

Measurement of the ${}^3\text{He}(\alpha,\gamma)^7\text{Be gamma-ray angular distribution}$

S. Turkat¹, D. Bemmerer², S. Hammer^{1,2}, L. Hübinger ^{1,2}, and K. Zuber¹

The ${}^3\text{He}(\alpha,\gamma){}^7\text{Be}$ reaction affects the nucleosynthesis of ${}^7\text{Li}$ as well as the predicted solar ${}^7\text{Be}$ and ${}^8\text{B}$ neutrino fluxes. It is being studied over a wide energy range at the Rossendorf 3 MV Tandetron accelerator, with a focus on the measurement of the γ -ray angular distribution at E \approx 1 MeV.

There are multiple and overlapping precise experimental data sets at E = 0.7 - 1.3 MeV. Any extrapolation of this precise data down to a unique data set from an experiment of the LUNA collaboration at E = 0.09 MeV - 0.13 MeV has to deal with the fact that at E = 1 MeV, the capture is possible both from s-wave incident particles and from d-wave incident particles, whereas at 0.1 MeV and lower the d-wave component plays no role due to the angular momentum barrier. A measurement of the angular distribution of the emitted γ -rays at E = 1 MeV may constrain the relative contributions of s-wave and d-wave components at high energies and thus enable a better comparison between the high-energy and the low-energy data points.

Data from a first run for the angular distribution of the emitted prompt γ -rays in the ${}^3\text{He}(\alpha,\gamma)^7\text{Be}$ reaction was done using a setup of four HPGe detectors at various angles and shall be presented here.

¹Technische Universität Dresden (TU Dresden), 01062 Dresden, Germany

²Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany