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Electron-Deuteron Asymmetry

® Parity Violating asymmetry
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* Probe of the parity-violating Weak Neutral Current (WNCQC) in the
Standard Model (SM).

* Led to a spectacular confirmation of WNC theory of the SM in
1978 (SLAC).

* Gave one of the first precise measurements of the weak mixing
angle to within 10%.



Electron-Deuteron Asymmetry
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* Probe of parity-violating interactions in the Standard Model.
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* Led to one of the first measurements of the weak mixing angle
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Electron-Deuteron Asymmetry

* All hadronic effects cancel in the asymmetry to first
approximation; Cahn-Gilman (CG) formula:
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: Clean probe of
A 0 >
Il hadronic effects cancel! WNC

* Hadronic effects appear as small corrections to the CG
formula.




Precision Era
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- Weinberg angle to within 0.3%

* |2 GeV program at JLab to begin 2014:

- Moller
- SoLID,

6 GeV,and |2, GeV experiments

(J. Erler, M. Ramsey-Musolf)

* The focus has shifted from the SM WNC theory to detecting
hints of physics beyond the SM.



Corrections to Cahn-Gilman

® |n the precision era, all corrections to CG must be under control
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* Hadronic and electroweak effects must be well understood
before any claim for evidence of new physics can be made.



Asymmetry as a Probe of Hadronic Physics
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* Alternatively, precision PV DIS can be viewed as a probe of
hadronic physics.

* Precision measurements over wide kinematic range can
disentangle various effects.



SOLID

* SOLID plans to measure the asymmetry at the percent level
over a wide kinematic range:

Asymmetry Uncertainty (%) vs. x (60 days at each energy, P=85%)
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Projected data with errors for SOLID
(K.Kumar, P. Souder)



Asymmetry as a Probe of Higher Twist
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* Precision PV DIS can be a probe of higher twist correlations.



Asymmetry as a Probe of Higher Twist

2

-1 -1
— —
— —

a
1+ (1-—

y)z}

y)?

ELJ' — —g (QCJU — de> [1 + Rj (IleW) + Rj (sea) + RJ(CSV) + Rj (TMC) + R](HT)}

T \

New physics

Sea quarks

1

Charge symmetry
violation

A

Target mass

Higher
twist

* Precision PV DIS can be a probe of higher twist correlations.

e Can probe a single four-quark matrix element which encodes
quark-quark correlations. (Bjorken,Wolfenstein)



Higher Twist



Parton Model and Bjorken Scaling

* Bjorken limit: high Q”2 at fixed Bjorken-x.

— ZEUS e Structure functions independent of
| / souse S| QA2 up to logarithmic deviations.

* ZEUS 9697
+ BCDMS
o E6SS

e * Nucleon is a collection of “almost
free quarks”.

F;nhogm(x)




Parton Model and Bjorken Scaling

* Bjorken limit: high Q”2 at fixed Bjorken-x.

ZEUS

g = ere e Structure functions independent of
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s | QA2 up to logarithmic deviations.

4 BCDMS
o E6&S
* NMC

* Nucleon is a collection of “almost
free quarks”.

Long range quark and gluon
correlations!?
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Operator Product expansion
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Optical Theorem

* Twist expansion:

On 2
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n=0 1,7
* L eading twist gives the parton model.

* Correlation matrix elements beyond parton model suppressed
by powers of 1/Q”2: Higher Twist Terms



Operator Product Expansion
\\£ — /I Twist-2 > Bjorken scaling

v Quark-gluon correlation (Twist-4)

~

Power corrections

m Quark-quark correlation(Twist-4)




Operator Product Expansion
\\£ — /I Twist-2

! j g \ Quark-gluon correlation (Twist-4)

m Quark-quark correlation(Twist-4)
/ Isolated in e-D asymmetr

a(x)y"u(x)d(0)y"d(0) + (u < d)]




Key features of the Asymmetry Terms

* Asymmetry can be brought into the form:

- suppressed by small electron vector
coupling

- Can be kinematically distinguished
from second term(dependent on Yy)

- Can be sensitive to quark-quark
and quark-gluon correlations

- Multiple twist-4 matrix elements
determine correlations

- Can be extracted from neutrino
scattering data

- Dominant term in asymmetry

- Can in principle be
kinematically distinguished from
second term (independent of y)

- Can be sensitive to only quark-
quark correlations

- A single twist-4 matrix element
determines quark-quark
correlations.




Key features of the Asymmetry Terms

Focus of this talk

* Asymmetry can be brought into the fcyv
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Some Definitions and Notation

* Asymmetry can be brought into the form:
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* TheY | factor has the form:
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* We have used the definitions:
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Cahn-Gilman Limit

e Cahn-Gilman limit;
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* Higher twist effects can modify these relations.



Hobbs/Melnitchouck Analysis

* Considered the possibility that higher twist effects arise
entirely through the relation:
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e Concluded that;

-20% difference gives a | % effect in asymmetry
-Could interfere with extraction of CSV effects



More Recent Analysis
(SM, M.Ramsey-Musolf, G.Sacco)

* Our conclusions based on the Bjorken/VWolfenstein argument:

-Twist-4 effects in vector WNC term come only from quark-quark correlations.
-A single 4- quark twist-4 matrix element contributes to the vector WNC term.
-The relation R’ = R” holds true at twist-4 up to perturbative corrections.

Only quark-quark
correlations given by
a single matrix element

T

G Q)2 ’ skl
Arp = — AY1 o | ngS I
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wist-4 effects
reside in ratio
of form factors




Bjorken-Wolfenstein Argument

* |sospin decomposition of electromagnetic and vector neutral
currents:

1 1 2 I 2

JI = v, + 35~ §)\“’ Jy" = 2[(1 — 2sin? ), — 3 sin” fs,, — (5 -3 sin”® 6) \,,|
1, . 1, _ . _
v, = §(u%u —dv,d), Sy = §(u%u + dv,d), Ay = 57,8

* |sospin decomposition of electromagnetic and interference
hadronic tensors
1
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Bjorken-Wolfenstein Argument

* |sospin decomposed hadronic tensors:

Wit = g | @' €Dl ()u 0)|D(P)

SS 1 4 . igqx
Wes = 5o [ do et (DP)s(@)s, 0 D(P)

* Twist-4 quark-quark correlation hadronic tensor:
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WW — WW — W
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Bjorken-Wolfenstein Argument

* |sospin decomposed hadronic tensors:

VU 1 4 1q-x
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* Twist-4 quark-quark correlation hadronic tensor:
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Bjorken-Wolfenstein Argument

* |sospin decomposed hadronic tensors:
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Bjorken-Wolfenstein Argument

* Original structure functions can be written as:
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* Asymmetry in terms of orlglnal structure functions:
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Form of twist-4 correction

Y| term:
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* Twist-4 correction given by: /
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R = R

* Quark-quark correlation twist-4 operator matrix element:

twist-4 structure

functions
1+ R - (Fgu—2foZU)[9 1—281I12(9}
1+R  2aFy, 1100 1-— Zsin?e
twist-2 structure
function
e Using the Callan-Gross relation at tree level we get:
1+ R
Fiv = 2gF™ L
14+ RY

(R.Ellis,W.Furmanski,R.Petronzio; X.Ji; ].Qiu)

* We also give an effective field theory (SCET) argument
(SM, M. Ramsey-Musolf, G.Sacco)



R4 — RY
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* Using the Callan-Gross relation at tree level we get:
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twist-4 quark-quark correlations
reside in ratio of structure
functions

free of twist-4 effects



Form of twist-4 correction

0.003 - Twist-Four Contribution to the Asymmetry
I (MIT Bag Model Estimate)
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* Bag model estimate of quark-quark correlation is below the
half-percent level.

e Estimates using multi-parton nucleon light-cone wave
functions, found an effect twice as big. (Belitsky, Manashov, Schafer)



CSV vs Higher Twist
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* Negligible higher twist effects can allow for a cleaner
extraction of CSV or new physics effects.



Conclusions

* PV DIS can be a powerful probe of hadronic physics beyond
the parton model.

* The precision and wide kinematic reach of 12 GeV Upgrade at
JLAB can in principle disentangle various hadronic effects such
as sea quarks, CSV, and higher twist.

* PV DIS can probe a ‘single’ twist-4 quark-quark correlation
matrix element and is the only known observable with this
property.

* Uncertainties in R-gamma-Z appear to have only a small effect
on higher twist effects.



