The struggle against the sign problem

Philippe de Forcrand ETH Zürich \& CERN

XQCD 2017, Pisa, June 26, 2017

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Monte Carlo: no pain, no gain...

Monte Carlo highly efficient: importance sampling Prob(conf) $\propto \exp [-S($ conf) $]$

- But all low-hanging fruits have been picked by now
- Further progress requires tackling the "sign problem":

$$
\exists \text { conf s.t. "Boltzmann weight" } \exp [-S(\text { conf })] \notin \mathbb{R}_{\geq 0}
$$

No probabilistic interpretation - Monte Carlo impossible??

Monte Carlo: no pain, no gain...

Monte Carlo highly efficient: importance sampling Prob(conf) $\propto \exp [-S($ conf) $]$

- But all low-hanging fruits have been picked by now
- Further progress requires tackling the "sign problem":

$$
\exists \text { conf s.t. "Boltzmann weight" } \exp [-S(\text { conf })] \notin \mathbb{R}_{\geq 0}
$$

No probabilistic interpretation - Monte Carlo impossible??
Real-time quantum evolution
dynamics of chemical reactions, protein folding, entanglement, ... limited to small systems / short times, or classical approximation weight in path integral $\propto \exp \left(-\frac{i}{\hbar} H t\right) \longrightarrow$ phase cancellations

Monte Carlo: no pain, no gain...

Monte Carlo highly efficient: importance sampling Prob(conf) $\propto \exp [-S($ conf) $]$

- But all low-hanging fruits have been picked by now
- Further progress requires tackling the "sign problem":
\exists conf s.t. "Boltzmann weight" $\exp [-S$ (conf) $] \notin \mathbb{R}_{\geq 0}$
No probabilistic interpretation - Monte Carlo impossible??

High T_{c} superconductivity: still mysterious after ~ 30 years
Hubbard model: repulsion $U n_{\uparrow} n_{\downarrow}$ Hubbard-Stratonovich $\operatorname{det}_{\uparrow} \operatorname{det}_{\downarrow}$
can be negative except at half-filling (particle-hole symmetry)

Monte Carlo: no pain, no gain...

Monte Carlo highly efficient: importance sampling Prob(conf) $\propto \exp [-S($ conf) $]$

- But all low-hanging fruits have been picked by now
- Further progress requires tackling the "sign problem":
\exists conf s.t. "Boltzmann weight" $\exp [-S($ conf $)] \notin \mathbb{R}_{\geq 0}$
No probabilistic interpretation - Monte Carlo impossible??

> QCD at non-zero density / chemical potential μ
> integrate out the fermions $\operatorname{det}\left(\mathbb{D}+\mu \gamma_{0}\right)^{2}\left(N_{f}=2\right)$
complex except when $\mu=0$ (charge-conjugation symmetry)

Monte Carlo: no pain, no gain...

Monte Carlo highly efficient: importance sampling Prob(conf) $\propto \exp [-S($ conf)]

- But all low-hanging fruits have been picked by now
- Further progress requires tackling the "sign problem":

$$
\exists \text { conf s.t. "Boltzmann weight" } \exp [-S \text { (conf) }] \notin \mathbb{R}_{\geq 0}
$$

No probabilistic interpretation - Monte Carlo impossible??

QCD at non-zero density / chemical potential μ
integrate out the fermions $\operatorname{det}\left(D+\mu \gamma_{0}\right)^{2}\left(N_{f}=2\right)$
complex except when $\mu=0$ (charge-conjugation symmetry)

Real >0 "Boltzmann weight" is the exception rather than the rule
Interdisciplinary sign pb conferences, etc...

Computational complexity of the sign pb

- How to study: $Z_{\rho} \equiv \int d x \rho(x), \quad \rho(x) \in \mathbf{R}$, with $\rho(x)$ sometimes negative ? Reweighting: sample with $|\rho(x)|$ and "put the sign in the observable":

$$
\langle W\rangle_{f} \equiv \frac{\int d x W(x) \rho(x)}{\int d x \rho(x)}=\frac{\int d x[W(x) \operatorname{sign}(\rho(x))]|\rho(x)|}{\int d x \operatorname{sign}(\rho(x))|\rho(x)|}=\frac{\langle W \operatorname{sign}(\rho)\rangle_{|\rho|}}{\langle\operatorname{sign}(\rho)\rangle_{|\rho|}}
$$

Computational complexity of the sign pb

- How to study: $Z_{\rho} \equiv \int d x \rho(x), \quad \rho(x) \in \mathbf{R}$, with $\rho(x)$ sometimes negative ? Reweighting: sample with $|\rho(x)|$ and "put the sign in the observable":

$$
\langle W\rangle_{f} \equiv \frac{\int d x W(x) \rho(x)}{\int d x \rho(x)}=\frac{\int d x[W(x) \operatorname{sign}(\rho(x))]|\rho(x)|}{\int d x \operatorname{sign}(\rho(x))|\rho(x)|}=\frac{\langle W \operatorname{sign}(\rho)\rangle_{|\rho|}}{\langle\operatorname{sign}(\rho)\rangle_{|\rho|}}
$$

- $\langle\operatorname{sign}(\rho)\rangle_{|\rho|}=\frac{\int d x \operatorname{sign}(\rho(x))|\rho(x)|}{\int d x|\rho(x)|}=\frac{Z_{\rho}}{Z_{|\rho|}}=\exp (-\frac{V}{T} \underbrace{\Delta f\left(\mu^{2}, T\right)})$, exponentially small diff. free energy dens.
Each meas. of $\operatorname{sign}(\rho)$ gives value $\pm 1 \Longrightarrow$ statistical error $\approx \frac{1}{\sqrt{\# \text { meas }}}$
Constant relative accuracy \Longrightarrow

$$
\text { need statistics } \propto \exp \left(+2 \frac{\mathrm{~V}}{\top} \Delta f\right)
$$

Large V, low T inaccessible: signal/noise ratio degrades exponentially
"Figure of merit" Δf : measures severity of sign pb.

Computational complexity of the sign pb

- How to study: $Z_{\rho} \equiv \int d x \rho(x), \quad \rho(x) \in \mathbf{R}$, with $\rho(x)$ sometimes negative ? Reweighting: sample with $|\rho(x)|$ and "put the sign in the observable":

$$
\langle W\rangle_{f} \equiv \frac{\int d x W(x) \rho(x)}{\int d x \rho(x)}=\frac{\int d x[W(x) \operatorname{sign}(\rho(x))]|\rho(x)|}{\int d x \operatorname{sign}(\rho(x))|\rho(x)|}=\frac{\langle W \operatorname{sign}(\rho)\rangle_{|\rho|}}{\langle\operatorname{sign}(\rho)\rangle_{|\rho|}}
$$

- $\langle\operatorname{sign}(\rho)\rangle_{|\rho|}=\frac{\int d x \operatorname{sign}(\rho(x))|\rho(x)|}{\int d x|\rho(x)|}=\frac{Z_{\rho}}{Z_{|\rho|}}=\exp (-\frac{V}{T} \underbrace{\Delta f\left(\mu^{2}, T\right)})$, exponentially small diff. free energy dens.
Each meas. of $\operatorname{sign}(\rho)$ gives value $\pm 1 \Longrightarrow$ statistical error $\approx \frac{1}{\sqrt{\# \text { meas }}}$
Constant relative accuracy \Longrightarrow need statistics $\propto \exp \left(+2 \frac{\mathrm{~V}}{\mathrm{~T}} \Delta f\right)$

Large V, low T inaccessible: signal/noise ratio degrades exponentially
"Figure of merit" Δf : measures severity of sign pb .
More general factorization: $\rho=\rho_{M C} \times \frac{\rho}{\rho_{M C}}$ but (1) Δf increases, AND (2) \cdots

Sign pb
Overlap pb

More difficulties: the overlap problem

- Further danger: insufficient overlap between sampled and reweighted ensembles

Very large weight carried by very rarely sampled states
\rightarrow WRONG estimates in reweighted ensemble for finite statistics

- Example: sample $\exp \left(-\frac{x^{2}}{2}\right)$, reweight to $\exp \left(-\frac{\left(x-x_{0}\right)^{2}}{2}\right) \rightarrow\langle x\rangle=x_{0}$?

- Estimated $\langle x\rangle$ saturates at largest sampled x-value - Error estimate too small

Insufficient overlap $\left(x_{0}=5\right)$ Solution: Need stats $\propto \exp (\Delta S)$

Very non-Gaussian distribution of reweighting factor Log-normal Kaplan et al.

Semantics: what does "solving the sign pb" mean?

- Idealist: "eliminate" the sign pb (ie. sign-pb-free representation of Z)
eg. flux ("dual") variables for complex bosonic field ϕ with chem. pot. integrate out the phase of ϕ (plays no explicit role in physical states)

Semantics: what does "solving the sign pb" mean?

- Idealist: "eliminate" the sign pb (ie. sign-pb-free representation of Z)
eg. flux ("dual") variables for complex bosonic field ϕ with chem. pot. integrate out the phase of ϕ (plays no explicit role in physical states)
- Pragmatist: "mollify" the sign pb $\langle\operatorname{sign}\rangle=\exp \left(-\frac{V}{T} \Delta f\right) \rightarrow$ reduce $\Delta f \rightarrow$ simulate "large enough" volumes
eg. lattice QCD with chemical potential in strong-coupling limit integrate out colored gauge links (plays no role in physical states,
 except at short distance)

$$
\begin{aligned}
& \text { Compare with } \sim \rho_{N}\left(m_{N}-\frac{3}{2} m_{\pi}\right) \\
& \qquad \Delta F \text { reduced by } \sim 10^{4}
\end{aligned}
$$

Steve Weinberg's
 Third Law of Progress in Theoretical Physics

You may use any degrees of freedom you like to describe a physical system, but if you use the wrong ones, you'll be sorry
in "Asymptotic realms of physics", 1983

Steve Weinberg's
 Third Law of Progress in Theoretical Physics

You may use any degrees of freedom you like to describe a physical system, but if you use the wrong ones, you'll be sorry

$$
\text { in "Asymptotic realms of physics", } 1983
$$

- Second Law: do not trust arguments based on lowest-order perturbation theory
- First Law: you will get nowhere by just churning equations

How to make the sign problem milder?

- Severity of sign pb. is representation dependent:

$$
\text { generically, } Z=\operatorname{Tr} e^{-\beta H}=\operatorname{Tr}\left[e^{-\frac{\beta}{N} H}\left(\sum|\psi\rangle\langle\psi|\right) e^{-\frac{\beta}{N} H}\left(\sum|\psi\rangle\langle\psi|\right) \cdots\right]
$$

Any complete set $\{|\psi\rangle\}$ will do
If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\left\langle\psi_{k}\right| e^{-\frac{\beta}{N} H}\left|\psi_{l}\right\rangle=e^{-\frac{\beta}{N} E_{k}} \delta_{k l} \geq 0 \rightarrow$ no sign pb

- Strategy: choose $\{|\psi\rangle\}$ "close" to physical eigenstates of H without full-fledged diagonalization of H
Strategy is general - "deep" optimization? tensor networks?

How to make the sign problem milder?

- Severity of sign pb. is representation dependent:
generically, $Z=\operatorname{Tr} e^{-\beta H}=\operatorname{Tr}\left[e^{-\frac{\beta}{N} H}\left(\sum|\psi\rangle\langle\psi|\right) e^{-\frac{\beta}{N} H}\left(\sum|\psi\rangle\langle\psi|\right) \cdots\right]$
Any complete set $\{|\psi\rangle\}$ will do
If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\left\langle\psi_{k}\right| e^{-\frac{\beta}{N} H}\left|\psi_{l}\right\rangle=e^{-\frac{\beta}{N} E_{k}} \delta_{k l} \geq 0 \rightarrow$ no sign pb
- Strategy:
choose $\{|\psi\rangle\}$ "close" to physical eigenstates of H
without full-fledged diagonalization of H
Strategy is general - "deep" optimization? tensor networks?
- Worse: are there irreducible sign problems?

YES: when the partition function vanishes!
1d Ising model
Example: spin system in complex magnetic field (Lee-Yang zeros of Z) Rindlisbacher \& PdF

Catalogue of approaches to bypass the QCD sign pb

- Analytic continuation from imaginary μ (no sign pb there): data is cheap How to control systematic error?? (fitting ansatz)

Catalogue of approaches to bypass the QCD sign pb

- Analytic continuation from imaginary μ (no sign pb there): data is cheap How to control systematic error?? (fitting ansatz)
- Taylor expansion in μ / T about $\mu=0$:
limited info $\mu / T \lesssim 1$ cost of $k^{\text {th }}$ coeff increases very steeply with k technical advances

Catalogue of approaches to bypass the QCD sign pb

- Analytic continuation from imaginary μ (no sign pb there): data is cheap How to control systematic error?? (fitting ansatz)
- Taylor expansion in μ / T about $\mu=0$:
limited info $\mu / T \lesssim 1$
cost of $k^{\text {th }}$ coeff increases very steeply with k technical advances

```
Gavai, Sharma, Schmidt,..
```

- Density of states:
$S=S_{R}+i S_{I}$; select one observable eg. $S_{I} \rightarrow Z_{x}=\int \mathcal{D} U e^{-S_{R}} \delta\left(S_{I}-x\right)$ $Z=\int d x Z_{x} e^{i x}$, i.e. Fourier transform
old: Gocksch (1988), Fodor Katz \& Schmidt, 2007, significant progress: Langfeld, Lucini \& Rago, 2012

Solves overlap pb
consensus(?): data alone not accurate enough to beat sign pb: need "smoothing" or "fitting" ansatz LLR; Gattringer \rightarrow bias PdF \& Rindlisbacher, XQCD 2016

Catalogue of approaches to bypass the QCD sign pb: going complex
e.g. gauge field: $A_{\mu} \rightarrow A_{\mu}^{R}+i A_{\mu}^{\prime} \quad S$ extended by analytic continuation

- QCD problem I:
S is not analytic: $\log \operatorname{det}(D)$ has poles and is multi-valued
- QCD problem II:
gauge group $S U(3) \rightarrow S L(3, \mathcal{C})$, departure from $S U(3) \sim A_{\mu}^{\prime}$ $S L(3, \mathcal{C})$ gauge transformations \Rightarrow flat directions $A_{\mu} \rightarrow i \infty$ \Rightarrow runaway solutions; large, diverging force; roundoff error; etc..
- gauge cooling Seiler, Sexty \& Stamatescu
- irrelevant (?) SU(3)-restoring force Attanasio \& Jäger

> Hope: find probability $P\left(A_{\mu}^{R}, A_{\mu}^{\prime}\right) \in \mathcal{R}^{+}$in complexified space, which yields correct vevs for all observables

Catalogue of approaches to bypass the QCD sign pb: going complex

- Intelligent design: construct "representation" $P\left(A_{\mu}^{R}, A_{\mu}^{\prime}\right) \in \mathcal{R}^{+}$such that

$$
\left\langle W\left(A_{\mu}^{R}\right)\right\rangle_{\exp \left(-S_{R}-i S_{1}\right)}=\left\langle W\left(A_{\mu}^{R}+i A_{\mu}^{\prime}\right)\right\rangle_{P} \quad \forall W \quad \text { Salcedo, Wosiek }
$$

Example: $S=(x-i)^{2} \rightarrow P(x, y)=\delta(y-1) \exp \left(-x^{2}\right)$
Finding suitable "representation" more difficult than solving the sign problem?

Catalogue of approaches to bypass the QCD sign pb: going complex

- Intelligent design: construct "representation" $P\left(A_{\mu}^{R}, A_{\mu}^{\prime}\right) \in \mathcal{R}^{+}$such that $\left\langle W\left(A_{\mu}^{R}\right)\right\rangle_{\exp \left(-s_{R}-i S_{1}\right)}=\left\langle W\left(A_{\mu}^{R}+i A_{\mu}^{\prime}\right)\right\rangle_{P} \quad \forall W \quad$ Salcedo, Wosiek
Example: $S=(x-i)^{2} \rightarrow P(x, y)=\delta(y-1) \exp \left(-x^{2}\right)$
Finding suitable "representation" more difficult than solving the sign problem?
- Complex Langevin: conjecture)by Parisi and by Klauder, 1983 S complex \rightarrow complex drift force $\nabla S,+$ complex noise
Outcomes: runaway, convergence to correct or to wrong answers
When does complex Langevin give correct results?
- infinite set of conditions (Seiler et al) - not practical
- no boundary in parameter space separating correct and wrong results \rightarrow always wrong? Kogut \& Sinclair?
- real noise only
- may give wrong answers in the absence of sign pb (3d XY model,

Catalogue of approaches to bypass the QCD sign pb: going complex

- Lefschetz thimble:

Idea: deform integration contour in the complex plane, such that $S_{I}=$ constant $\rightarrow \approx$ constant phase

- do NOT explore full complexified space (\leftrightarrow complex Langevin)
- to find the thimble: start at saddle point $\partial_{z} S(z)=0$
keep $S_{\text {I }}$ fixed
move to increase S_{R} (steepest ascent)
- IF one thimble, then constant phase $e^{i S_{I}}$ cancels in vevs residual, mild sign pb from Jacobian along [not straight] thimble technical difficulty of sampling along thimble can be overcome Di Renzo et al, Tanizaki et al, Fujii et al, Bedaque et al

Catalogue of approaches to bypass the QCD sign pb: going complex

- Lefschetz thimble:

Idea: deform integration contour in the complex plane, such that $S_{I}=$ constant $\rightarrow \approx$ constant phase

- do NOT explore full complexified space (\leftrightarrow complex Langevin)
- to find the thimble: start at saddle point $\partial_{z} S(z)=0$
keep $S_{\text {I }}$ fixed
move to increase S_{R} (steepest ascent)
- IF one thimble, then constant phase $e^{i S_{1}}$ cancels in vevs residual, mild sign pb from Jacobian along [not straight] thimble technical difficulty of sampling along thimble can be overcome Di Renzo et al, Tanizaki et al, Fujii et al, Bedaque et al

Problem: number of thimbles $\sim \exp (V o l u m e)$?

- Keep dominant thimble only (OK as $V \rightarrow \infty$?) but, eg. phase transitions??
- Keep all thimbles: - relative phase \rightarrow sign pb reappears
- ergodic sampling?

Catalogue of approaches to bypass the QCD sign pb: going complex

- Holomorphic gradient flow: Alexandru, Bedaque et al, 1512.08764,..

Idea: tuning knob (flow time) to interpolate between real manifold and thimble

- $t=0 \rightarrow$ original field ϕ
- $t>0 \rightarrow \frac{d \phi}{d t}=\frac{\overline{\partial S}}{\partial \phi}$

Along flow, $S_{\text {, remains constant, and } S_{R} \text { keeps increasing }}$ ie. $\exp \left(-S_{R}\right)$ keeps decreasing, except for critical points $\partial S / \partial \phi=0$ \Longrightarrow approach Lefschetz thimbles as $t \rightarrow \infty$

Flow time:	0	\longrightarrow	∞
Difficulty:	sign pb		ergodicity pb
		sweet spot	

Note: sign pb requires $\exp (V)$ resources, ergodicity pb ALSO \rightarrow don't expect "sweet spot" to beat $\exp (V)$ complexity - only Δf smaller

- Reason for optimism: real-time quantum dynamics

Catalogue of approaches to bypass the QCD sign pb: a sobering story (Ph.D. thesis, Slavo Kratochvila, ETH, 2005)

- Toy problem: estimate $\langle W(\lambda)\rangle=\frac{\int_{-\infty}^{+\infty} d x e^{-x^{2}+i \lambda x}}{\int d x e^{-x^{2}}}$

Exact answer: $\langle W(\lambda)\rangle=\left\langle e^{i \lambda x}\right\rangle_{\lambda=0}=e^{-\lambda^{2} / 4} \rightarrow$ exponentially large cancellations

- One approach: deformation of contour in the complex plane Note saddle points: $x=i \lambda / 2$ (numerator) and $x=0$ (denominator)

Catalogue of approaches to bypass the QCD sign pb: a sobering story (Ph.D. thesis, Slavo Kratochvila, ETH, 2005)

- Toy problem: estimate $\langle W(\lambda)\rangle=\frac{\int_{-\infty}^{+\infty} d x e^{-x^{2}+i \lambda x}}{\int d x e^{-x^{2}}}$

Exact answer: $\langle W(\lambda)\rangle=\left\langle e^{i \lambda x}\right\rangle_{\lambda=0}=e^{-\lambda^{2} / 4} \rightarrow$ exponentially large cancellations

- One approach: deformation of contour in the complex plane Note saddle points: $x=i \lambda / 2$ (numerator) and $x=0$ (denominator)
- Observation: optimum is to go through $x=i \lambda / 4$. ie. neither saddle point! Why? Moving the contour away from real axis renders denominator oscillatory

Sign problem is shifted between numerator and denominator! Optimum contour is a compromise (half-way between the two saddle points) which depends on observable W

Lesson for realistic problems:
> an innocent observable may become oscillatory when analytically continued \rightarrow danger of simply reshuffling the sign pb from Z to W

cf. optimization of contour via cost-function

The struggle continues...

Backup

Sampling for QCD at finite μ

- QCD: sample with $\left|\operatorname{Re}\left(\operatorname{det}(\mu)^{N_{f}}\right)\right|$ optimal, but not equiv. to Gaussian integral

Can choose instead: $|\operatorname{det}(\mu)|^{N_{f}}$, i.e. "phase quenched" $|\operatorname{det}(\mu)|^{N_{f}}=\operatorname{det}(+\mu)^{\frac{N_{f}}{2}} \operatorname{det}(-\mu)^{\frac{N_{f}}{2}}$, ie. isospin chemical potential $\mu_{u}=-\mu_{d}$ couples to $u \bar{d}$ charged pions \Rightarrow Bose condensation of π^{+}when $|\mu|>\mu_{\text {crit }}(T)$

Sampling for QCD at finite μ

- QCD: sample with $\left|\operatorname{Re}\left(\operatorname{det}(\mu)^{N_{f}}\right)\right|$ optimal, but not equiv. to Gaussian integral Can choose instead: $|\operatorname{det}(\mu)|^{N_{f}}$, i.e. "phase quenched" $|\operatorname{det}(\mu)|^{N_{f}}=\operatorname{det}(+\mu)^{\frac{N_{f}}{2}} \operatorname{det}(-\mu)^{\frac{N_{f}}{2}}$, ie. isospin chemical potential $\mu_{u}=-\mu_{d}$ couples to $u \bar{d}$ charged pions \Rightarrow Bose condensation of π^{+}when $|\mu|>\mu_{\text {crit }}(T)$
- av. sign $=\frac{Z_{\text {Ocd }}(\mu)}{Z_{|\operatorname{CcD}|}(\mu)}=e^{-\frac{v}{T}\left[f\left(\mu_{\omega} \sigma+\mu, \mu_{\sigma} F+\mu\right)-f\left(\mu_{\omega}=+\mu, \mu_{\sigma}=-\mu\right)\right]}$
(for $N_{f}=2$)

$\Delta f\left(\mu^{2}, T\right)$ large in the Bose phase \rightarrow "severe" sign pb.
"Silverblaze pb": phase of det changes groundstate

Sampling for QCD at finite μ

- QCD: sample with $\left|\operatorname{Re}\left(\operatorname{det}(\mu)^{N_{f}}\right)\right|$ optimal, but not equiv. to Gaussian integral Can choose instead: $|\operatorname{det}(\mu)|^{N_{f}}$, i.e. "phase quenched" $|\operatorname{det}(\mu)|^{N_{f}}=\operatorname{det}(+\mu)^{\frac{N_{f}}{2}} \operatorname{det}(-\mu)^{\frac{N_{f}}{2}}$, ie. isospin chemical potential $\mu_{u}=-\mu_{d}$ couples to $u \bar{d}$ charged pions \Rightarrow Bose condensation of π^{+}when $|\mu|>\mu_{\text {crit }}(T)$
- av. sign $=\frac{Z_{\text {QcD }}(\mu)}{Z_{\text {QCDD }}(\mu)}=e^{-\frac{v}{T}\left[f\left(\mu_{\sigma}=+\mu, \mu_{\sigma} F+\mu\right)-f\left(\mu_{\omega} F+\mu, \mu_{\sigma} F-\mu\right)\right]}$
(for $N_{f}=2$)

Extremely hard

Sampling for QCD at finite μ

- QCD: sample with $\left|\operatorname{Re}\left(\operatorname{det}(\mu)^{N_{f}}\right)\right|$ optimal, but not equiv. to Gaussian integral Can choose instead: $|\operatorname{det}(\mu)|^{N_{f}}$, i.e. "phase quenched"
$|\operatorname{det}(\mu)|^{N_{f}}=\operatorname{det}(+\mu)^{\frac{N_{f}}{2}} \operatorname{det}(-\mu)^{\frac{N_{f}}{2}}$, ie. isospin chemical potential $\mu_{u}=-\mu_{d}$ couples to $u \bar{d}$ charged pions \Rightarrow Bose condensation of π^{+}when $|\mu|>\mu_{\text {crit }}(T)$
- av. sign $=\frac{Z_{\text {QcD }}(\mu)}{Z_{\text {|ССD }}(\mu)}=e^{-\frac{v}{T}\left[f\left(\mu_{\digamma} F+\mu, \mu_{\sigma} F+\mu\right)-f\left(\mu_{\omega} F+\mu, \mu_{\sigma} F-\mu\right)\right]}$
(for $N_{f}=2$)

$\Delta f\left(\mu^{2}, T\right)$ large in the Bose phase
\rightarrow "severe" sign pb.

Not as hard

$$
\frac{\mu}{T} \lesssim 1
$$

Alternative at $T \approx 0: \mu=0+$ baryonic sources/sinks

Signal-to-noise ratio of N-baryon correlator $\propto \exp \left(-N\left(m_{B}-\frac{3}{2} m_{\pi}\right) t\right)$

- Mitigated with variational baryon ops. $\rightarrow m_{\text {eff }}$ plateau for 3 or 4 baryons ?

Savage et al., 1004.2935
At least 2 baryons \rightarrow nuclear potential Aoki, Hatsuda et al., eg. 1007.3559

- Beautiful results with up to $12 \rightarrow 72$ pions or kaons Detmold et al., eg. 0803.2728
(cf. isospin- μ : no sign pb.)

