The struggle against the sign problem

Philippe de Forcrand ETH Zürich & CERN

XQCD 2017, Pisa, June 26, 2017

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

-

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Monte Carlo highly efficient: *importance sampling* $Prob(conf) \propto exp[-S(conf)]$

- But all low-hanging fruits have been picked by now
- Further progress requires tackling the "sign problem":

 $\exists \text{ conf s.t. "Boltzmann weight" exp}[-S(\text{conf})] \notin \mathbb{R}_{\geq 0}$

No probabilistic interpretation — Monte Carlo impossible??

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● つへで

Monte Carlo highly efficient: *importance sampling* $Prob(conf) \propto exp[-S(conf)]$

- But all low-hanging fruits have been picked by now
- Further progress requires tackling the "sign problem":

 $\exists \text{ conf s.t. "Boltzmann weight" exp}[-S(\text{conf})] \notin \mathbb{R}_{\geq 0}$

No probabilistic interpretation — Monte Carlo impossible??

Real-time quantum evolution

dynamics of chemical reactions, protein folding, entanglement, ... limited to small systems / short times, or classical approximation weight in path integral $\propto \exp(-\frac{\mathbf{i}}{\hbar}Ht) \longrightarrow$ phase cancellations

Monte Carlo highly efficient: *importance sampling* $Prob(conf) \propto exp[-S(conf)]$

- But all low-hanging fruits have been picked by now
- Further progress requires tackling the "sign problem":

 $\exists \text{ conf s.t. "Boltzmann weight" exp}[-S(\text{conf})] \notin \mathbb{R}_{\geq 0}$

No probabilistic interpretation — Monte Carlo impossible??

High T_c superconductivity: still mysterious after ~ 30 years Hubbard model: repulsion $Un_{\uparrow}n_{\downarrow} \xrightarrow{}_{\text{Hubbard-Stratonovich}} \det_{\uparrow} \det_{\downarrow}$

can be negative except at half-filling (particle-hole symmetry)

Monte Carlo highly efficient: *importance sampling* $Prob(conf) \propto exp[-S(conf)]$

- But all low-hanging fruits have been picked by now
- Further progress requires tackling the "sign problem":

 $\exists \text{ conf s.t. "Boltzmann weight" exp}[-S(\text{conf})] \notin \mathbb{R}_{\geq 0}$

No probabilistic interpretation — Monte Carlo impossible??

QCD at non-zero density / chemical potential μ

integrate out the fermions $\det(\not\!\!D + \mu \gamma_0)^2 \ (N_f = 2)$

complex except when $\mu = 0$ (charge-conjugation symmetry)

Monte Carlo highly efficient: *importance sampling* $Prob(conf) \propto exp[-S(conf)]$

- But all low-hanging fruits have been picked by now
- Further progress requires tackling the "sign problem":

 $\exists \text{ conf s.t. "Boltzmann weight" exp}[-S(\text{conf})] \notin \mathbb{R}_{\geq 0}$

No probabilistic interpretation — Monte Carlo impossible??

QCD at non-zero density / chemical potential μ

integrate out the fermions det $(\not D + \mu \gamma_0)^2$ $(N_f = 2)$

complex except when $\mu = 0$ (charge-conjugation symmetry)

Real > 0 "Boltzmann weight" is the exception rather than the rule

Interdisciplinary sign pb conferences, etc...

Computational complexity of the sign pb

▲□▶▲□▶▲□▶▲□▶▲□▶ ▲□▼

• How to study: $Z_{\rho} \equiv \int dx \ \rho(x), \ \rho(x) \in \mathbf{R}$, with $\rho(x)$ sometimes negative ? Reweighting: sample with $|\rho(x)|$ and "put the sign in the observable":

$$\langle W \rangle_f \equiv \frac{\int dx \ W(x)\rho(x)}{\int dx \ \rho(x)} = \frac{\int dx \ [W(x)\operatorname{sign}(\rho(x))] \ |\rho(x)|}{\int dx \ \operatorname{sign}(\rho(x)) \ |\rho(x)|} = \left| \frac{\langle W\operatorname{sign}(\rho) \rangle_{|\rho|}}{\langle \operatorname{sign}(\rho) \rangle_{|\rho|}} \right|$$

Computational complexity of the sign pb

• How to study: $Z_{\rho} \equiv \int dx \ \rho(x), \ \rho(x) \in \mathbf{R}$, with $\rho(x)$ sometimes negative ? Reweighting: sample with $|\rho(x)|$ and "put the sign in the observable": $\langle W \rangle_f \equiv \frac{\int dx \ W(x)\rho(x)}{\int dx \ \rho(x)} = \frac{\int dx \ [W(x)\operatorname{sign}(\rho(x))] \ |\rho(x)|}{\int dx \ \operatorname{sign}(\rho(x)) \ |\rho(x)|} = \left| \frac{\langle W\operatorname{sign}(\rho) \rangle_{|\rho|}}{\langle \operatorname{sign}(\rho) \rangle_{|\rho|}} \right|$ • $\langle \operatorname{sign}(\rho) \rangle_{|\rho|} = \frac{\int dx \, \operatorname{sign}(\rho(x))|\rho(x)|}{\int dx \, |\rho(x)|} = \left| \frac{Z_{\rho}}{Z_{|\rho|}} \right| = \exp(-\frac{V}{T} \Delta f(\mu^2, T)), \text{ exponentially small}$ diff. free energy dens. Each meas. of sign(ρ) gives value $\pm 1 \Longrightarrow$ statistical error $\approx \frac{1}{\sqrt{\# \text{ meas.}}}$ Constant relative accuracy \implies need statistics $\propto \exp(+2\frac{V}{T}\Delta f)$ Large V, low T inaccessible: signal/noise ratio degrades exponentially

"Figure of merit" Δf : measures severity of sign pb.

Computational complexity of the sign pb

• How to study: $Z_{\rho} \equiv \int dx \ \rho(x), \ \rho(x) \in \mathbf{R}$, with $\rho(x)$ sometimes negative ? Reweighting: sample with $|\rho(x)|$ and "put the sign in the observable": $\langle W \rangle_f \equiv \frac{\int dx \ W(x)\rho(x)}{\int dx \ \rho(x)} = \frac{\int dx \ [W(x)\operatorname{sign}(\rho(x))] \ |\rho(x)|}{\int dx \ \operatorname{sign}(\rho(x)) \ |\rho(x)|} = \left| \frac{\langle W\operatorname{sign}(\rho) \rangle_{|\rho|}}{\langle \operatorname{sign}(\rho) \rangle_{|\rho|}} \right|$ • $\langle \operatorname{sign}(\rho) \rangle_{|\rho|} = \frac{\int dx \, \operatorname{sign}(\rho(x)) |\rho(x)|}{\int dx \, |\rho(x)|} = \left| \frac{Z_{\rho}}{Z_{|\rho|}} \right| = \exp(-\frac{V}{T} \Delta f(\mu^2, T)), \text{ exponentially small}$ diff. free energy dens. Each meas. of sign(ρ) gives value $\pm 1 \Longrightarrow$ statistical error $\approx \frac{1}{\sqrt{\# \text{ meas}}}$ Constant relative accuracy \implies need statistics $\propto \exp(+2\frac{V}{T}\Delta f)$ Large V, low T inaccessible: signal/noise ratio degrades exponentially "Figure of merit" Δf : measures severity of sign pb.

More general factorization: $\rho = \rho_{MC} \times \frac{\rho}{\rho_{MC}}$ but (1) Δf increases, AND (2)... non-negative, used for sampling

Sign pb

Overlap pb

More difficulties: the overlap problem

• Further danger: insufficient overlap between sampled and reweighted ensembles

Very large weight carried by very rarely sampled states \rightarrow WRONG estimates in reweighted ensemble for finite statistics

• Example: sample
$$\exp(-\frac{x^2}{2})$$
, reweight to $\exp(-\frac{(x-x_0)^2}{2}) \rightarrow \langle x \rangle = x_0$?

Insufficient overlap ($x_0 = 5$)

Very non-Gaussian distribution of reweighting factor Log-normal Kaplan et al.

< ⊒ >

SQ (~

3

Solution: Need stats $\propto \exp(\Delta S)$

Semantics: what does "solving the sign pb" mean?

• Idealist: "eliminate" the sign pb (ie. sign-pb-free representation of Z)

eg. flux ("dual") variables for complex bosonic field ϕ with chem. pot. integrate out the phase of ϕ (plays no explicit role in physical states)

Semantics: what does "solving the sign pb" mean?

• Idealist: "eliminate" the sign pb (ie. sign-pb-free representation of Z)

eg. flux ("dual") variables for complex bosonic field ϕ with chem. pot. integrate out the phase of ϕ (plays no explicit role in physical states)

• Pragmatist: "mollify" the sign pb

 $\langle \operatorname{sign} \rangle = \exp(-\frac{V}{T}\Delta f) \rightarrow \operatorname{reduce} \Delta f \rightarrow \operatorname{simulate} "large enough" volumes$

eg. lattice QCD with chemical potential in strong-coupling limit integrate out colored gauge links (plays no role in physical states,

except at short distance)

Compare with
$$\sim
ho_N(m_N-rac{3}{2}m_\pi)$$

 $ightarrow \Delta F$ reduced by $\sim 10^4$

General guiding principle ?

Steve Weinberg's Third Law of Progress in Theoretical Physics

You may use any degrees of freedom you like to describe a physical system, but if you use the wrong ones, you'll be sorry

in "Asymptotic realms of physics", 1983

Steve Weinberg's Third Law of Progress in Theoretical Physics

You may use any degrees of freedom you like to describe a physical system, but if you use the wrong ones, you'll be sorry

in "Asymptotic realms of physics", 1983

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ∽ へ ⊙

 Second Law: do not trust arguments based on lowest-order perturbation theory

• First Law: you will get nowhere by just churning equations

How to make the sign problem milder?

• Severity of sign pb. is representation dependent: generically, $Z = \text{Tr}e^{-\beta H} = \text{Tr}\left[e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)\cdots\right]$ Any complete set $\{|\psi\rangle\}$ will do

If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\langle\psi_k|e^{-\frac{\beta}{N}H}|\psi_I\rangle = e^{-\frac{\beta}{N}E_k}\delta_{kI} \ge 0 \rightarrow \text{no sign pb}$

• Strategy:

choose $\{|\psi\rangle\}$ "close" to physical eigenstates of H

without full-fledged diagonalization of *H* Strategy is general – "deep" optimization? tensor networks?

How to make the sign problem milder?

• Severity of sign pb. is representation dependent: generically, $Z = \text{Tr}e^{-\beta H} = \text{Tr}\left[e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)\cdots\right]$ Any complete set $\{|\psi\rangle\}$ will do

If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\langle\psi_k|e^{-\frac{\beta}{N}H}|\psi_I\rangle = e^{-\frac{\beta}{N}E_k}\delta_{kI} \ge 0 \rightarrow \text{no sign pb}$

Strategy:

choose $\{|\psi\rangle\}$ "close" to physical eigenstates of H

without full-fledged diagonalization of *H* Strategy is general – "deep" optimization? tensor networks?

Worse: are there(irreducible) sign problems?
 YES: when the partition function vanishes!

Example: spin system in complex magnetic field (Lee-Yang zeros of Z) Rindlisbacher & PdF

 $\mathcal{O}\mathcal{Q}\mathcal{O}$

Catalogue of approaches to bypass the QCD sign pb

• Analytic continuation from imaginary μ (no sign pb there): data is cheap How to control systematic error?? (fitting ansatz)

Catalogue of approaches to bypass the QCD sign pb

- Analytic continuation from imaginary μ (no sign pb there): data is cheap How to control systematic error?? (fitting ansatz)
- Taylor expansion in μ/T about $\mu = 0$:

limited info $\mu/T \lesssim 1$ cost of k^{th} coeff increases very steeply with ktechnical advances Gavai, Sharma, Schmidt,...

Catalogue of approaches to bypass the QCD sign pb

- Analytic continuation from imaginary μ (no sign pb there): data is cheap How to control systematic error?? (fitting ansatz)
- Taylor expansion in μ/T about $\mu = 0$: limited info $\mu/T \lesssim 1$ cost of k^{th} coeff increases very steeply with ktechnical advances Gavai, Sharma, Schmidt,..
- Density of states:

 $S = S_R + iS_I$; select one observable eg. $S_I \rightarrow Z_x = \int \mathcal{D}Ue^{-S_R}\delta(S_I - x)$ $Z = \int dx Z_x e^{ix}$, i.e. Fourier transform old: Gocksch (1988), Fodor Katz & Schmidt, 2007, ... significant progress: Langfeld, Lucini & Rago, 2012 Solves overlap pb consensus(?): data alone not accurate enough to beat sign pb: need "smoothing" or "fitting" ansatz LLR; Gattringer \rightarrow bias PdF & Rindlisbacher, XQCD 2016

e.g. gauge field: $A_{\mu}
ightarrow A^R_{\mu} + i A^I_{\mu}$ S extended by analytic continuation

- QCD problem I:
 S is not analytic: log det(\$\vec{D}\$) has poles and is multi-valued
- QCD problem II: gauge group $SU(3) \rightarrow SL(3, C)$, departure from $SU(3) \sim A'_{\mu}$ SL(3, C) gauge transformations \Rightarrow flat directions $A_{\mu} \rightarrow i\infty$ \Rightarrow runaway solutions; large, diverging force; roundoff error; etc.. • gauge cooling Seiler, Sexty & Stamatescu • irrelevant (?) SU(3)-restoring force Attanasio & Jäger

Hope: find probability $P(A_{\mu}^{R}, A_{\mu}^{\prime}) \in \mathcal{R}^{+}$ in complexified space, which yields correct vevs for all observables

• Intelligent design: construct "representation" $P(A_{\mu}^{R}, A_{\mu}^{I}) \in \mathcal{R}^{+}$ such that $\langle W(A_{\mu}^{R}) \rangle_{\exp(-S_{R}-iS_{I})} = \langle W(A_{\mu}^{R} + iA_{\mu}^{I}) \rangle_{P} \quad \forall W \quad \text{Salcedo, Wosiek}$ Example: $S = (x - i)^{2} \rightarrow P(x, y) = \delta(y - 1) \exp(-x^{2})$

Finding suitable "representation" more difficult than solving the sign problem?

• Intelligent design: construct "representation" $P(A_{\mu}^{R}, A_{\mu}^{I}) \in \mathcal{R}^{+}$ such that $\langle W(A_{\mu}^{R}) \rangle_{\exp(-S_{R}-iS_{I})} = \langle W(A_{\mu}^{R} + iA_{\mu}^{I}) \rangle_{P} \quad \forall W \quad \text{Salcedo, Wosiek}$ Example: $S = (x - i)^{2} \rightarrow P(x, y) = \delta(y - 1) \exp(-x^{2})$

Finding suitable "representation" more difficult than solving the sign problem?

- Complex Langevin: *conjecture* by Parisi and by Klauder, 1983
 S complex → complex drift force ∇S, + complex noise
 Outcomes: runaway, convergence to correct or to wrong answers
 When does complex Langevin give correct results?
- infinite set of conditions (Seiler et al) not practical
- no boundary in parameter space separating correct and wrong results \rightarrow always wrong? Kogut & Sinclair?
- real noise only
- may give wrong answers in the absence of sign pb (3d XY model,

Aarts & James, 2010)

• Lefschetz thimble:

Idea: deform integration contour in the complex plane, such that $S_I = \text{constant} \rightarrow \approx \text{constant phase}$ - do NOT explore full complexified space (\leftrightarrow complex Langevin) - to find the thimble: start at saddle point $\partial_z S(z) = 0$ keep S_I fixed move to increase S_R (steepest ascent) - IF one thimble, then constant phase e^{iS_I} cancels in vevs residual, mild sign pb from Jacobian along [not straight] thimble technical difficulty of sampling along thimble can be overcome Di Renzo et al, Tanizaki et al, Fujii et al, Bedaque et al

• Lefschetz thimble:

Idea: deform integration contour in the complex plane, such that $S_I = \text{constant} \rightarrow \approx \text{constant phase}$ - do NOT explore full complexified space (\leftrightarrow complex Langevin) - to find the thimble: start at saddle point $\partial_z S(z) = 0$ keep S_I fixed move to increase S_R (steepest ascent) - IF one thimble, then constant phase e^{iS_I} cancels in vevs residual, mild sign pb from Jacobian along [not straight] thimble technical difficulty of sampling along thimble can be overcome Di Renzo et al, Tanizaki et al, Fujii et al, Bedaque et al

Problem: number of thimbles $\sim \exp(\text{Volume})$?

- Keep dominant thimble only (OK as $V
 ightarrow \infty$?) but, eg. phase transitions??
- Keep all thimbles: relative phase \rightarrow sign pb reappears

- ergodic sampling?

• Holomorphic gradient flow: Alexandru, Bedaque et al, 1512.08764,...

Idea: tuning knob (flow time) to interpolate between real manifold and thimble

• $t = 0 \rightarrow \text{original field } \phi$

•
$$t > 0 \rightarrow \frac{d\phi}{dt} = \frac{\partial S}{\partial \phi}$$

Along flow, S_I remains constant, and S_R keeps increasing ie. $\exp(-S_R)$ keeps decreasing, except for critical points $\partial S/\partial \phi = 0$ \implies approach Lefschetz thimbles as $t \to \infty$

Note: sign pb requires $\exp(V)$ resources, ergodicity pb ALSO \rightarrow don't expect "sweet spot" to beat $\exp(V)$ complexity – only Δf smaller

• Reason for optimism: real-time quantum dynamics 1605.08040

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 釣��

Catalogue of approaches to bypass the QCD sign pb: a sobering story (Ph.D. thesis, Slavo Kratochvila, ETH, 2005)

• Toy problem: estimate $\langle W(\lambda) \rangle = \frac{\int_{-\infty}^{+\infty} dx \ e^{-x^2 + i\lambda x}}{\int dx \ e^{-x^2}}$

Exact answer: $\langle W(\lambda) \rangle = \langle e^{i\lambda x} \rangle_{\lambda=0} = e^{-\lambda^2/4} \rightarrow \text{exponentially large cancellations}$

• One approach: deformation of contour in the complex plane Note saddle points: $x = i\lambda/2$ (numerator) and x = 0 (denominator)

Catalogue of approaches to bypass the QCD sign pb: a sobering story (Ph.D. thesis, Slavo Kratochvila, ETH, 2005)

• Toy problem: estimate $\langle W(\lambda) \rangle = \frac{\int_{-\infty}^{+\infty} dx \ e^{-x^2 + i\lambda x}}{\int dx \ e^{-x^2}}$

Exact answer: $\langle W(\lambda) \rangle = \langle e^{i\lambda x} \rangle_{\lambda=0} = e^{-\lambda^2/4} \rightarrow \text{exponentially large cancellations}$

- One approach: deformation of contour in the complex plane Note saddle points: $x = i\lambda/2$ (numerator) and x = 0 (denominator)
- Observation: optimum is to go through $x = i\lambda/4$, i.e. neither saddle point! Why? Moving the contour away from real axis renders denominator oscillatory

Sign problem is shifted between numerator and denominator! Optimum contour is a compromise (half-way between the two saddle points) which depends on observable *W*

Lesson for realistic problems:

an innocent observable may become oscillatory when analytically continued \rightarrow danger of simply reshuffling the sign pb from Z to W

cf. optimization of contour via cost-function Ohnishi et al, 1705.05605

The struggle continues...

Backup

 QCD: sample with |Re(det(μ)^{N_f})| optimal, but not equiv. to Gaussian integral Can choose instead: |det(μ)|^{N_f}, i.e. "phase quenched" |det(μ)|^{N_f} = det(+μ)^{N_f/2} det(-μ)^{N_f/2}, ie. isospin chemical potential μ_u = -μ_d couples to ud̄ charged pions ⇒ Bose condensation of π⁺ when |μ| > μ_{crit}(T)

 QCD: sample with |Re(det(μ)^{N_f})| optimal, but not equiv. to Gaussian integral Can choose instead: |det(μ)|^{N_f}, i.e. "phase quenched" |det(μ)|^{N_f} = det(+μ)^{N_f/2} det(-μ)^{N_f/2}, ie. isospin chemical potential μ_u = -μ_d couples to ud̄ charged pions ⇒ Bose condensation of π⁺ when |μ| > μ_{crit}(T)

• av. sign =
$$\frac{Z_{\text{QCD}}(\mu)}{Z_{|\text{QCD}|}(\mu)} = e^{-\frac{V}{T}[f(\mu_u = +\mu, \mu_d = +\mu) - f(\mu_u = +\mu, \mu_d = -\mu)]}$$
 (for $N_f = 2$)

 QCD: sample with |Re(det(μ)^{N_f})| optimal, but not equiv. to Gaussian integral Can choose instead: |det(μ)|^{N_f}, i.e. "phase quenched" |det(μ)|^{N_f} = det(+μ)^{N_f/2} det(-μ)^{N_f/2}, ie. isospin chemical potential μ_u = -μ_d couples to ud̄ charged pions ⇒ Bose condensation of π⁺ when |μ| > μ_{crit}(T)

• av. sign
$$= \frac{Z_{\text{QCD}}(\mu)}{Z_{|\text{QCD}|}(\mu)} = e^{-\frac{V}{T}[f(\mu_u = +\mu, \mu_d = +\mu) - f(\mu_u = +\mu, \mu_d = -\mu)]}$$
 (for $N_f = 2$)

▲□▶▲□▶▲≡▶▲≡▶ ≡ ∽੧<~

 QCD: sample with |Re(det(μ)^{N_f})| optimal, but not equiv. to Gaussian integral Can choose instead: |det(μ)|^{N_f}, i.e. "phase quenched" |det(μ)|^{N_f} = det(+μ)^{N_f/2} det(-μ)^{N_f/2}, ie. isospin chemical potential μ_u = -μ_d couples to ud charged pions ⇒ Bose condensation of π⁺ when |μ| > μ_{crit}(T)

• av. sign =
$$\frac{Z_{\text{QCD}}(\mu)}{Z_{|\text{QCD}|}(\mu)} = e^{-\frac{V}{T}[f(\mu_u = +\mu, \mu_d = +\mu) - f(\mu_u = +\mu, \mu_d = -\mu)]}$$
 (for $N_f = 2$)

Alternative at $T \approx 0$: $\mu = 0 + baryonic sources/sinks$

• Mitigated with variational baryon ops. $\rightarrow m_{eff}$ plateau for 3 or 4 baryons ? Savage et al., 1004.2935 At least 2 baryons \rightarrow nuclear potential Aoki, Hatsuda et al., eg. 1007.3559

• Beautiful results with up to $12 \rightarrow 72$ *pions or kaons* Detmold et al., eg. 0803.2728 (cf. isospin- μ : no sign pb.)