Black hole bound states in five dimensions

Flavio Porri

Cortona@GGI-19/05/2016

Based on arXiv:1603.09729 w/ Marcos Crichigno, Stefan Vandoren

Background \& Motivations

- The zoo of 5d BPS black objects is far more populated than in 4 d : rotating black holes, black rings, black lenses and bound states thereof...
- Can we give some order? E.g. pick the most entropic configuration for a given set of charges
- Can some other configuration 'dominate' over the single BH ? Yes!

"Phase Diagram" Q^{3}

- 5d BPS black holes have a string theory (or M-theory or F-theory) realization.
- There is evidence for the existence of bound states of black holes with unusual entropy behavior coming from F-theory.
[Haghighat, Murthy, Vafa, Vandoren '15]
- Are these states really there in classical, two-derivative, supergravity regime? Probably no!

How to build a multicenter BPS solution

Let's start from 6d, minimal supergravity

$$
\begin{aligned}
& \mathrm{d} s_{6}^{2}=-2 H^{-1}(\mathrm{~d} u+\beta)\left(\mathrm{d} v+\omega-\frac{1}{2} F(\mathrm{~d} u+\beta)\right)+H \mathrm{~d} s_{\mathrm{HK}_{4}}^{2}, \\
& G_{(3)}=* G_{(3)}=\ldots \quad \text { [Gutowski, Martelli, Reall ‘03] }
\end{aligned}
$$

- Nothing depends on ' v '. (BPS null Killing vector)
- H, F are functions of (u, x).
- $\quad \beta, \omega$ are 1 -forms on HK_{4} (may depend on u)
u-independent solns are easily reduced to 5 d :

$$
\begin{aligned}
\mathrm{d} s_{5}^{2} & =-f^{2}(\mathrm{~d} t+\omega)^{2}+f^{-1} \mathrm{~d} s_{\mathrm{HK}_{4}}^{2}, \quad f^{-1}=\left(H^{2} F\right)^{1 / 3}, \\
e^{2 \varphi} & =H^{-1} F, \\
A & =-F^{-1}(\mathrm{~d} t+\omega)+\beta, \\
\widetilde{A} & =-H^{-1}(\mathrm{~d} t+\omega)+\gamma,
\end{aligned}
$$

Nice class of solns when $\mathrm{HK}_{4}=\mathrm{GH}$. (i.e., $\mathrm{U}(1)$ bundle over R^{3}.)

$$
\mathrm{d} s_{\mathrm{GH}}^{2}=\frac{1}{H_{2}}(\mathrm{~d} \psi+\chi)^{2}+H_{2} \mathrm{~d} s_{\mathbb{R}^{3}}^{2},
$$

then the full soln can be written in terms of 6 harmonic functions on $\mathrm{R}^{3}, H_{1, \ldots, 6}$. They act as sources for the 1-forms

$$
\begin{gathered}
\omega=\hat{\omega}_{i} \mathrm{~d} x^{i}+\omega_{\psi}(\mathrm{d} \psi+\chi) \\
*_{3} \mathrm{~d} \chi=\mathrm{d} H_{2} \\
*_{3} \mathrm{~d} \hat{\beta}=-\mathrm{d} H_{3} \quad *_{3} \mathrm{~d} \hat{\gamma}=-\mathrm{d} H_{4} \\
*_{3} \mathrm{~d} \hat{\omega}=\langle\mathbb{H}, \mathrm{d} \mathbb{H}\rangle
\end{gathered}
$$

This defines a symplectic form on R^{6}.

These solutions have (at least) a $\left(U(1)_{u} \times\right) U(1)_{\psi} \times \mathbb{R}_{t}$ isometry.

The solution is completely specified by the residues and locations of the poles in the 6 harmonic functions

$$
\begin{array}{lll}
H_{1}=\mu_{\infty}+\sum_{a} \frac{\mu_{a}}{\left|\vec{x}-\vec{x}_{a}\right|}, & H_{2}=m_{\infty}+\sum_{a} \frac{m_{a}}{\left|\vec{x}-\vec{x}_{a}\right|}, & H_{3}=q_{\infty}+\sum_{a} \frac{q_{a}}{\left|\vec{x}-\vec{x}_{a}\right|}, \\
H_{4}=p_{\infty}+\sum_{a} \frac{p_{a}}{\left|\vec{x}-\vec{x}_{a}\right|}, & H_{5}=n_{\infty}+\sum_{a} \frac{n_{a}}{\left|\vec{x}-\vec{x}_{a}\right|}, & H_{6}=j_{\infty}+\sum_{a} \frac{j_{a}}{\left|\vec{x}-\vec{x}_{a}\right|} .
\end{array}
$$

But the physical "gauge invariant" quantities are actually the following:

$$
\begin{array}{ll}
\tilde{Q}_{a} \equiv \mu_{a}+\frac{q_{a} p_{a}}{m_{a}}, & Q_{a} \equiv n_{a}+\frac{p_{a}^{2}}{m_{a}}, \\
f_{a, a+1} \equiv \frac{q_{a+1}}{m_{a+1}}-\frac{q_{a}}{m_{a}} \\
J_{a}^{\psi} \equiv j_{a}+\frac{q_{a} p_{a}^{2}}{m_{a}^{2}}+\frac{\mu_{a} p_{a}}{m_{a}}+\frac{q_{a} n_{a}}{2 m_{a}} & \tilde{f}_{a, a+1} \equiv \frac{p_{a+1}}{m_{a+1}}-\frac{p_{a}}{m_{a}}
\end{array}
$$

> The 4 d base has nontrivial homology if H_{2} has more than one center.

$$
\mathrm{d} s_{\mathrm{GH}}^{2}=\frac{1}{H_{2}}(\mathrm{~d} \psi+\chi)^{2}+H_{2} \mathrm{~d} s_{\mathbb{R}^{3}}^{2}
$$

The solution is completely specified by the residues and locations of the poles in the 6 harmonic functions

$$
\begin{array}{lll}
H_{1}=\mu_{\infty}+\sum_{a} \frac{\mu_{a}}{\left|\vec{x}-\vec{x}_{a}\right|}, & H_{2}=m_{\infty}+\sum_{a} \frac{m_{a}}{\left|\vec{x}-\vec{x}_{a}\right|}, & H_{3}=q_{\infty}+\sum_{a} \frac{q_{a}}{\left|\vec{x}-\vec{x}_{a}\right|} \\
H_{4}=p_{\infty}+\sum_{a} \frac{p_{a}}{\left|\vec{x}-\vec{x}_{a}\right|}, & H_{5}=n_{\infty}+\sum_{a} \frac{n_{a}}{\left|\vec{x}-\vec{x}_{a}\right|}, & H_{6}=j_{\infty}+\sum_{a} \frac{j_{a}}{\left|\vec{x}-\vec{x}_{a}\right|}
\end{array}
$$

But the physical "gauge invariant" quantities are actually the following:

$$
\begin{array}{ll}
\tilde{Q}_{a} \equiv \mu_{a}+\frac{q_{a} p_{a}}{m_{a}}, & Q_{a} \equiv n_{a}+\frac{p_{a}^{2}}{m_{a}}, \\
f_{a, a+1} \equiv \frac{q_{a+1}}{m_{a+1}}-\frac{q_{a}}{m_{a}} \\
J_{a}^{\psi} \equiv j_{a}+\frac{q_{a} p_{a}^{2}}{m_{a}^{2}}+\frac{\mu_{a} p_{a}}{m_{a}}+\frac{q_{a} n_{a}}{2 m_{a}} & \tilde{f}_{a, a+1} \equiv \frac{p_{a+1}}{m_{a+1}}-\frac{p_{a}}{m_{a}}
\end{array}
$$

> The $4 d$ base has nontrivial homology if H_{2} has more than one center.

$$
\mathrm{d} s_{\mathrm{GH}}^{2}=\frac{1}{H_{2}}(\mathrm{~d} \psi+\chi)^{2}+H_{2} \mathrm{~d} s_{\mathbb{R}^{3}}^{2}
$$

The solution is completely specified by the residues and locations of the poles in the 6 harmonic functions

$$
\begin{array}{lll}
H_{1}=\mu_{\infty}+\sum_{a} \frac{\mu_{a}}{\left|\vec{x}-\vec{x}_{a}\right|}, & H_{2}=m_{\infty}+\sum_{a} \frac{m_{a}}{\left|\vec{x}-\vec{x}_{a}\right|}, & H_{3}=q_{\infty}+\sum_{a} \frac{q_{a}}{\left|\vec{x}-\vec{x}_{a}\right|}, \\
H_{4}=p_{\infty}+\sum_{a} \frac{p_{a}}{\left|\vec{x}-\vec{x}_{a}\right|}, & H_{5}=n_{\infty}+\sum_{a} \frac{n_{a}}{\left|\vec{x}-\vec{x}_{a}\right|}, & H_{6}=j_{\infty}+\sum_{a} \frac{j_{a}}{\left|\vec{x}-\vec{x}_{a}\right|} .
\end{array}
$$

But the physical "gauge invariant" quantities are actually the following:

$$
\begin{array}{ll}
\tilde{Q}_{a} \equiv \mu_{a}+\frac{q_{a} p_{a}}{m_{a}}, & Q_{a} \equiv n_{a}+\frac{p_{a}^{2}}{m_{a}}, \\
f_{a, a+1} \equiv \frac{q_{a+1}}{m_{a+1}}-\frac{q_{a}}{m_{a}} \\
J_{a}^{\psi} \equiv j_{a}+\frac{q_{a} p_{a}^{2}}{m_{a}^{2}}+\frac{\mu_{a} p_{a}}{m_{a}}+\frac{q_{a} n_{a}}{2 m_{a}} & \tilde{f}_{a, a+1} \equiv \frac{p_{a+1}}{m_{a+1}}-\frac{p_{a}}{m_{a}}
\end{array}
$$

> The 4 d base has nontrivial homology if H_{2} has more than one center.

$$
\mathrm{d} s_{\mathrm{GH}}^{2}=\frac{1}{H_{2}}(\mathrm{~d} \psi+\chi)^{2}+H_{2} \mathrm{~d} s_{\mathbb{R}^{3}}^{2}
$$

The solution is completely specified by the residues and locations of the poles in the 6 harmonic functions

$$
\begin{array}{lll}
H_{1}=\mu_{\infty}+\sum_{a} \frac{\mu_{a}}{\left|\vec{x}-\vec{x}_{a}\right|}, & H_{2}=m_{\infty}+\sum_{a} \frac{m_{a}}{\left|\vec{x}-\vec{x}_{a}\right|}, & H_{3}=q_{\infty}+\sum_{a} \frac{q_{a}}{\left|\vec{x}-\vec{x}_{a}\right|}, \\
H_{4}=p_{\infty}+\sum_{a} \frac{p_{a}}{\left|\vec{x}-\vec{x}_{a}\right|}, & H_{5}=n_{\infty}+\sum_{a} \frac{n_{a}}{\left|\vec{x}-\vec{x}_{a}\right|}, & H_{6}=j_{\infty}+\sum_{a} \frac{j_{a}}{\left|\vec{x}-\vec{x}_{a}\right|} .
\end{array}
$$

But the physical "gauge invariant" quantities are actually the following:

$$
\begin{array}{ll}
\tilde{Q}_{a} \equiv \mu_{a}+\frac{q_{a} p_{a}}{m_{a}}, & Q_{a} \equiv n_{a}+\frac{p_{a}^{2}}{m_{a}}, \\
f_{a, a+1} \equiv \frac{q_{a+1}}{m_{a+1}}-\frac{q_{a}}{m_{a}} \\
J_{a}^{\psi} \equiv j_{a}+\frac{q_{a} p_{a}^{2}}{m_{a}^{2}}+\frac{\mu_{a} p_{a}}{m_{a}}+\frac{q_{a} n_{a}}{2 m_{a}} & \tilde{f}_{a, a+1} \equiv \frac{p_{a+1}}{m_{a+1}}-\frac{p_{a}}{m_{a}}
\end{array}
$$

> The 4 d base has nontrivial homology if H_{2} has more than one center.

$$
\mathrm{d} s_{\mathrm{GH}}^{2}=\frac{1}{H_{2}}(\mathrm{~d} \psi+\chi)^{2}+H_{2} \mathrm{~d} s_{\mathbb{R}^{3}}^{2},
$$

The solution is completely specified by the residues and locations of the poles in the 6 harmonic functions

$$
\begin{array}{lll}
H_{1}=\mu_{\infty}+\sum_{a} \frac{\mu_{a}}{\left|\vec{x}-\vec{x}_{a}\right|}, & H_{2}=m_{\infty}+\sum_{a} \frac{m_{a}}{\left|\vec{x}-\vec{x}_{a}\right|}, & H_{3}=q_{\infty}+\sum_{a} \frac{q_{a}}{\left|\vec{x}-\vec{x}_{a}\right|}, \\
H_{4}=p_{\infty}+\sum_{a} \frac{p_{a}}{\left|\vec{x}-\vec{x}_{a}\right|}, & H_{5}=n_{\infty}+\sum_{a} \frac{n_{a}}{\left|\vec{x}-\vec{x}_{a}\right|}, & H_{6}=j_{\infty}+\sum_{a} \frac{j_{a}}{\left|\vec{x}-\vec{x}_{a}\right|} .
\end{array}
$$

But the physical "gauge invariant" quantities are actually the following:

$$
\begin{array}{ll}
\tilde{Q}_{a} \equiv \mu_{a}+\frac{q_{a} p_{a}}{m_{a}}, & Q_{a} \equiv n_{a}+\frac{p_{a}^{2}}{m_{a}}, \\
f_{a, a+1} \equiv \frac{q_{a+1}}{m_{a+1}}-\frac{q_{a}}{m_{a}} \\
J_{a}^{\psi} \equiv j_{a}+\frac{q_{a} p_{a}^{2}}{m_{a}^{2}}+\frac{\mu_{a} p_{a}}{m_{a}}+\frac{q_{a} n_{a}}{2 m_{a}} & \tilde{f}_{a, a+1} \equiv \frac{p_{a+1}}{m_{a+1}}-\frac{p_{a}}{m_{a}}
\end{array}
$$

> The 4 d base has nontrivial homology if H_{2} has more than one center.

$$
\mathrm{d} s_{\mathrm{GH}}^{2}=\frac{1}{H_{2}}(\mathrm{~d} \psi+\chi)^{2}+H_{2} \mathrm{~d} s_{\mathbb{R}^{3}}^{2}
$$

The solution is completely specified by the residues and locations of the poles in the 6 harmonic functions

$$
\begin{array}{ll}
H_{1}=\mu_{\infty}+\sum_{a} \frac{\mu_{a}}{\left|\vec{x}-\vec{x}_{a}\right|}, & H_{2}=m_{\infty}+\sum_{a} \frac{m_{a}}{\left|\vec{x}-\vec{x}_{a}\right|},
\end{array} H_{3}=q_{\infty}+\sum_{a} \frac{q_{a}}{\left|\vec{x}-\vec{x}_{a}\right|}, ~ 子 H_{5}=n_{\infty}+\sum_{a} \frac{n_{a}}{\left|\vec{x}-\vec{x}_{a}\right|}, \quad H_{6}=j_{\infty}+\sum_{a} \frac{j_{a}}{\left|\vec{x}-\vec{x}_{a}\right|} .
$$

But the physical "gauge invariant" quantities are actually the following:

$$
\begin{array}{ll}
\tilde{Q}_{a} \equiv \mu_{a}+\frac{q_{a} p_{a}}{m_{a}}, & Q_{a} \equiv n_{a}+\frac{p_{a}^{2}}{m_{a}}, \\
f_{a, a+1} \equiv \frac{q_{a+1}}{m_{a+1}}-\frac{q_{a}}{m_{a}} \\
J_{a}^{\psi} \equiv j_{a}+\frac{q_{a} p_{a}^{2}}{m_{a}^{2}}+\frac{\mu_{a} p_{a}}{m_{a}}+\frac{q_{a} n_{a}}{2 m_{a}} & \tilde{f}_{a, a+1} \equiv \frac{p_{a+1}}{m_{a+1}}-\frac{p_{a}}{m_{a}}
\end{array}
$$

> The $4 d$ base has nontrivial homology if H_{2} has more than one center.

$$
\mathrm{d} s_{\mathrm{GH}}^{2}=\frac{1}{H_{2}}(\mathrm{~d} \psi+\chi)^{2}+H_{2} \mathrm{~d} s_{\mathbb{R}^{3}}^{2},
$$

The solution is completely specified by the residues and locations of the poles in the 6 harmonic functions

$$
\begin{array}{lll}
H_{1}=\mu_{\infty}+\sum_{a} \frac{\mu_{a}}{\left|\vec{x}-\vec{x}_{a}\right|}, & H_{2}=m_{\infty}+\sum_{a} \frac{m_{a}}{\left|\vec{x}-\vec{x}_{a}\right|}, & H_{3}=q_{\infty}+\sum_{a} \frac{q_{a}}{\left|\vec{x}-\vec{x}_{a}\right|}, \\
H_{4}=p_{\infty}+\sum_{a} \frac{p_{a}}{\left|\vec{x}-\vec{x}_{a}\right|}, & H_{5}=n_{\infty}+\sum_{a} \frac{n_{a}}{\left|\vec{x}-\vec{x}_{a}\right|}, & H_{6}=j_{\infty}+\sum_{a} \frac{j_{a}}{\left|\vec{x}-\vec{x}_{a}\right|} .
\end{array}
$$

But the physical "gauge invariant" quantities are actually the following:

$$
\begin{array}{ll}
\tilde{Q}_{a} \equiv \mu_{a}+\frac{q_{a} p_{a}}{m_{a}}, & Q_{a} \equiv n_{a}+\frac{p_{a}^{2}}{m_{a}}, \\
f_{a, a+1} \equiv \frac{q_{a+1}}{m_{a+1}}-\frac{q_{a}}{m_{a}} \\
J_{a}^{\psi} \equiv j_{a}+\frac{q_{a} p_{a}^{2}}{m_{a}^{2}}+\frac{\mu_{a} p_{a}}{m_{a}}+\frac{q_{a} n_{a}}{2 m_{a}} & \tilde{f}_{a, a+1} \equiv \frac{p_{a+1}}{m_{a+1}}-\frac{p_{a}}{m_{a}}
\end{array}
$$

> The 4 d base has nontrivial homology if H_{2} has more than one center.

$$
\mathrm{d} s_{\mathrm{GH}}^{2}=\frac{1}{H_{2}}(\mathrm{~d} \psi+\chi)^{2}+H_{2} \mathrm{~d} s_{\mathbb{R}^{3}}^{2}
$$

The data specifying the solution are contained in a bunch of charge vectors

$$
\Gamma_{\infty}=\left\{\mu_{\infty}, m_{\infty}, q_{\infty}, p_{\infty}, n_{\infty}, j_{\infty}\right\} \quad \Gamma_{a}=\left\{\mu_{a}, m_{a}, q_{a}, p_{a}, n_{a}, j_{a}\right\} \quad \vec{x}_{a}
$$

constrained by the following set of integrability conditions or "bubble equations"
$*_{3} \mathrm{~d} \hat{\omega}=\langle\mathbb{H}, \mathrm{d} \mathbb{H}\rangle$

$$
\sum_{b} \frac{\left\langle\Gamma_{a}, \Gamma_{b}\right\rangle}{\left|\vec{x}_{a}-\vec{x}_{b}\right|}=\left\langle\Gamma_{\infty}, \Gamma_{a}\right\rangle>\begin{aligned}
& \text { Same } \\
& \text { symplectic form } \\
& \text { as before. }
\end{aligned}
$$

Fixes the distances in terms of the charges: when nontrivially satisfied it gives a bound state.

A pair of twin black holes

- This solution describes a bound state of two identical rotating black holes
- It secretly contains three centers. But the center in the middle is "smooth"

$$
\begin{aligned}
& \vec{x}_{a}=\{0,0,-a\},\{0,0,0\},\{0,0, a\} \\
& \Gamma_{1}=\Gamma_{3}=\{\mu, 1,0,0, n, j\} \\
& \Gamma_{2}=\left\{q p,-1, q, p, p^{2}, \frac{q p^{2}}{2}\right\} \\
& \Gamma_{\infty}=\{1,0,0,0,1,-(q+2 p)\}
\end{aligned}
$$

$$
a=\frac{2 j-n q+p^{2} q-2 p \mu}{q+2 p}
$$

- The centers are aligned and the solution gains an extra $U(1)_{\phi}$ isometry

A 5 parameters family of solutions

$$
\{\mu, n, q, p, j\} \quad \text { or equivalently } \quad\left\{Q, \tilde{Q}, J_{\psi}, p, j\right\}
$$

Restrictions on the parameter space come from absence of curvature singularities and closed timelike curves [CTCs].

Typical situation for fixed asymptotic charges.

Freaky facts about the Twin BH System:

- Bound by magnetic fluxes through nontrivial 2-cycles (balancing of "spin-spin" and "dipole-dipole" interactions).
- Exhibits frame dragging (also true for the single black hole).
- An evanescent ergosphere is present (not true for the single black hole) but neither of the black holes is enclosed by it!

Conclusions

- We found a family of regular BPS solutions describing a bound state of black holes in 5d.
- Its phase space overlaps with the single black hole one and in some subregion is even entropically dominant.
- The solution can be uplifted to 10d or 11d supergravity. The exact brane configuration is yet not known.
- This is not responsible for the exotic contributions to the elliptic genus I mentioned in the introduction.

