The ϵ_K'/ϵ_K tension and supersymmetric interpretation

Teppei Kitahara

Karlsruhe Institute of Technology (KIT), TTP

in collaboration with Ulrich Nierste, Paul Tremper, Andreas Crivellin, and Giancarlo D'Ambrosio

Phys.Rev.Lett.117, 091802 (2016) [arXiv:1604.07400], JHEP 1612, 078 (2016) [arXiv:1607.06727], Phys.Lett.B771, 37-44 (2017) [arXiv:1612.08839], and arXiv:1703.05786

XIIth Meeting on B Physics. Tensions in Flavour measurements: a path toward Physics beyond the Standard Model

Napoli, Italy, May 23, 2017

$K \rightarrow \pi \pi \text{ system}$

Precise measurements for Kaon decay into two pions have discovered the **two type of CP violations**: indirect CPV ϵ_K & direct CPV ϵ_K' :

$$\mathcal{A}\left(K_L \to \pi^+ \pi^-\right) \propto \varepsilon_K + \varepsilon_K' \quad \text{with } \varepsilon_K = \mathcal{O}(10^{-3}) \neq 0$$

$$\mathcal{A}\left(K_L \to \pi^0 \pi^0\right) \propto \varepsilon_K - 2\varepsilon_K' \quad \varepsilon_K' = \mathcal{O}(10^{-6}) \neq 0$$

[Christenson, Cronin, Fitch, Turlay, '64 with Nobel prize]

[NA48/CERN and KTeV/FNAL '99]

$$\Delta S = 2$$
 Indirect CP violation Kaon oscillation W box
$$E K \propto \text{Im}[(\text{CKM})^2]$$

$$S = \frac{d}{u,c,t}$$

$$U,c,t$$

$$U,c$$

■ The strong suppression of ϵ_K' comes from the smallness of the isospin-3/2 amplitude ($\Delta I = 1/2$ rule) and an accidental cancellation of the SM contribution

Accidental cancellation

[**TK**, Nierste, Tremper, JHEP '16]

Composition of ϵ_K'/ϵ_K with respect to the operator basis

ϵ_K'/ϵ_K discrepancy

- A determination of all hadronic matrix elements for ϵ_K'/ϵ_K by **RBC-**UKQCD group has been obtained with controlled errors (first lattice **result),** so that one becomes able to estimate ϵ_K'/ϵ_K without using the effective theories, e.g. chiPT, dual QCD model, NJL model, ... [RBC-UKOCD, PRL '15]
- SM expectation value at NLO

[**TK**, Nierste, Tremper, JHEP '16]

$$\left(\frac{\epsilon_K'}{\epsilon_K}\right)_{\text{SM-NLO}} = (1.06 \pm 4.66_{\text{Lattice}} \pm 1.91_{\text{NNLO}} \pm 0.59_{\text{IV}} \pm 0.23_{m_t}) \times 10^{-4}$$

Our prediction uses the methodology of Buras et al. (JHEP 1511 (2015) 202) (taking ReA0,2 from data) and a **new formula** for the NLO RG evolution

World average of experimental results
$$\operatorname{Re}\left(\frac{\epsilon_K'}{\epsilon_K}\right)_{\exp} = (16.6 \pm 2.3) \times 10^{-4} \quad \text{[NA62, KTeV, PDG]}$$

Discrepancy with a significance of 2.80

Buras et al. (JHEP 1511 (2015) 202) obtained 2.9σ discrepancy

Current situation of $\epsilon_K'/\epsilon_K \propto {\rm Im} A_0 - \left(\frac{{\rm Re} A_0}{{\rm Re} A_2}\right) {\rm Im} A_2$

 ϵ_K and ϵ_K'

in the supersymmetric model

Preliminary for NP part

- The SM prediction of ϵ_K'/ϵ_K is **2.8 sigma below** the experimental values, which give strong motivation for searching for NP contributions
- ϵ_K'/ϵ_K is highly sensitive to CP violation of NP

```
SM loop suppression \times GIM suppression \times accidental cancelation VS.
```

NP (loop suppression) × (large coupling) × NP scale suppression

Some models can explain this discrepancy, e.g. Littlest Higgs model, 331 model, generic Z' models, modified Z-coupling model, RH coupling of quarks to W, and supersymmetric (SUSY) models

[Buras, Fazio, Girrbach '14, Buras, Buttazzo, Knegjens '15, Buras '15, Buras, Fazio '15, '16, Goertz, Kamenik, Katz, Nardecchia '15, Blanke, Buras, Recksiegel '16, Cirigliano, Dekens, Vries, Mereghetti '16, **TK**, Nierste, Tremper '16, Tanimoto, Yamamoto '16, Endo, Mishima, Ueda, Yamamoto '16]

Main Constraint: $\epsilon_K (\Delta S=2, ID-CPV)$

Although ϵ_K'/ϵ_K ($\Delta S=1$, D-CPV) is sensitive to NP, once ϵ_K ($\Delta S=2$, ID-CPV) constraint is taken into account, NP effects in $\Delta S=1$ is highly suppressed

If the NP CPV contribution comes with the $\Delta S = 1$ parameter δ and is mediated by heavy particles of mass M, one finds

$$\epsilon_K^{
m NP} \propto rac{{
m Im}(\delta^2)}{M^2} \qquad \epsilon_K^{'
m NP} \propto rac{{
m Im}\delta}{M^2}$$

$$\frac{\epsilon_K^{'\mathrm{NP}}}{\epsilon_K^{'\mathrm{SM}}} \leq \frac{\frac{\epsilon_K^{'\mathrm{NP}}}{\epsilon_K^{\mathrm{NP}}}}{\frac{\epsilon_K^{'\mathrm{SM}}}{\epsilon_K^{\mathrm{SM}}}} = \mathcal{O}\left(\frac{\mathrm{Re}\tau}{\mathrm{Re}\delta}\right) \qquad \tau = -\frac{V_{td}V_{ts}^*}{V_{ud}V_{us}^*} \sim (1.5 - i0.6) \cdot 10^{-3}$$
 when loop factor 1/(4 π) is the same as the SM

$$\tau = -\frac{V_{td}V_{ts}^*}{V_{ud}V_{us}^*} \sim (1.5 - i0.6) \cdot 10^{-3}$$

same as the SM

With M > 1 TeV, NP effects can only be basically relevant for $|\delta| >> |\tau|$, so that this equation seemingly forbids detectable NP contributions to ϵ_K'/ϵ_K

There is a loophole in the SUSY model (next slide)

Main Constraint: ϵ_K ($\Delta S=2$, ID-CPV) cont.

The leading contribution is given by $d_L s_L d_R s_R$

The next contribution is given by $\overline{d_L}s_L\overline{d_L}s_L$

Crossed diagram gives relatively negative contributions

 $m_{\tilde{g}} \simeq 1.5 m_{\tilde{q}}$: these contributions almost cancel out

[Crivellin, Davidkov '10]

 $m_{\tilde{g}} \gtrsim 1.5 \ m_{\tilde{q}}$: suppressed by heavy gluing mass

Constraint from ϵ_K

Actually, there are several expected values of $\mathbf{\epsilon}_{K}$ depending on the input CKM parameters

|Vcb|incl., measured in inclusive b \rightarrow clv decays.... ϵ_K is consistent with exp. value |Vcb|incl., measured in exclusive B \rightarrow D(*)|v decays.... ϵ_K is 3 σ below the exp. value

Gluino contribution to ϵ_K'/ϵ_K

[Kagan, Neubert, PRL '99, Grossman, Kagan, Neubert, JHEP '99]

- The main contribution to ϵ_K'/ϵ_K comes from gluino box loop
- In spite of QCD correction, gluino box diagrams **can** break isospin symmetry through mass difference between right-handed up and down squark masses, and they can contribute **ImA2**, which is enhanced by small **ReA2**,exp value

 $m_{\bar{U}} \neq m_{\bar{D}} \xrightarrow{\text{RGE}}$ EW penguin operators are generated at the low energy scale with HMEs contribute to ImA2

$$\frac{\epsilon_K'}{\epsilon_K} = \frac{1}{\sqrt{2}|\epsilon_K|_{\text{exp}}} \frac{\omega_{\text{exp}}}{(\text{Re}A_0)_{\text{exp}}} \left(-\text{Im}A_0 + \frac{1}{\omega_{\text{exp}}} \text{Im}A_2 \right) \quad \text{where } \frac{1}{\omega} \equiv \frac{\text{Re}A_0}{\text{Re}A_2} = 22.46 \text{ (exp.)}$$

SUSY contributions to ϵ_K'/ϵ_K

[**TK**, Nierste, Tremper, PRL, '16]

We take universal SUSY mass (MS) without gaugino masses (M3) and right-handed up-type squark mass (mŪ)

 $\epsilon_K, \ \epsilon_K', \ \text{and} \ \mathcal{B}(K \to \pi \nu \overline{\nu})$

in the supersymmetric model

Other rare kaon decay

- **CP violation + FCNC decays of kaon** $K \to \pi\pi$, $K \to \pi\nu\bar{\nu}$, $K \to \pi\ell\bar{\ell}$ are **extremely sensitive to NP** and can probe virtual effects of particles with masses far above the reach of LHC
- They are correlated to each other

$$\epsilon_K'$$
 discrepancy deviations of the other rare kaon decay $(K_L \to \pi\pi)$

 $K
ightarrow \pi
u ar{
u}$ **Good** The experiments are on-going!

NA62 experiment at CERN $K^+ \to \pi^+ \nu \bar{\nu}$, target : 10% precision compared with SM (2018)

KOTO experiment at J-PARC $K_L \to \pi^0 \nu \bar{\nu}$, target :100% (step1), 10% (step2)

$$K_L o \pi^0 \ell^+ \ell^-$$
: CPV, the theoretical uncertainty can be reduced by precise measurement of $K_S o \pi^0 \ell^+ \ell^-$ is also important

Overview in our SUSY scenario

In the supersymmetric model (MSSM), the following parameter region is interesting for ϵ_K' discrepancy:

$$M_3 \gtrsim 1.5 M_S, \ m_{Q,12}^2 \neq 0, \ \text{and} \ m_{\bar{U}}/m_{\bar{D}} \neq 1$$

$$\Delta S=1$$

$$Q \downarrow \qquad \qquad \downarrow i$$

$$d_L$$

can explain ϵ_K' discrepancy [TK, Nierste, Tremper, '16]

can **suppress** $\Delta S=2$ process [Crivellin, Davidkov, '10]

can contribute to $\,K \to \pi
u ar{
u}\,$ correlating with above two physics

[Crivellin, D'Ambrosio, **TK**, Nierste, '17]

$B(K \rightarrow \pi \nu \nu)$

$m_{\tilde{q}_1} = 1.5 \,\text{TeV}, \ m_L = 300 \,\text{GeV}$ $^{2.5}$ $\theta = 3\pi/2$ 2.0 ϵ_{K}^{\prime} discrepancy can be solved at 1σ 2σ 0.0010.00050.0001 $1.0 \mid -0$ 0.0001 0.00050.0010.50.0030.0050.01.2 0.40.6 0.8 1.4 1.6 1.8 1.0 $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})/\mathrm{SM}$

[Crivellin, D'Ambrosio, **TK**, Nierste, '17]

- more than 10% mass shift of the gluino mass from $M_3 \simeq 1.45 M_S$ is possible in light of the constraint from ϵ_K
- 1-10 % mass shift of the gluino mass is possible

$$\mathcal{B}(K_L \to \pi^0 \nu \overline{\nu})/\mathrm{SM} \lesssim 2 \, (1.2)$$
 $\mathcal{B}(K^+ \to \pi^+ \nu \overline{\nu})/\mathrm{SM} \lesssim 1.4 \, (1.1)$ for a fine-tuning at the 1(10)% level

- $m_{\bar{U}}/m_{\bar{D}}$ determines a position of the green band
- Positive ϵ'_K predicts a strict correlation

$$\operatorname{sgn}\left[\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) - \mathcal{B}^{\mathrm{SM}}(K_L \to \pi^0 \nu \bar{\nu})\right]$$
$$= \operatorname{sgn}\left[m_{\bar{U}} - m_{\bar{D}}\right]$$

$$\operatorname{sgn}\left[m_{\bar{U}} - m_{\bar{D}}\right] \xrightarrow{\epsilon'_{K}} \operatorname{arg}\left[m_{Q12}^{2}\right]$$

$$\operatorname{sgn}\left[\mathcal{B}(K_{L} \to \pi^{0}\nu\bar{\nu}) - \mathcal{B}^{\mathrm{SM}}(K_{L} \to \pi^{0}\nu\bar{\nu})\right]$$

 $\epsilon_K, \ \epsilon_K', \ {\rm and} \ \mathcal{B}(K \to \pi \nu \overline{\nu})$ in modified Z-coupling scenario (SUSY/non-SUSY)

Modified Z-coupling scenario

[Buras, De Fazio, Girrbach, '13, '14] [Buras, Buttazzo, Knegjens, '15] [Buras, '16] [Endo, **TK**, Mishima, Yamamoto, '16] [Bobeth, Buras, Celis, Jung, '17]

NP contributions to sdZ coupling which has the same magnitude as the SM Z-penguin can explain ϵ'_{K} discrepancy

Note: (SM) is suppressed by the GIM mechanism, so that it is a numerically small coupling

Modified Z-coupling scenario cont.

[Buras, De Fazio, Girrbach, '13, '14] [Buras, Buttazzo, Knegjens, '15] [Buras, '16] [Endo, **TK**, Mishima, Yamamoto, '16] [Bobeth, Buras, Celis, Jung, '17]

SM + dim-6 eff. operators

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{c_L}{\Lambda^2} i (H^{\dagger} \overrightarrow{D_{\mu}} H) (\overline{Q}_L \gamma^{\mu} Q_L') + \frac{c_R}{\Lambda^2} i (H^{\dagger} \overrightarrow{D_{\mu}} H) (\overline{d}_R \gamma^{\mu} d_R'),$$

$$= \mathcal{L}_{SM} - \frac{\sqrt{2} v M_Z}{\Lambda^2} (c_L \overline{s} \gamma^{\mu} Z_{\mu} P_L d + c_R \overline{s} \gamma^{\mu} Z_{\mu} P_R d) + \dots$$

→ modified Z-couplings (FCNC) emerge

Constraint comes from $\Delta S=2$ process : ϵ_K (Assumption: NP $\Delta S=2$ (sd)² operator is suppressed)

we included these contributions: Novel point

$B(K \rightarrow \pi \nu \nu)$

Result of simplified case

constraint comes from ϵ_K , ΔM_K , $\mathcal{B}(K_L \to \mu^+ \mu^-)$

[Endo, TK, Mishima, Yamamoto, '16]

- The interference contributions are crucial, especially in right-handed scenario (RHS)
- ${\cal B}(K_L o \pi^0
 u ar{
 u})$ is smaller than the SM prediction
- $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})$ can be enhanced by **overshooting** ϵ_K' from CR + **destructive** ϵ_K' from CL case
 - parameter tuning is required
 - UV complete model would be implausible in light of the assumption
 - : NP $\Delta S=2$ (sd)² is negligible

Summary

- RBC-UKQCD lattice group and the SM calculations of ϵ_K'/ϵ_K have revealed that the SM expected value deviates significantly from exp. data (2.8 σ)
- In the SUSY, gluino box diagram with mass splitting of the right-handed squarks can contribute to ϵ_K'/ϵ_K significantly
 - lacktriangle Heavy gluino ($M_3>1.5M_S$) can relax the constraint from ϵ_K
 - $\mathcal{B}(K \to \pi \nu \bar{\nu})$ data will test our scenario. $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})$ can determine whether the right-handed up or down squark is the heavier one
- The modified Z-coupling scenario can also explain ϵ_K'/ϵ_K discrepancy with O(1) contribution to $\mathcal{B}(K\to\pi\nu\bar{\nu})$
 - NA62 experiment $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ with **10% precision** (2018) could probe whether modified Z-coupling scenario is realized or not
 - NOTO experiment $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})$ with **10% precision** can probe both SUSY and modified-Z coupling scenarios

Numerical results

• Wilson coefficients $@\mu = 1.3 \text{ GeV}$ $C_i(\mu) \equiv z_i$

 $C_i(\mu) \equiv z_i(\mu) - rac{V_{ts}^* V_{td}}{V_{sc}^* V_{ud}} y_i(\mu)$ new results

i	$z_{i}\left(\mu ight)$	$y_{i}\left(\mu ight)$	$\mathcal{O}(1)$	$\mathcal{O}(lpha_{EM}/lpha_s)$	$\mathcal{O}(lpha_s)$	$\mathcal{O}(lpha_{EM})$	$\mathcal{O}(lpha_{EM}^2/lpha_s^2)$
1	-0.3903	0	0	0	0	0	0
2	1.200	0	0	0	0	0	0
3	0.0044	0.0275	0.0254	0.0001	0.0007	0.0012	0
4	-0.0131	-0.0566	-0.0485	-0.0002	-0.0069	-0.0009	0
5	0.0039	0.0068	0.0124	0.0001	-0.0059	0.0001	0
6	-0.0128	-0.0847	-0.0736	-0.0003	-0.0099	-0.0008	0
$7/lpha_{EM}$	0.0040	-0.0321	0	-0.1116	0	0.0760	0.0035
$8/\alpha_{EM}$	0.0019	0.1148	0	-0.0227	0	0.1366	0.0009
$9/\alpha_{EM}$	0.0051	-1.3815	0	-0.1267	0	-1.2581	0.0034
$10/lpha_{EM}$	-0.0013	0.4883	0	0.0217	0	0.4672	-0.0006

• Hadronic matrix elements $@\mu = 1.3 \text{ GeV}$

i	$\langle Q_i(\mu)\rangle_0^{\overline{\mathrm{MS}}-\mathrm{NDR}}(\mathrm{GeV})^3$
1	-0.144 ± 0.046
2	0.105 ± 0.015
3	-0.040 ± 0.068
4	0.210 ± 0.069
5	-0.179 ± 0.068
6	-0.338 ± 0.121
7	0.154 ± 0.065
8	1.540 ± 0.372
9	-0.197 ± 0.070
10	0.053 ± 0.038

i	$\langle Q_i\left(\mu ight) angle_2^{\overline{ m MS}- m NDR}({ m GeV})^3$
1	0.01006 ± 0.00002
2	0.01006 ± 0.00002
3	_
4	_
5	_
6	_
7	0.127 ± 0.012
8	0.852 ± 0.052
9	0.01509 ± 0.00003
10	0.01509 ± 0.00003

RBC-UKQCD lattice simulation calculated them at μ =1.5GeV(I=0) and μ =3.0GeV(I=2) with 2+1F

We exploit CP-conserving data (with *z_i*) to reduce hadronic uncertainties

[**TK**, Nierste, Tremper, JHEP '16]

Overview of effective models

- Chiral perturbation theory
 - Effective theory of the QCD Goldstone bosons: $\Phi = \begin{pmatrix} \sqrt{\frac{1}{2}}\pi^0 + \sqrt{\frac{1}{6}}\eta & \pi^+ & K^+ \\ \pi^- & -\sqrt{\frac{1}{2}}\pi^0 + \sqrt{\frac{1}{6}}\eta & K^0 \\ K^- & \bar{K}^0 & -\sqrt{\frac{2}{3}}\eta \end{pmatrix}$

$$\mathcal{L} = -\frac{G_F}{\sqrt{2}} V_{ud} V_{us}^* \left(g_8 f^4 \text{tr} \left(\lambda L_{\mu} L^{\mu} \right) + g_{27} f^4 \left(L_{\mu 23} L_{11}^{\mu} + \frac{2}{3} L_{\mu 21} L_{13}^{\mu} \right) + \mathcal{O}(g_E W) \right)$$
 with
$$L_{\mu} = -i U^{\dagger} D_{\mu} U \qquad U = \exp \left(i \frac{\sqrt{2} \Phi}{f} \right)$$

- dual QCD method [Bardeen, Buras, Gerard, '87, '14]
 - Effective theory of the truncated pseudo-scalar and vector mesons:

$$\mathcal{L} = \frac{f^2}{4} \operatorname{tr} \left(\partial_{\mu} U \partial^{\mu} U^{\dagger} \right) - \frac{1}{4} \operatorname{tr} \left(V_{\mu\nu} V^{\mu\nu} \right) - \frac{f^2}{2} \operatorname{tr} \left(\partial_{\mu} \xi^{\dagger} \xi + \partial_{\mu} \xi \xi^{\dagger} - 2igV_{\mu} \right)^2 \quad \text{with} \quad U = \xi \xi$$

- Chiral quark model
 - Mean-field approximation of the full extended NJL model

$$\mathcal{L} = \mathcal{L}_{QCD} - M \left(\bar{q}_R U q_L + \bar{q}_L U^{\dagger} q_R \right)$$

Sub leading contributions

- Gluino chromomagnetic penguin operator can give subleading contribution, but there is no reliable results for hadronic matrix element [Buras, Colangero, Ishidori, Romanino, Silvestrini, '00]
- Gluino photon-penguin breaks isospin sym. explicitly, but is suppressed by $\alpha/\alpha s$ [Langacker, Sathiapalan, '84, Grossman, Worah, '97, Abel, Cottingham, Whittingham, '98]
- Z-penguin contribution needs to break the EW sym. like $\mathcal{L}_{\text{eff}} = \frac{\lambda_{ij}}{M^2} |H|^2 \bar{d}_i \not \!\!\! D d_j$, Hence, chargino Z-penguin contribution is always larger than gluino Z-penguin [Colangelo,Isidori, '98@ $K \rightarrow \pi \nu \nu$]

SUSY contributions to ϵ_K'/ϵ_K

 ϵ_K'/ϵ_K discrepancy can be solved at

[TK, Nierste, Tremper, PRL, '16]

 $M_3 = 1.5 M_S$ for suppressed ϵ_K

$$m_{Q,ij}^2 = \Delta_{Q,ij} M_S^2$$

$$\Delta_{Q,12,13,23} = 0.1 \exp(-i\pi/4)$$

maximum CPV phase for ϵ_K

when $i\pi/4 \rightarrow i\pi/2$

amplifies ϵ_K'/ϵ_K

suppresses ϵ_K

NA62 experiment $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ with **10% precision** (2018) could probe whether modified Z-coupling scenario is realized or not

KOTO experiment $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})$ with **10% precision** can probe both Trojan penguin and modified-Z coupling scenario