

Experimental Results on Cryogenic Strength Testing Silicon

Nicola Beveridge on behalf of the Institute for Gravitational Research, University of Glasgow

Silicon Bond Loss Experiment

K. Haughian¹, G. Hofman², J. Hough¹, P. Murray¹, R. Nawrodt², S. Reid¹, S. Rowan¹, C. Schwarz²

> ¹University of Glasgow ²Friedrich-Schiller-Universität Jena

- Preliminary measurements of the mechanical loss factors of hydroxide-catalysis bonds on silicon have been made
 - Two silicon (100) substrates were coaxially bonded [Ø65×50mm & Ø65×70mm]
- Comparisons made of the loss factors of the bonded sample with that of a 120 mm long witness sample
- In order to bond silicon components using hydroxide catalysis, bonding surfaces require SiO2 layer
 - Oxide layer formed by thermal oxidation in a quartz tube furnace at 1000°C in a wet N₂ environment for 45 mins

University of Glasgow

- Ellipsometry was used to determine the thickness of the oxide layers
 - 65 × 50 mm \rightarrow 171 nm
 - $65 \times 70 \text{ mm} \rightarrow 317 \text{ nm}$

- Surface measurements determined the flatness of the bonding surfaces to be:
 - 65 × 70 mm \rightarrow 118.57 nm
 - 65 × 50 mm \rightarrow 118.39 nm
- i.e. Bonding faces are ~ $\lambda/5$ flat

- Bumps appeared after first oxidation
 - Samples etched and re-oxidised
 - Bumps remained
- Mechanical loss measurements made after each oxidation
- Mechanical loss improved after each oxidation
 - Shown for the 70 mm mass

- Bumps removed for bonding
 - ~300 nm remained on 50 mm sample
- Bond offset by ~2 mm to avoid wedging
- Same bonding solution as aLIGO
 - Commercially available
 - NaOH ~14%, SiO₂ ~27% by weight; 59%
 DI water
 - Diluted 1:6 in de-ionised water
- The samples were aligned and bonded using 12.244 µl of bonding solution
- Mechanical loss measurements taken after 4 week cure period

University of Glasgow

Silicon Bond Loss Experiment

• For each resonant mode

$$\varphi_{\text{bonded}} = \varphi_{\text{substrate}} + \frac{E_{\text{bond}}}{E_{\text{total}}}\varphi_{\text{bond}} + \frac{E_{\text{oxide}}}{E_{\text{total}}}\varphi_{\text{oxide}}$$

- From I. Martin's thesis $\phi_{\text{oxide}} = 1 \times 10^{-4}$

- Energy ratios calculated using ANSYS[®] FEA package
- The flatness of the two bonding surfaces was used as an estimate of the bond thickness
 - Thus for a bond thickness of ~118.48 nm a preliminary average bond loss of 0.6 ± 0.1 is estimated
- Comparable to previous results obtained by E. Chalkley where a bond loss of 0.4 was determined from bonded cantilevers

- Experiment is currently being repeated using three silicon (111) substrates in collaboration with colleagues at Jena
 - At room temperature and at cryogenic temperatures down to 5K
 - Essential to consider how the loss of the substrates change with temperature
 - Shown for the 70 mm mass
 - Should provide information on the levels of the bond loss down to the temperatures at which a 3rd generation detector might operate

Hydroxide Catalysis Bond Strength Tests

N. Beveridge

On behalf of the Institute for Gravitational Research, University of Glasgow

The Role of Hydroxide-Catalysis Bonding

- Developed by Gwo for Gravity Probe B
- Used to bond silica interface pieces, 'ears', on side of silica test masses
 - Provides welding point for suspension fibres
- Currently used in GEO600, and being installed in the silica suspensions for Advanced LIGO and Advanced Virgo

Future Generation Detectors

- Reduction of thermal noise
 - Cool test masses and suspensions
- Silicon and sapphire potential replacement materials due to low dissipation at cryogenic temperatures
 - Silica has high dissipation at low temperature
- Application of hydroxide-catalysis bonding in silicon suspension
 - Silicon silicon bonds require an oxide layer
 - What strength would bonds have?
 - What influence does temperature have on bond strength?

Strength Test Set-up

ASTM C1161-02c four point 1/4 point flexural strength test

- Silicon piece size: $5 \times 10 \times 20$ mm ($b \times d \times l$)
- Bonded sample: 5 x 10 x 40 mm (*b* x *d* x *l*)
- Bonding surface has PV flatness < 60 nm

3PL

 $4bd^2$

Previous Experiments and Results

N L Beveridge, A A van Veggel, M Hendry et al,

Low-temperature strength tests and SEM imaging of hydroxide-catalysis bonds in silicon

Classical and Quantum Gravity, Volume 28, Issue 8, pp. 085014 (2011).

Test parameters:

- 49 samples tested at 293 K
- 86 samples tested at ~77 K
- Two ingot types
 - Prolog <111> (Ingot 1)
 - Prolog <100> (Ingot 2)
- Bonding surfaces oxidised in a wet thermal environment
- Oxide layer thickness varied

Results

- No reduction of strength at ~77 K
- Minimum oxide layer of 50 nm required for a reliable bond at cryogenic temperature
- Weibull analysis performed on data

Previous Analysis

- At cryogenic temperature, large increase in strength after $t_{\rm min}$ set to 50 nm
- Improvement in reliability of F_0 value when $t_{diff} > 20$ nm
- Improvement seen in both F₀ and m when blocks of different orientations bonded together

University of Glasgow

Recent Experiments and Results

- 82 room temperature tests (RT)
- 88 cryogenic tests (CT)
- Three types of oxide layer
 - Dry thermal oxide (165 ± 14 nm)
 - Oxidised at Uni. Glasgow
 - E-beam (144 ± 1 nm)
 - Gooch and Housego
 - Ion beam (154 ± 1 nm)
 - Advanced Thin Films
- Two ingot types
 - Shin-Etsu <100> (high purity) (Ingot 3)
 - Prolog <111> (Ingot 4)

Analysis

		%age Bond Breaks CT	%age Bond Breaks RT	
Dry Ox	Ingot 3	24%	19%	R par
	Ingot 4	88%	33%	
Ion Beam	Ingot 3	36%	36%	100
	Ingot 4	77%	92%	
E-Beam	Ingot 3	57%	54%	
	Ingot 4	93%	72%	

- Bond breaks generally weaker than 'diagonal' breaks
- In all cases, increased number of bond breaks for ingot 4 (Prolog <111>)
- Higher percentage of bond breaks for the e-beam coating
 - Matches the lower strengths of e-beam samples

Summary

Future Work

- Strength of bond
 - Strength test bulk samples
 - Influence of cryogenic temperature
 - Influence of purity level
 - Density measurements of oxide layers
- Other properties of bond
 - Bond thickness
 - Elastic modulus
 - Thermal conductivity
 - Mechanical loss

Thank you for your attention

- Distribution of data not Gaussian
- Variation in strengths of brittle samples typically modelled by a Weibull probability density function (pdf):

$$P(F) = \frac{m}{F_0} \left(\frac{F}{F_0}\right)^{m-1} \exp\left[-\left(\frac{F}{F_0}\right)^m\right]$$

- F_0 represents a characteristic strength
- Weibull modulus, *m*, provides a measure of variability of strength of material
- Bayesian analysis used to estimate parameters from the Weibull pdf
- MCMC method used to obtain confidence regions for *m* and *F₀*

Hydroxide – Catalysis Bonding

