-ASTROGAM workshop: the extreme universe 1 March,2017-Padova

Cosmic Rays & Supernova Remnants: The Importance of E<200 MeV

Cosmic-Ray overview

- High-energy particles (mostly protons and nuclei) up to 10²⁰ eV
- Bending below 30 GeV due to solar modulation
- ➤ Power-law distribution with an index α≃2.7 up to PeV energies
- > Two main features:
 - Steepening at PeV energies,
 α ≃ 3.1 (Knee, 1 part/m²/yr)
 - Hardening at about E=10¹⁸ eV (Ankle, 1 part/km²/yr)
- Knee should mark the transition from Galactic to Extragalactic component.

Galactic component

Messengers and Instruments

Direct Detection (E<100 GeV)

Particles

- Proportional tubes and scintillators (e.g. CREAM, TRACER)
- Magnetic Spectrometers and silicon tracker (e.g. PAMELA, AMS-02)

Gamma-rays

Silicon Tracker and calorimeter (AGILE, Fermi-LAT)

Indirect Detection (E>100 GeV)

Particles

- Scintillators and Multiple Resistive plate chambers (e.g. KASCADE-Grande, Argo)
- Water Cherenkov (e.g. Milagro)
- Hybrid: water Cherenkov and fluorescence (e.g. Auger)

Gamma-rays

Imaging Atmospheric Air Cherenkov (e.g. HESS, VERITAS, MAGIC)

SNRs and CRs:Indirect proofs

In the X-ray band, young SNRs show very thin rims of about 0.01 pc due to Synchrotron emission. In Bohm diffusion limit:

$$D(E)\tau_{sync} \approx 0.04 B_{100\mu G}^{-\frac{3}{2}} pc \implies B \approx 100\mu G$$

OPTICAL BAND

CR acceleration

- Neutrals leads to a third component in the Balmer lines spectrum due to Neutral return flux
- > In presence of accelerated CR
 - Narrower broad line → T_{down} → CR pressure
 - Broader narrow line
 - Steepening of CR spectrum

SNRs and CRs: direct proofs

See also Bykov talk

GAMMA-RAY PHOTONS

- No deviations -> source direction
- Same spectrum of primary protons
- \triangleright E_{γ,M} \simeq 10% E_{p,M}

Low-Energies

Confirming hadronic origin

→ We can distinguish leptonic from hadronic component only at E<200 MeV [see Strong talk]</p>

High-Energies

Revealing PeV emission from young SNRs

→ In spite of the large number of young SNRs detected in the gamma-ray band, none of these seems to reach E= 100 TeV

Low-energy gamma-rays

- ♦ Middle aged SNRs (t ≥ 10^4 yrs) with a slow shock velocity ($v_s \sim 100$ km/s)
- ♦ Interaction with a molecular cloud (high average density, n~200 cm³) → correlated with GeV (and TeV for IC443) gamma-ray emission
- Correletion with part of the radio emission in W44, no correlation in IC443

Low-energy gamma-rays

Gamma-ray emission below 200 MeV detected, for the first time, by AGILE from the SNR W44, then confirmed by Fermi-LAT, also in IC443

Acceleration...

- \Leftrightarrow Freshly accelerated CRs with a spectral index $\alpha = (3r_{sh})/(r_{sh}-1)$ at low-energies
- \diamond Broken power-law $\alpha=2.2$ below E~10 GeV and $\alpha=3.2$ above E~10 GeV
- Malkow steepening due to Alfvèn damping

PROBLEMS WITH ACCELERATION

- Presence of a broken PL and of a so steep HE spectral index

 not expected from diffusive shock acceleration theory;
- The shock of middle-aged remnants are slow → acceleration efficiency cannot be sufficiently high.

...or reacceleration?

- ♦ Pre-existing Galactic CR protons, Helium nuclei and electrons (Voyager spectra)
- \Rightarrow Reacceleration \rightarrow hardening of spectral indices steeper than $\alpha = (3r_{sh})/(r_{sh}-1)$
- \Rightarrow Compression \Rightarrow higher energies, higher spectrum (s=(n₂/n₀)/r_{sh})
- Contributions from secondary particles and low-efficiency accelerated CRs
- ♦ Simple PL spectrum ($r_{sh} = 3.5 \div 4 \rightarrow \gamma_p = 4.2-4$) with no steepening but HE cut-off due to the limited time (fully ionized pre-shock medium)
- ♦ A lot of parameters: magnetic field, density, interaction time, correlation length, shock velocity...

The role of e-ASTROGAM

In order to have more chances to confirm the presence of freshly accelerated CRs in correspondence of the SNRs shocks, we need to detect young-fast shocks SNRs at E<200 MeV

As like as CTA is fundamental in order to enhance the chance to detect young fast shock SNRs that could accelerate Pevatrons, e-ASTROGAM is fundamental in order to detect the same kind of sources at low gamma-ray energies in order to confirm freshly accelerated CRs.

Perfect complementarity in the context of CR/SNR issue

[see Buehler talk]

The role of e-ASTROGAM

Very good sensitivity at low-energies

- Will allow us to enhance the number of SNRs detected in this important gamma-ray energy range
- Consequently we will have more chances to detect young remnants at E<200 MeV where efficient CR acceleration can take place and contribute more than reacceleration

The role of e-ASTROGAM

Very good angular resolution (<1.5° at E<100 MeV)

♦ Its good angular resolution at lower energies, will allow us to correlate in a better way gamma-ray emission with the other wavelengths → more information for more parameters

Conclusions

- \Rightarrow We can have the direct proof of CR acceleration in the SNRs at very high energy (PeV \Rightarrow CTA) and at lowest gamma-ray energies (E<200 MeV \Rightarrow ?)
- Despite the large amount of instruments, we had detected no PeV SNRs and only two middle-aged SNRs at E< 200 MeV thanks to AGILE and Fermi-LAT → probably reaccelerated CRs
- ♦ We need to detect young SNRs with fast shocks at E<200 MeV in order to confirm the presence of freshly accelerated CRs
 - e-ASTROGAM low-energy sensitivity will enhance the chances of detection
- → Acceleration (and also reacceleration) models depend from parameters like magnetic field, correlation length, density (...) that we can know thanks to other wavelegths
 - e-ASTROGAM low-energy improved angular resolution will allow a better multiwavelength correlation

SNR and Diffusive Shock Acceleration

SNRs have to be able to accelerate particles up to 10¹⁵ eV

First order Fermi acceleration:

- Fast and high gain $\frac{\Delta E}{E} \sim \frac{V_S}{C}$
- Power-law injection index $y_F = 2$

$$N(E)dE \propto E^{-\gamma_E}dE = 4\pi p^2 p^{-\gamma_p}dp$$

$$\gamma_p = \frac{3\mathcal{R}}{\mathcal{R} - 1} \qquad \mathcal{R} = \frac{u_u}{u_D} = \frac{4M_s^2}{3 + M_s^2}$$

Strong shock: $M_S \rightarrow \infty$, $\mathcal{R} \rightarrow 4$, $\gamma_E \rightarrow 2$

Acceleration time must to be lower than the source age and the loss

time
$$t_{acc} \approx \frac{D(p)}{V_s^2} = \min(t_{age}, t_{loss})$$

$$D(p) = \frac{1}{3}cr_L \left(\frac{L_c}{r_L}\right)^{\delta'}$$
 Magnetic Field Amplification

Magnetic Field Amplification

CR acceleration requires perturbations of the same scale of particle Larmor radius $(kr_1=1)$

Excitation of Alfvén waves with

$$\lambda = r_1$$

- saturation at δB/B ≅ 1
- $E_M < 1 \text{ PeV}$

NON RESONANT INSTABILITY (Bell 2004) Purely growing waves at wavelengths $\lambda \ll r_L$, driven by the CR current j_{CR}

- → larger E_M
- ⇒ generation of power at larger spatial scales up to $\lambda \cong r_1$

Non-Linear Diffusive Shock Acceleration

Magnetic field Amplification leads to CR back reaction

→ no more test particle

- Precursor Formation
 - \triangleright concavity ($\gamma_F < 2$)
- Lower Downstream Temperature
 - thermal peak at lower energies

Observed Spectrum: CR propagation

Leaky Box Model

$$au_{esc} pprox rac{H^2}{D(E)} \qquad \qquad D(E) = D_0 E^{\delta}$$

$$N(E) \approx \frac{N_S(E)\mathcal{R}_{SN}\tau_{esc}}{2\pi R_D^2 H} \approx E^{-(\gamma_E + \delta)}$$

We can have an estimation of the diffusion index measuring secondary to primary ratio (B/C).

$$N_{SEC}(E) \approx N(E) \mathcal{R}_{spal} \tau_{esc} \approx E^{-(\gamma_E + 2\delta)} \longrightarrow$$

$$\frac{N_{SEC}(E)}{N(E)} \propto E^{-\delta}$$

$$\begin{cases}
0.7 > \delta > 0.3 \\
2 < \gamma_E < 2.4
\end{cases}$$

Degeneration broken considering CR anisotropy due to discreteness of the sources (no leaky box)

$$\delta \sim 0.3$$
 $\gamma_E \sim 2.3 - 2.4$

...or reacceleration?

REACCELERATION

Crushed Cloud model (Blandford & Cowie 1982)

n₀,B₀
Galactic CRs
(or injected CRs)

n₁,B₁,r_{sh}
Reacceleration
(or acceleration)

n₂,B₂,s Compression

- ♦ Pre-existing Galactic CR protons & electrons
- \Rightarrow Reacceleration \Rightarrow hardening of spectral indices steeper than $\alpha = (3r_{sh})/(r_{sh}-1)$
- \diamond Compression \rightarrow higher energies, higher spectrum (s=(n_2/n_0)/ r_{sh})
- ♦ Energy losses pp/ionization & ioniz/synch/Brems/IC

Pre-existing CRs

Reacceleration:

Local Interstellar Spectrum from Voyager 1 (Potgieter 2013,2014)

What's new?

Reacceleration:

- Hydrogen and Helium contribution
- Consideration also of the only compressed Galactic component
- Surface filling factor: $4\pi \xi R_{sh}^2 v_{sh} t_{int}$
- Simple PL spectrum with no steepening but HE cut-off due to the limited time (fully ionized pre-shock medium)

PM 11 GeV/c

$$p_{M} = 7 \frac{GeV}{c} \left(\frac{B_{0}}{30\mu G}\right) \left(\frac{t_{int}}{15000yrs}\right)^{3} \left(\frac{L_{c}}{0.1pc}\right)^{-2} \left(\frac{V_{sh}}{130 \ km/s}\right)^{6}$$

 $v_{sh}=130 \text{ km/s}$

 $n_0 = 200 \text{ cm}^{-3}$

 $t_{int} \sim 8400 \text{ yrs} < t_{age}$

$$b = \left(\frac{V_A}{1.84km/s}\right) \sim 2.4$$

$$B_0 = \left(\frac{n_0}{1 cm^{-3}}\right)^{1/2} \sim 34 \,\mu$$

Kolmogorov Turbulence

$$D(E) = \frac{1}{3} c r_L \left(\frac{L_c}{r_L}\right)^{2/3}$$
 L_c~ 0.09 pc

$$n_m = 94n_0 b \left(\frac{V_{sh}}{10^7 cm/s} \right) \sim 10^4 cm^{-3}$$

$$B_m = \sqrt{\frac{2}{3} \left(\frac{n_m}{n_0}\right)} B_0 \sim 1 \ mG$$

Acceleration contribution

Very high fraction ξ of the SNR shell has to be covered by the cloud in order to obtain a good explanation of the data

→ We consider a possible contribution from freshly accelerated CRs in order to alleviate this problem

Main Conclusions

- Reacceleration and compression of pre-existing CRs can explain gamma-ray and radio emissions from W44 (and likely IC443)
- The basic form of the reacceleration mechanism can explain data:
 - no broken-power law distributions
 - no very steep high-energy index
- \diamondsuit Mixed reaccelerated and weakly accelerated particles (ξ_{cr}) provide a good fit of the data

No proof of freshly accelerated Cosmic-Rays