
LATTICE FIELD THEORY 
RESULTS 

ON NEW STRONG DYNAMICS

LFC17 ECT*,  Trento, 09/14/2017

RIKEN BNL Research Center

Enrico Rinaldi



NEW STRONG DYNAMICS

Composite Higgs Composite Dark Matter



NEW STRONG DYNAMICS

Composite Higgs Composite Dark Matter

New SU(Nc) gauge sector with Nf fermions in 
the Nr representation of the gauge group



NEW STRONG DYNAMICS

Composite Higgs Composite Dark Matter

New SU(Nc) gauge sector with Nf fermions in 
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Most of the theory work is done using EFTs and there are only a handful of UV complete models
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Nc Nf Nr parameters that can be easily changed



Importance of lattice simulations

★Lattice simulations are needed to numerically solve strong 
dynamics

★Controllable systematic errors and room for improvement

★Naive dimensional analysis and EFT approaches can miss 
important non-perturbative contributions

★EFTs inspired by QCD might not work when the dynamics is 
different

★Lattice studies can reliably point out similarities or differences 
as the parameter space (Nc,Nf,Nr) is scanned

[KEK-Japan]
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• Strongly interacting quantum field theory with different Nc, Nf, and Nr 

• is the dynamics different from QCD?

• what is the hierarchy in the spectrum?

• is there a light scalar singlet?

• Phenomenology of physics beyond the Standard Model

• light Higgs from composite dynamics (pNGB or dilatonic nature)

• large anomalous dimensions

• expected (near-)conformal dynamics for consistency with experiments
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• Strongly interacting quantum field theory with different Nc, Nf, and Nr 

• is the dynamics different from QCD?

• what is the hierarchy in the spectrum?

• is there a light scalar singlet?

• Phenomenology of physics beyond the Standard Model

• light Higgs from composite dynamics (pNGB or dilatonic nature)

• large anomalous dimensions

• expected (near-)conformal dynamics for consistency with experiments

chiral symmetry breaking or not?

interested in ratios of masses

in QCD there is a broad 
resonance f0(500)

[Svetitsky 1708.04840][Pica 1701.07782]
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Lattice details: tree-level Symanzik gauge action + HISQ staggered quarks

Scalar flavor-singlet and 
pseudoscalar states are 

degenerate

Different 
from 
QCD

What happens towards the chiral limit?
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Different 
from 
QCD

Important to be able to 
extrapolate towards the 

chiral limit:
use an appropriate 

effective low-energy theory
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• Chiral Perturbation Theory (as in QCD) does not work 

consistently in this new strong dynamics: the pseudoscalar is not the only 
light degree of freedom [LatKMI:1610.07011]

• Mass-deformed Conformal Theory near a IR fixed point could 
describe the spectrum in the massless limit but the data is not consistent 
with the scaling at light fermion mass [LatKMI:1610.07011]

• ChPT + “scalar” is a new EFT where the new light scalar d.o.f. is 
treated as a “dilaton” [Goldberger,Grinstein&Skiba:0708.1463, Matsuzaki&Yamawaki:1311.3784, 
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• Different forms of the Effective potential for the scalar and pseudoscalar 
can be directly tested against Lattice data [Appelquist,Ingoldby&Piai:1702.04410]



SUMMARY RESULTS
Template Models Scalar

SU(3) Nf=12 (F)

SU(3) Nf=2 (S)

SU(3) Nf=8 (F)

light

heavy

[latest results in Pica arxiv:1701.07782 and Svetitsky arxiv:1708.04840]
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�⇢ ⇡
g2⇢⇡⇡M⇢

48⇡

KSRF relations hold at ~10% level, 
suggesting vector meson dominance

 [Phys. Rev. Lett. 16, 255 (1966), Phys. Rev 147, 1071 (1966)]

Mρ~2TeV and Γρ~450GeV
Similar to 

QCD



CONCLUSIONS
• Lattice results for the SU(3) Nf=8 theory using different discretizations are painting a 

consistent picture: there is a light scalar flavor-singlet state, the dynamics is different 
form QCD, but other heavier resonances behave similarly to QCD

• A light scalar has been observed in other systems that are very close or inside the 
conformal window

• Lattice studies can give information about other hadronic quantities: 

• S-parameter [LSD arxiv:1405.4752, LatKMI arxiv:1602.00796]

• couplings between flavor-singlet scalar and pseudoscalars, e.g. ππ scattering in the 
scalar channel [LSD arXiv:1702.00480 + in prep.]
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• Lattice results for the SU(3) Nf=8 theory using different discretizations are painting a 

consistent picture: there is a light scalar flavor-singlet state, the dynamics is different 
form QCD, but other heavier resonances behave similarly to QCD

• A light scalar has been observed in other systems that are very close or inside the 
conformal window

• Lattice studies can give information about other hadronic quantities: 

• S-parameter [LSD arxiv:1405.4752, LatKMI arxiv:1602.00796]

• couplings between flavor-singlet scalar and pseudoscalars, e.g. ππ scattering in the 
scalar channel [LSD arXiv:1702.00480 + in prep.]

• Higgs coupling to SM fermions, e.g. dilaton decay constant [LatKMI arxiv:1610.07011]

• anomalous dimensions [LSD arxiv:1405.4752, LatKMI arxiv:1610.07011]

Caveat: infinite volume limit, continuum limit and chiral limit
need to be worked on!
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✦ Quirky DM [Kribs et al.,0909.2034] 
✦ Ectocolor DM [Buckley&Neil,1209.6054] 
✦ SIMP [Hochberg et al.,1411.3727] 

✦ Minimal SU(2) [Francis et al.,1610.10068]

★Glueball-like (only gluons) 
✦ SUNonia [Boddy et al.,1402.3629]

★Dark Nuclei [Detmold et 
al.,1406.2276-1406.4116]

[review by Kribs & Neil, 1604.04627][list of references focused on lattice results when possible]
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Bounds from EM moments

Magnetic moment  dominates for MB & 25 GeV

—Dashed lines show charge radius
⌦
r2↵ contribution to full rate

—Suppressed by 1/M2
B relative to magnetic moment contribution
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XENON100 results
only sensitive to
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for MB . 0.5 TeV

Estimate MB . O(0.01) TeV
sensitive to polarizability

 = 0 automatically for SU(N) gauge theories with even N. . .

Composite dark matter on the lattice Theory Seminar, 24 March 2014 13 / 20

γ

Mesonic and Baryonic EM form factors 
directly from lattice simulations

★ baryon similar to QCD neutron 

★ dark quarks with Q=Y 

★ calculate connected 3pt 
★ scale set by DM mass 

★ magnetic moment dominates 
★ results independent of Nf

[LSD, 1301.1693]
SU(3) Nf=2,6 dark fermionic baryon



Bounds from EM moments

Magnetic moment  dominates for MB & 25 GeV

—Dashed lines show charge radius
⌦
r2↵ contribution to full rate

—Suppressed by 1/M2
B relative to magnetic moment contribution

10�2 10�1 100 101 102

M� = MB [TeV]

10�16

10�14

10�12

10�10

10�8

10�6

10�4

10�2

100

102

104

R
at

e,
ev

en
t/

(k
g·d

ay
)

Nf = 2

Nf = 6

XENON100 [1207.5988], 95% CL exclusion

XENON100 results
only sensitive to

⌦
r2↵

for MB . 0.5 TeV

Estimate MB . O(0.01) TeV
sensitive to polarizability

 = 0 automatically for SU(N) gauge theories with even N. . .

Composite dark matter on the lattice Theory Seminar, 24 March 2014 13 / 20

γ

Mesonic and Baryonic EM form factors 
directly from lattice simulations

★ baryon similar to QCD neutron 

★ dark quarks with Q=Y 

★ calculate connected 3pt 
★ scale set by DM mass 

★ magnetic moment dominates 
★ results independent of Nf

[LSD, 1301.1693]
SU(3) Nf=2,6 dark fermionic baryon

Excluded

MB >~ 10 TeV



Bounds from EM moments

Magnetic moment  dominates for MB & 25 GeV

—Dashed lines show charge radius
⌦
r2↵ contribution to full rate

—Suppressed by 1/M2
B relative to magnetic moment contribution

10�2 10�1 100 101 102

M� = MB [TeV]

10�16

10�14

10�12

10�10

10�8

10�6

10�4

10�2

100

102

104

R
at

e,
ev

en
t/

(k
g·d

ay
)

Nf = 2

Nf = 6

XENON100 [1207.5988], 95% CL exclusion

XENON100 results
only sensitive to

⌦
r2↵

for MB . 0.5 TeV

Estimate MB . O(0.01) TeV
sensitive to polarizability

 = 0 automatically for SU(N) gauge theories with even N. . .

Composite dark matter on the lattice Theory Seminar, 24 March 2014 13 / 20

γ

Mesonic and Baryonic EM form factors 
directly from lattice simulations

★ baryon similar to QCD neutron 

★ dark quarks with Q=Y 

★ calculate connected 3pt 
★ scale set by DM mass 

★ magnetic moment dominates 
★ results independent of Nf

[LSD, 1301.1693]
SU(3) Nf=2,6 dark fermionic baryon

Excluded

MB >~ 10 TeV
pushed to ~100 TeV 

with new LUX
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“Stealth Dark Matter” model

• The field content of the model 
consists in 8 Weyl fermions 

• Dark fermions interact with the SM 
Higgs and obtain current/chiral 
masses 

• Introduce vector-like masses for 
dark fermions that do not break 
EW symmetry 

• Diagonalizing in the mass 
eigenbasis gives 4 Dirac fermions  

• Assume custodial SU(2) symmetry 
arising when u ↔ d

3

Field SU(N)
D
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F d
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4

N (1,�1/2) �1/2

TABLE I. Fermion particle content of the composite dark matter
model. All fields are two-component (Weyl) spinors. SU(2)

L

refers to the standard model electroweak gauge group, and Y is
the hypercharge. The electric charge Q = T

3

+Y for the fermion
components is shown for completeness.

yet have the ability to simulate on the lattice. Naive di-
mensional analysis applied to the annihilation rate suggests
the dark matter mass scale should be >⇠ 10-100 TeV, but a
more precise estimate is not possible at this time. In any
case, for dark matter with mass below this value, there is
an underproduction of dark matter through the symmet-
ric thermal relic mechanism, and so this does not restrict
consideration of dark matter mass scales between the elec-
troweak scale up to this thermal abundance bound.

CONSTRUCTING A VIABLE MODEL

[placeholder for a description of how a viable model
with interactions with the Higgs can be constructed while
satisfying the various (gross) experimental constraints]

We consider a new, strongly-coupled SU(N)

D

gauge
group with fermionic matter in the vector-like representa-
tions shown in Table I.

This is not the only possible choice for the charges, but
the requirement for the presence of Higgs Yukawa cou-
plings, along with extremely strong bounds on the ex-
istence of stable fractionally-charged particles based on
searches for rare isotopes [? ], greatly constrains the num-
ber of possible models.

DARK FERMION INTERACTIONS AND MASSES

The fermions F u,d

i

transform under a global U(4) ⇥
U(4) flavor symmetry that is broken to [SU(2) ⇥ U(1)]4
by the weak gauging of the electroweak symmetry. From
this large global symmetry, one SU(2) (diagonal) sub-
group will be identified with SU(2)

L

, one U(1) subgroup

will be identified with U(1)

Y

, and one U(1) will be iden-
tified with dark baryon number. The total fermionic con-
tent of the model is therefore 8 Weyl fermions that pair
up to become 4 Dirac fermions in the fundamental or
anti-fundamental representation of SU(N)

D

with electric
charges of Q ⌘ T

3,L

+ Y = ±1/2. We use the notation
where the superscript u and d (as in F u, F d and later  u,
 d,  u,  d) to denote a fermion with electric charge of
Q = 1/2 and Q = �1/2 respectively.

The fermion kinetic terms in the Lagrangian are given
by

L =
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with the interactions among the electroweak group and the
new SU(N)

D

. Here Y u

= 1/2, Y d

= �1/2 and tb

are the representation matrices for the fundamental N of
SU(N)

D

.
The vector-like mass terms allowed by the gauge sym-

metries are
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where ✏
12

⌘ ✏
ud

= �1 = �✏12 and the relative minus
signs between the mass terms have been chosen for later
convenience. The mass term M

12

explicitly breaks the
[SU(2) ⇥ U(1)]2 global symmetry down to the diagonal
SU(2)

diag

⇥ U(1) where the SU(2)

diag

is identified with
SU(2)

L

. The mass terms Mu,d

34

explicitly break the re-
maining [SU(2)⇥U(1)]2 down to U(1)⇥U(1) where one
of the U(1)’s is identified with U(1)

Y

. (In the special case
when Mu

34

= Md

34

, the global symmetry is accidentally en-
hanced to SU(2)⇥U(1), where the global SU(2) acts as a
custodial symmetry.) Thus, after weakly gauging the elec-
troweak symmetry and writing arbitrary vector-like mass
terms, the unbroken flavor symmetry is thus U(1)⇥U(1).

Electroweak symmetry breaking mass terms arise from
coupling to the Higgs field H that we take to be in the
(2, +1/2) representation. They are given by
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where again the relative minus signs are chosen for later
convenience. After electroweak symmetry breaking, H =

(0 v/
p

2)

T , with v ' 246 GeV. Inserting the vev
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[LSD collab., Phys. Rev. D92 (2015) 075030]
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LSD arxiv:1601.04027 [scalar update, preliminary]
Similar to 

QCD?

Assume constant ratio 
towards the chiral limit: 

Mρ~2TeV

Assume 
Fπ~246GeV

The pseudoscalar will go 
to zero if chiral symmetry 
is spontaneously broken

Important again: extrapolate towards the chiral limit
using an appropriate effective low-energy theory



LSD arxiv:1601.04027

Useful to study vector meson 
width in the VMD picture Useful to study EFT predictions

[Appelquist et al.  1702.04410]



Gasbarro and Fleming (LSD collaboration) 1702.00480

Scattering observables are useful 
to constrain EFT terms
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[based on ladder SD and WTI: Matsuzaki, Yamawaki arxiv:1508.07688]
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“anti-”Witten-Veneziano

gluon loop fermion loop

Nf

Nc
⌧ 1

Nf

Nc
� 1

� = Ncg
2
= fixed Nc ! 1

[based on ladder SD and WTI: Matsuzaki, Yamawaki arxiv:1508.07688]

 lattice results seem to align with expectations from ladder-
SD analyses [arxiv:1508.07688]: a flavor-singlet scalar in a near 

conformal theory is light similarly to a flavor-singlet 
pseudoscalar in the Witten-Veneziano limit, but a flavor-singlet 
pseudoscalar is heavier in the “anti”-Witten-Veneziano limit 

(large Nf/Nc)
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METHODOLOGY FOR 0-+

• Use a gluonic operator with 
0-+ quantum numbers: 
topological charge density

• Use Wilson flow smearing as 
a technique to ameliorate 
the signal-to-noise problem

• Entirely similar to previous 
studies in SU(3) YM [arxiv:

1409.6459] and QCD [arxiv:
1509.00944]

• Main difficulty is estimating 
the systematics due to 
smearing and excited states
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Not able to distinguish between
hyper scaling fit with  γ~ 0.96(6)

and quadratic fit with finite intercept ≠0
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All the states studied in the spectrum have γ~1
except for the pseudoscalar.

Comparison with different lattice discretizations:
staggered and domain wall fermions 


