 mm 
(b x d x l)

• Bonded sample: 5 x 10 x 40 mm
(b x d x l)

24
3
bd
PLS =

(b x d x l)

• Bonding surface has PV flatness < 60 nm
4bd
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Previous Experiments and Results

• Test parameters:
– 49 samples tested at 293 K70  

Cryogenic Temperature Results
Room Temperature Results p

– 86 samples tested at ~77 K
– Two ingot types

• Prolog <111> (Ingot 1)
50

60

• Prolog <111> (Ingot 1)
• Prolog <100> (Ingot 2)

– Bonding surfaces oxidised in a wet 
th l i t
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– Oxide layer thickness varied
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• Results
– No reduction of strength at ~77 K

Mi i id l f 50

0 50 100 150 200 250 300
0

Minimum oxide layer of sample [nm]
 

– Minimum oxide layer of 50 nm 
required for a reliable bond at 
cryogenic temperature

N L Beveridge, A A van Veggel, M Hendry et al, 
Low-temperature strength tests and SEM imaging of hydroxide-catalysis bonds in 
silicon
Classical and Quantum Gravity, Volume 28, Issue 8, pp. 085014 (2011).

– Weibull analysis performed on data
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RT Results
CT Results
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Previous Analysis

• At cryogenic temperaturetmin • At cryogenic temperature, 
large increase in strength 
after tmin set to 50 nm

Silicon block Silicon block
Bond material

min

• Improvement in reliability oftmax

Oxide layers

Improvement in reliability of 
F0 value when tdiff > 20 nm

minmaxdiff ttt −=

• Improvement seen in both F0
and m when blocks of 5 mm

20 mm
10 mm

different orientations bonded 
together[001] [001]

(100) plane (111) plane

[100]

[010]

[100]

[010]
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Recent Experiments and Results

• 82 room temperature tests (RT)• 82 room temperature tests (RT)
• 88 cryogenic tests (CT)
• Three types of oxide layer

– Dry thermal oxide (165 ± 14 nm)
• Oxidised at Uni. Glasgow

– E-beam (144 ± 1 nm)
G h d H• Gooch and Housego

– Ion beam (154 ± 1 nm)
• Advanced Thin Films• Advanced Thin Films

• Two ingot types
Shin Etsu <100> (high purity) (Ingot 3)– Shin-Etsu <100> (high purity) (Ingot 3)

– Prolog <111> (Ingot 4)
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Analysis55
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Analysis55

60
Room Temperature
Cryogenic 

8

9

50
7

8

40

45

gt
h 

[M
P

a]

6

ul
us

35

40

er
is

tic
 S

tre
n

5

W
ei

bu
ll 

M
od

u

25

30

C
ha

ra
ct

e

4

W

20

25

3

10

15

1

2

10 1

19



GWADW: Isola d’Elba, May 2011

Analysis

%age Bond 
B k CT

%age Bond 
B k RTBreaks CT Breaks RT

Dry Ox
Ingot 3 24% 19%
I t 4 88% 33%

y
Ingot 4 88% 33%

Ion Beam
Ingot 3 36% 36%
Ingot 4 77% 92%Ingot 4 77% 92%

E-Beam
Ingot 3 57% 54%
Ingot 4 93% 72%Ingot 4 93% 72%

B d b k ll k th ‘di l’ b k• Bond breaks generally weaker than ‘diagonal’ breaks
• In all cases, increased number of bond breaks for ingot 4 (Prolog <111>)

Higher percentage of bond breaks for the e beam coating• Higher percentage of bond breaks for the e-beam coating
– Matches the lower strengths of e-beam samples
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Summary

• TemperatureLiquid may supress 
f k ti Temperature

– Cryogenic temperatures do not weaken bond
– Cryogenic results often stronger than room temperature

surface crack propagation

• Oxide layer thickness
– Minimum oxide required: 50 nm
– tdiff > 20 nm improves reliability

Possible geometric effect

tdiff  20 nm improves reliability

• Ingot orientation
CT results always stronger for <100>– CT results always stronger for <100> 

– Mixed ingot samples produce better results

O ide la er t pe• Oxide layer type
– E-beam results weakest
– Thermal oxides strongest

Dr thermal o ide eaker b t more reliable

Possibly due to density

– Dry thermal oxide weaker but more reliable
– E-beam more likely to break across bond
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Future Work

• Strength of bond• Strength of bond
– Strength test bulk samples

• Influence of cryogenic temperature• Influence of cryogenic temperature
• Influence of purity level

– Density measurements of oxide layersDensity measurements of oxide layers

• Other properties of bond• Other properties of bond
– Bond thickness

Elastic modulus– Elastic modulus
– Thermal conductivity
– Mechanical loss– Mechanical loss
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Thank you for your attentionThank you for your attention
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Weibull Analysis

• Distribution of data not Gaussian
• Variation in strengths of brittle samples typically modelled byVariation in strengths of brittle samples typically modelled by 

a Weibull probability density function (pdf):

– F0 represents a characteristic strength
– Weibull modulus, m, provides a measure of variability of strength of 

materialmaterial
• Bayesian analysis used to estimate parameters from the 

Weibull pdf
• MCMC method used to obtain confidence regions for m and 

F0
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Hydroxide – Catalysis Bonding
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