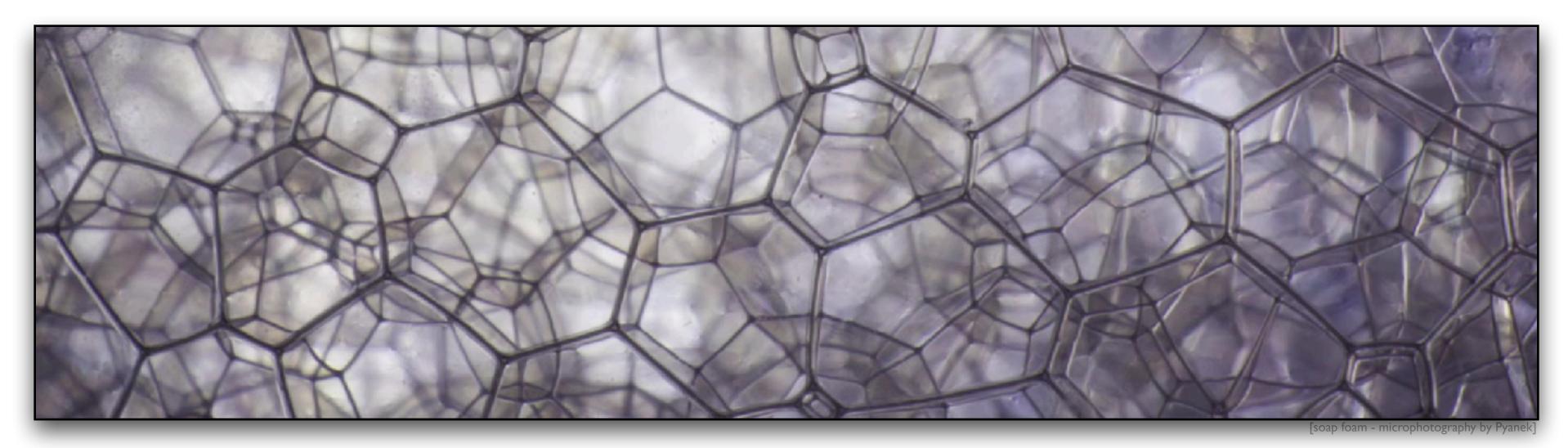
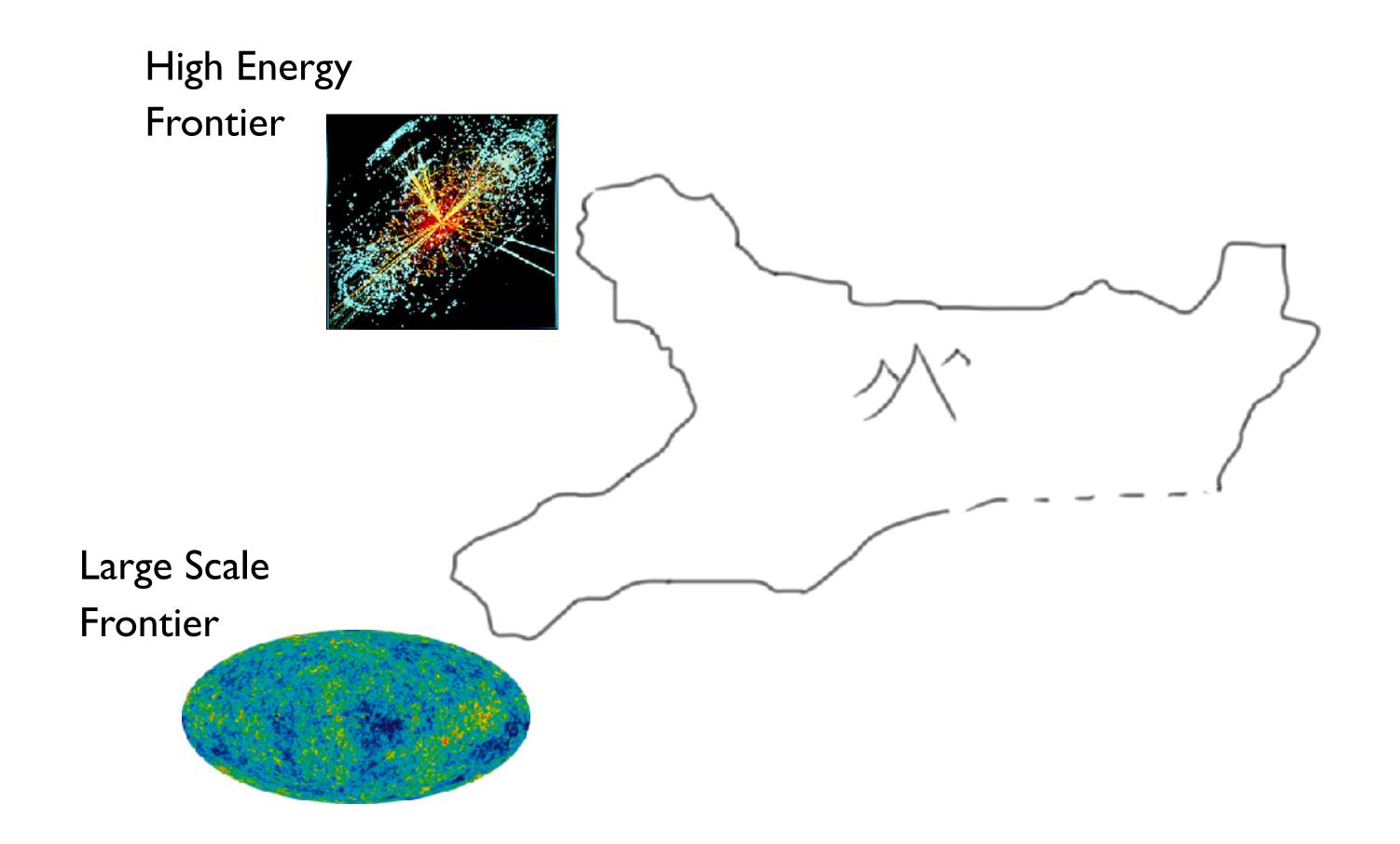


Entanglement in loop quantum gravity

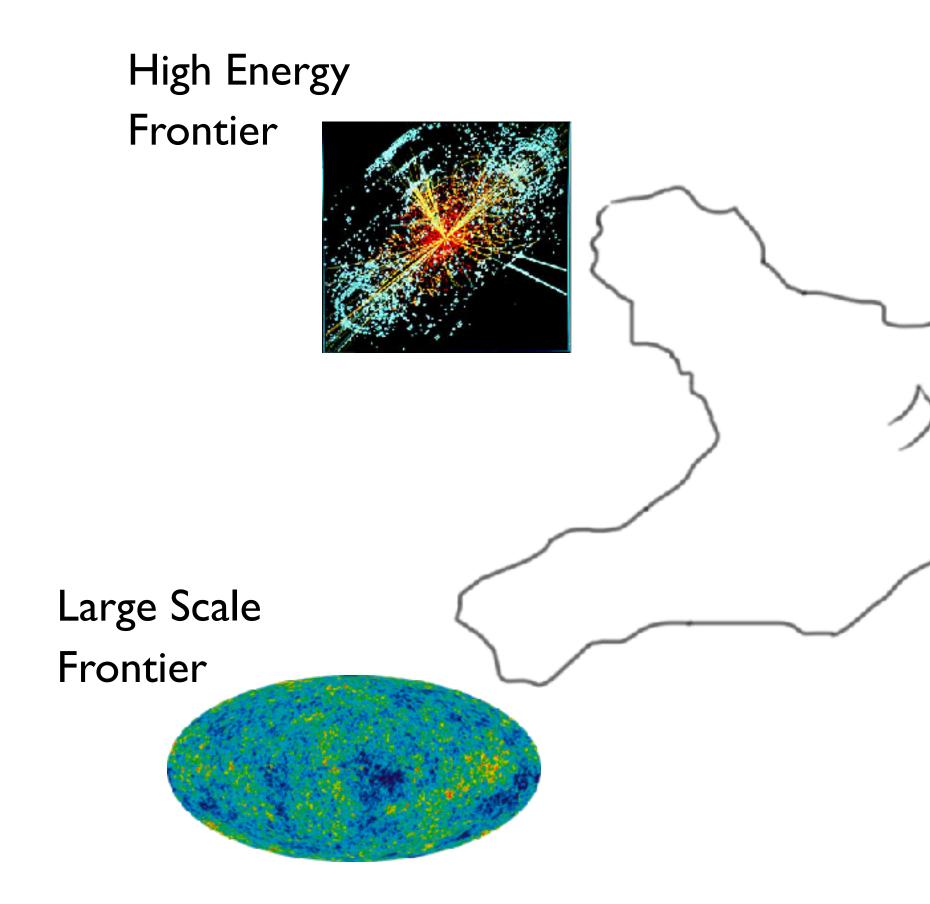


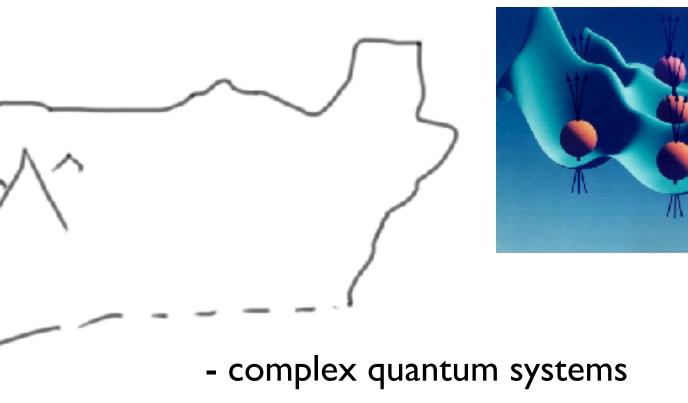
Laboratori Nazionali di Frascati 20 Dicembre 2017

- Eugenio Bianchi
- Institute for Gravitation and the Cosmos & Physics Department, Penn State



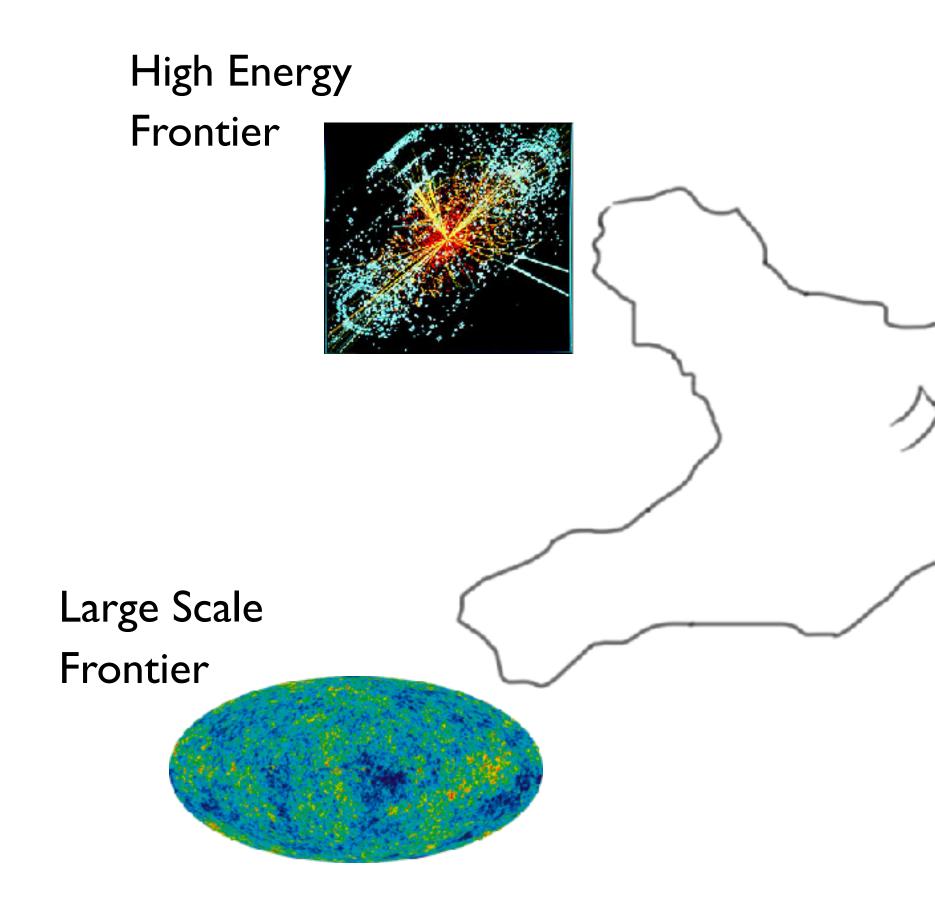


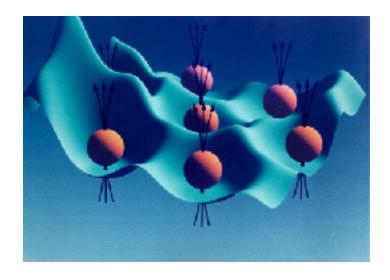




- many-body entanglement
- phases of quantum matter
- quantum computing

• • •

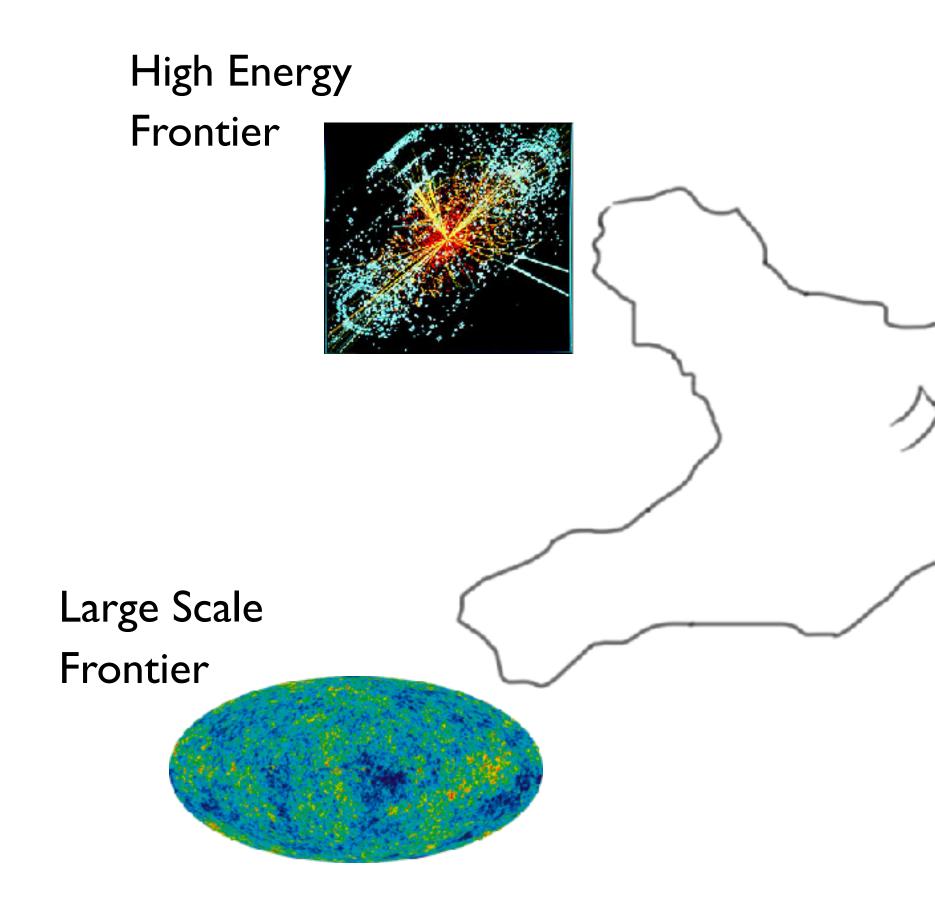


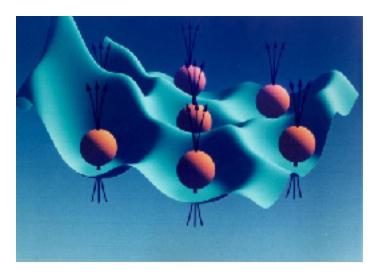


- complex quantum systems
- many-body entanglement
- phases of quantum matter
- quantum computing
- •••

•••

- thermalization in isolated quantum systems



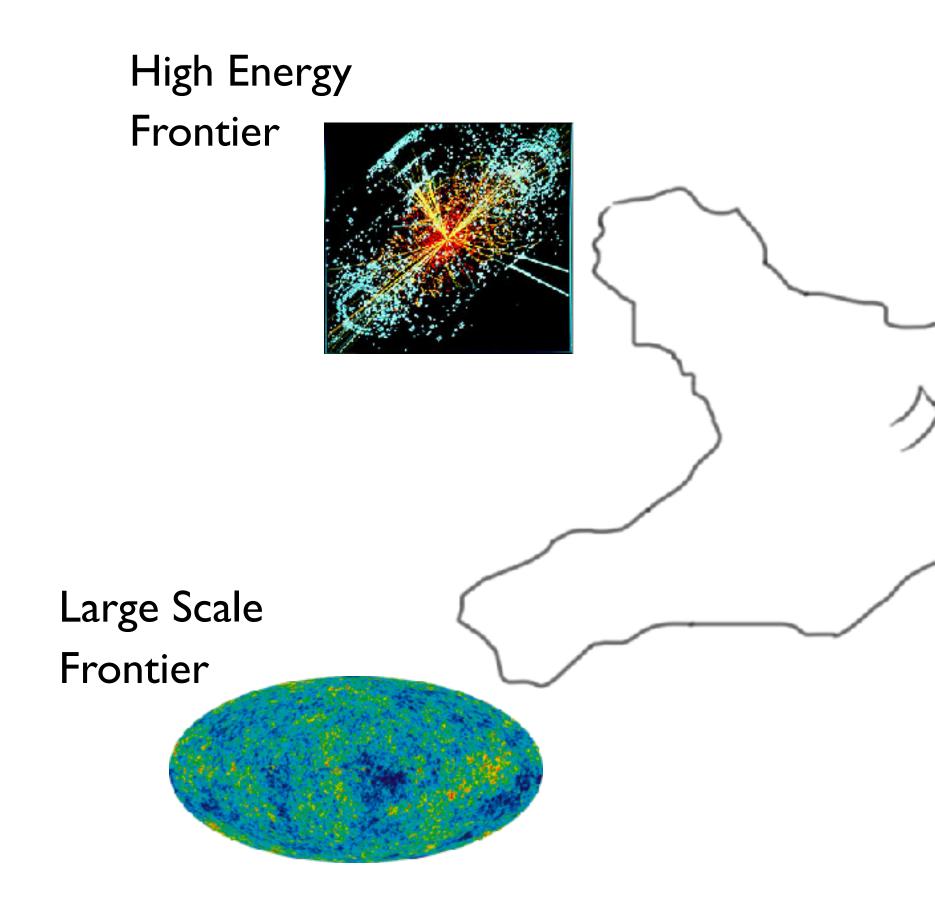


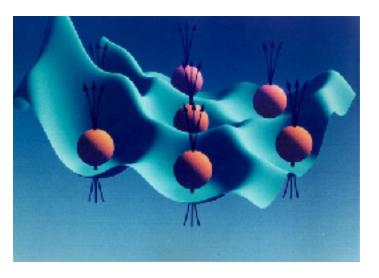
- complex quantum systems
- many-body entanglement
- phases of quantum matter
- quantum computing
- •••

•••

- thermalization in isolated quantum systems

- black hole evaporation

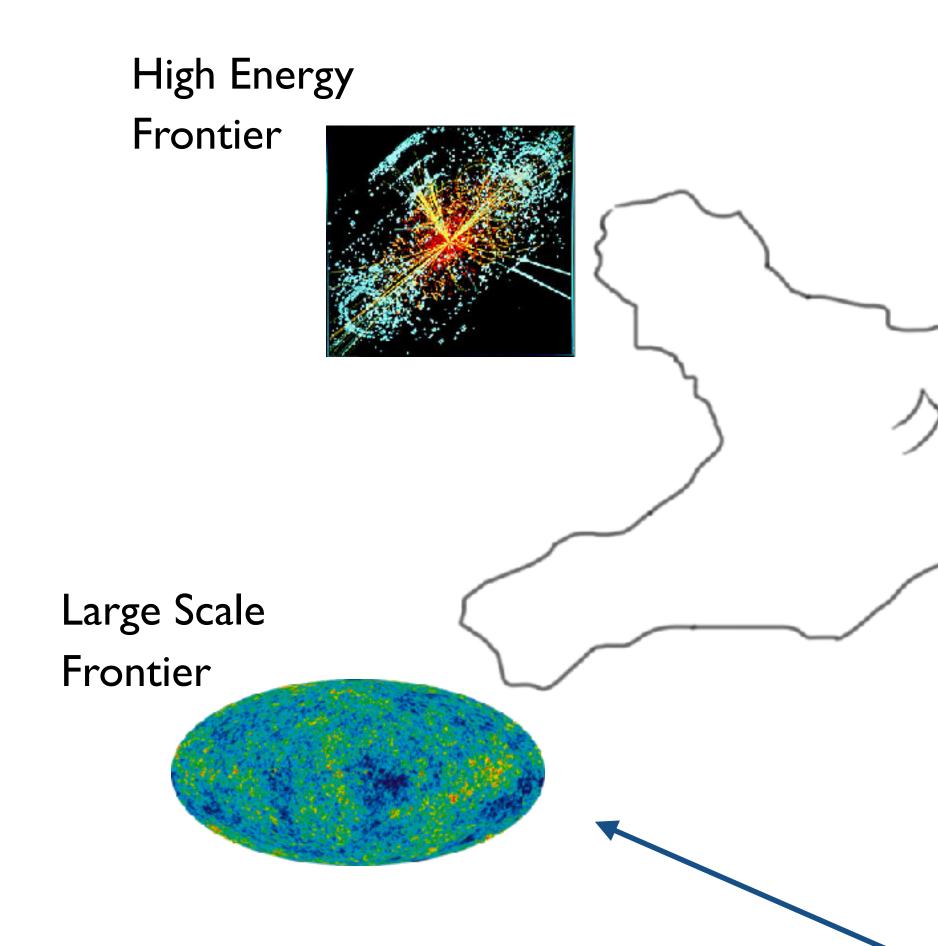


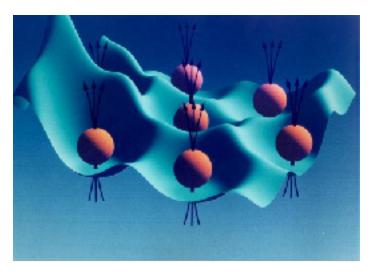


- complex quantum systems
- many-body entanglement
- phases of quantum matter
- quantum computing
- •••

- thermalization in isolated quantum systems

- •••
- black hole evaporation
- entanglement and the architecture of spacetime





- complex quantum systems
- many-body entanglement
- phases of quantum matter
- quantum computing

...

•••

- thermalization in isolated quantum systems
- black hole evaporation
- entanglement and the architecture of spacetime
- quantum correlations in the very early universe

Plan:

- I) Entanglement in simple systems
- II) Building space from entanglement
- III) Entanglement in the sky

Entangled state

Singlet state of two spins:

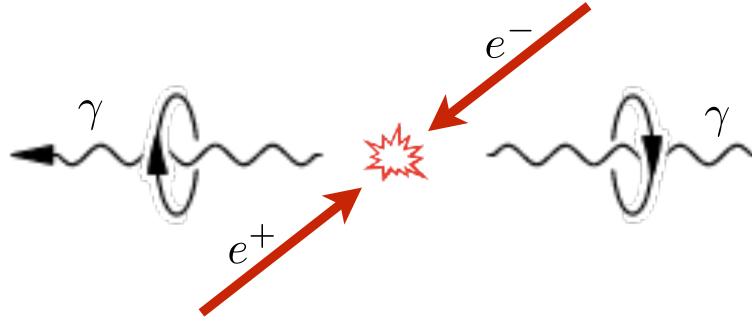
 $|s\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\rangle| \downarrow\rangle - |\downarrow\rangle| \uparrow\rangle \right)$

How entanglement is produced:

E.g., electron-positron annihilation into two gamma rays

 $e^- + e^+ \rightarrow \gamma + \gamma$

Einstein-Podolsky-Rosen, 1935 Schrödinger, 1935



Entangled state

Singlet state of two spins:

$$|s\rangle = \frac{1}{\sqrt{2}} \Big(|\uparrow$$

How entanglement is produced:

E.g., electron-positron annihilation into two gamma rays

 $e^- + e^+ \rightarrow \gamma + \gamma$

How to build your cheap entanglement experiment at home:

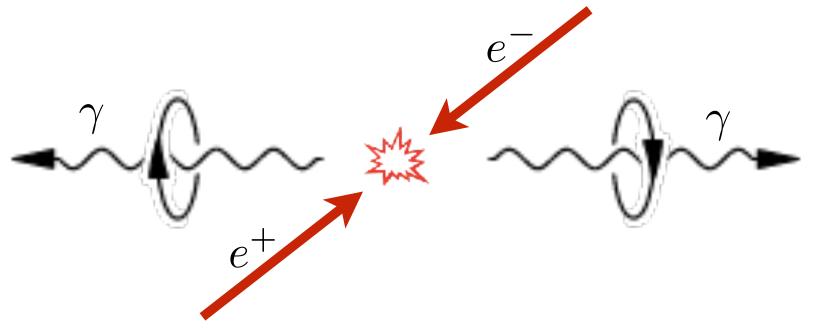
- you need two Geiger counters
 - a disk of radioactive Sodium 22
 - a tablet running a GeigerBot app

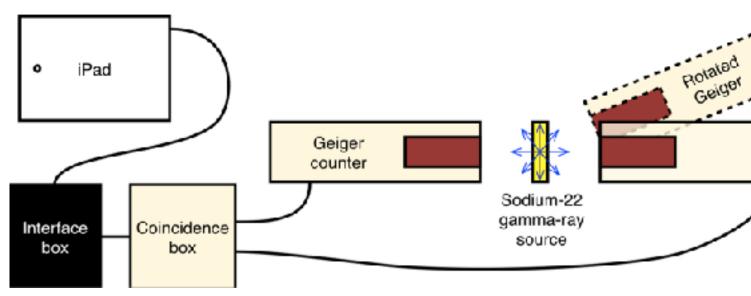
See G. Musser (2013)

http://blogs.scientificamerican.com/critical-opalescence/how-tobuild-your-own-quantum-entanglement-experiment-part-1-of-2/

Einstein-Podolsky-Rosen, 1935 Schrödinger, 1935

 $| \downarrow \rangle - | \downarrow \rangle | \uparrow \rangle$





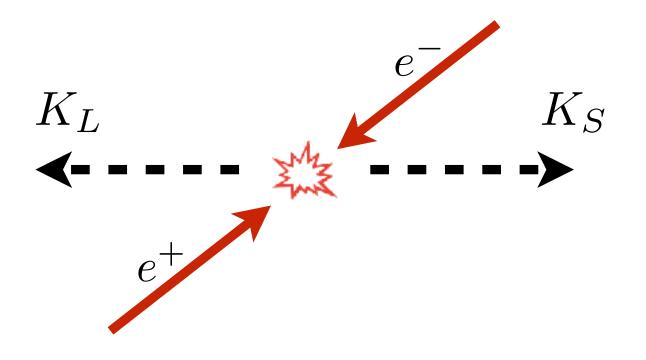
Entangled state

Singlet state of strangeness:

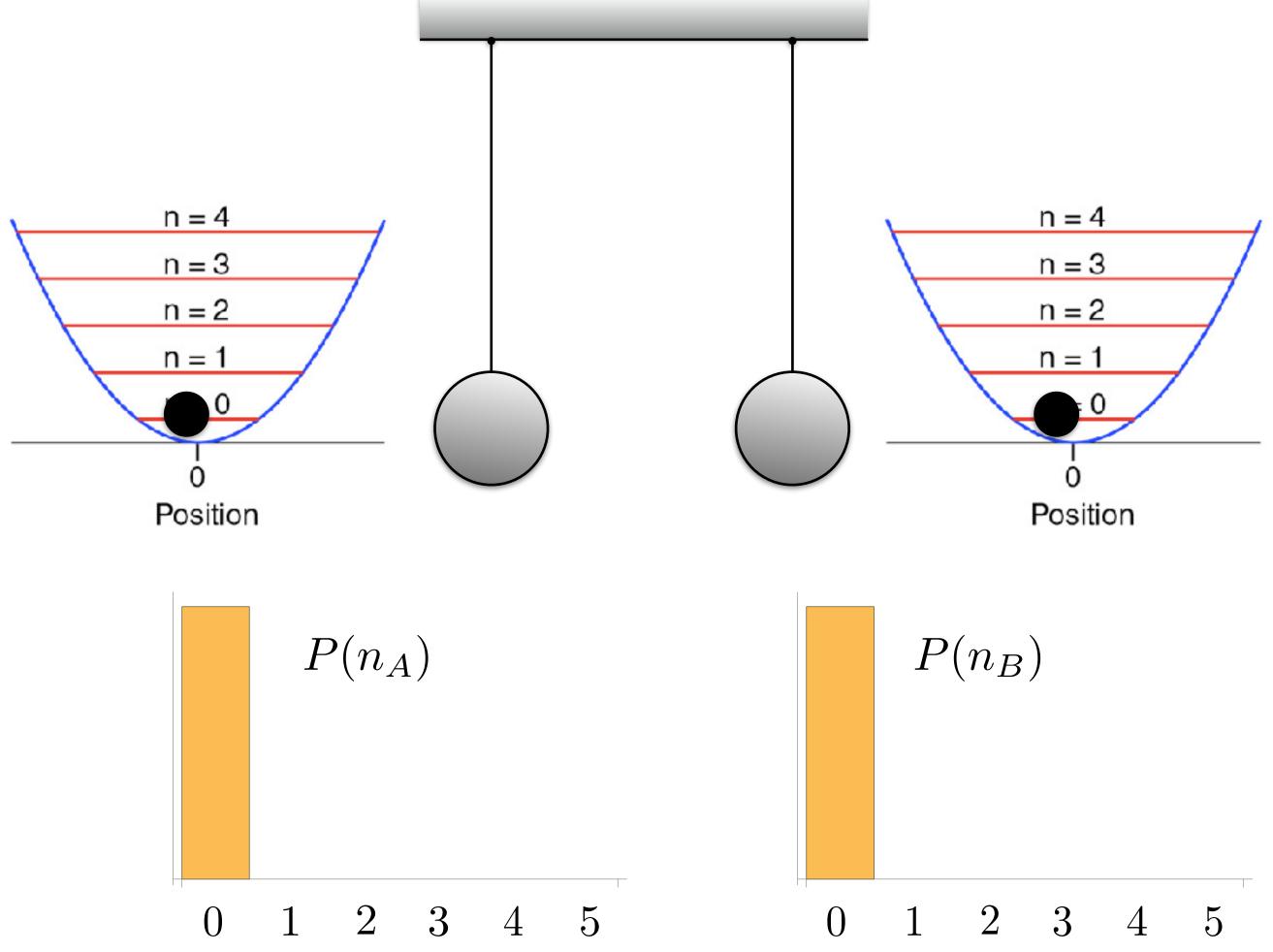
 $|f\rangle = \frac{1}{\sqrt{2}} \left(|K^0\rangle |\bar{K}^0\rangle - |\bar{K}^0\rangle |K^0\rangle \right)$

How entanglement is produced: E.g., resonant production of neutral Kaons

 $e^- + e^+ \rightarrow \phi(1024) \rightarrow K^0 + \bar{K}^0$



Entangled oscillators

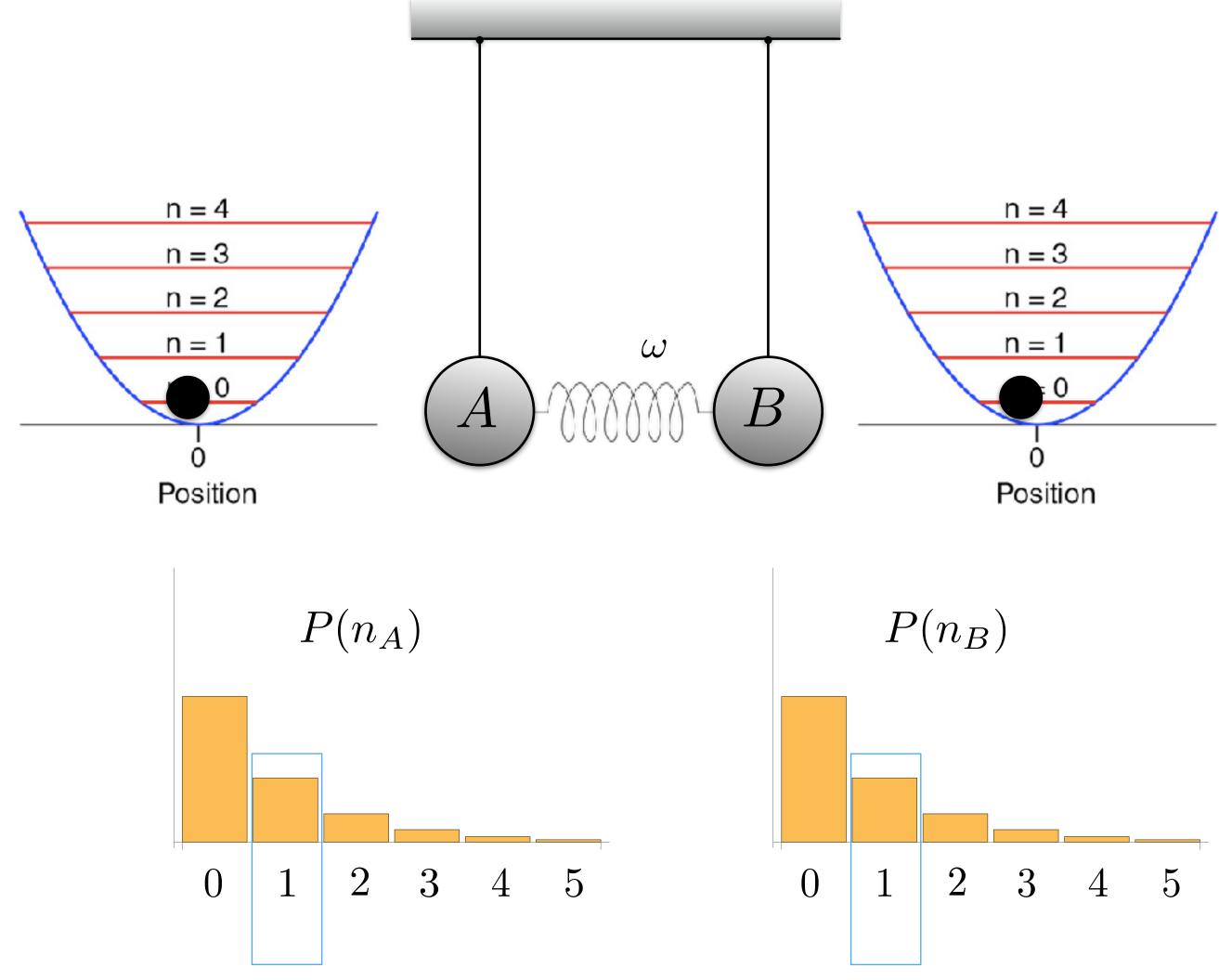


Ground state

without the spring

 $|0\rangle_A |0\rangle_B$

Entangled oscillators



without the spring

 $|0\rangle_A |0\rangle_B$

with the spring

$$|\psi_0\rangle = \sum_{n=0}^{\infty} \sqrt{p_n} |n\rangle_A |n\rangle_B$$

If we make measurements on A only,

Mixed state from entanglement

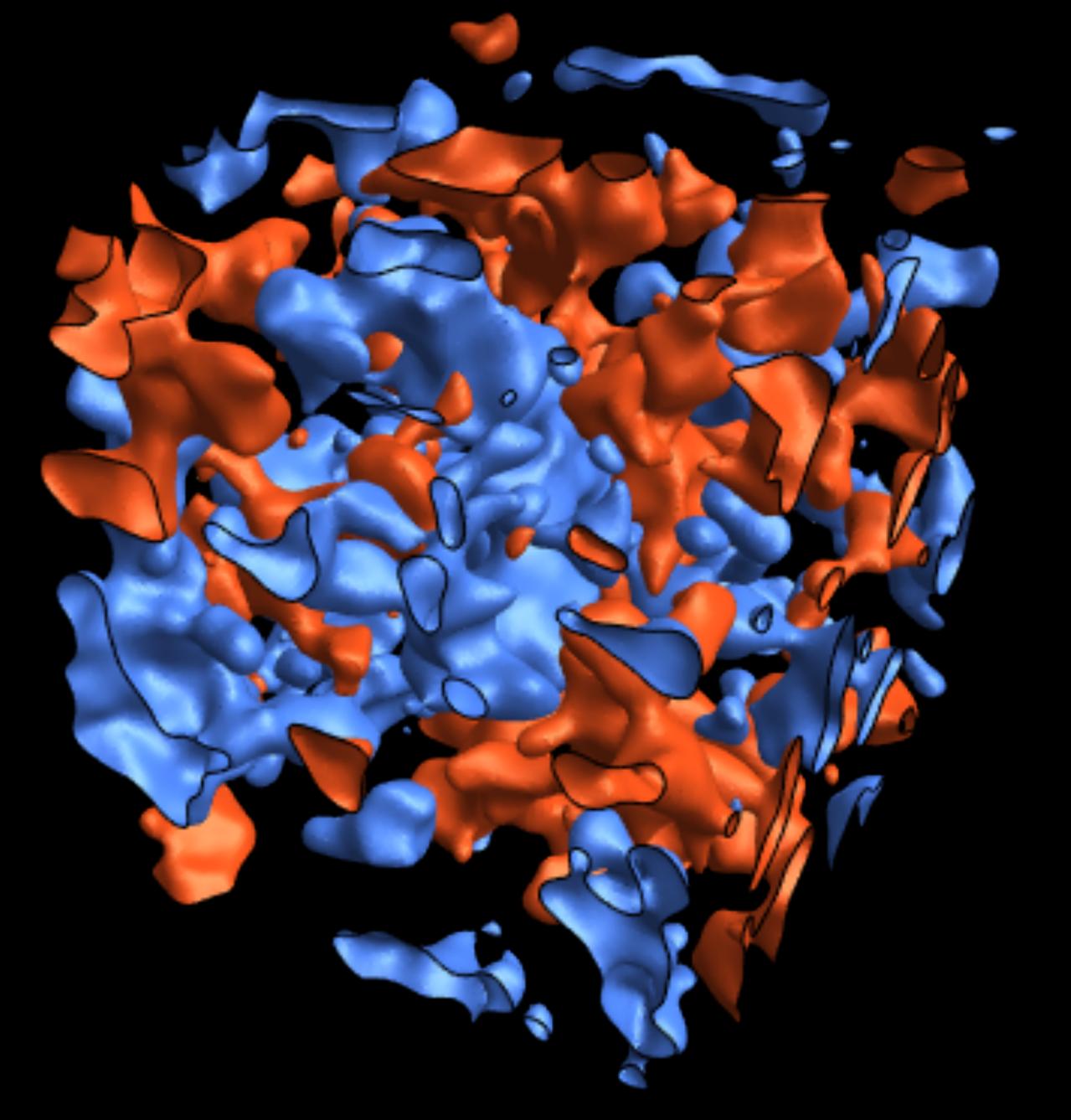
$$\rho_A = \operatorname{Tr}_B(|\psi_0\rangle\langle\psi_0|) = \sum_{n=0}^{\infty} p_n \ |n\rangle_A$$

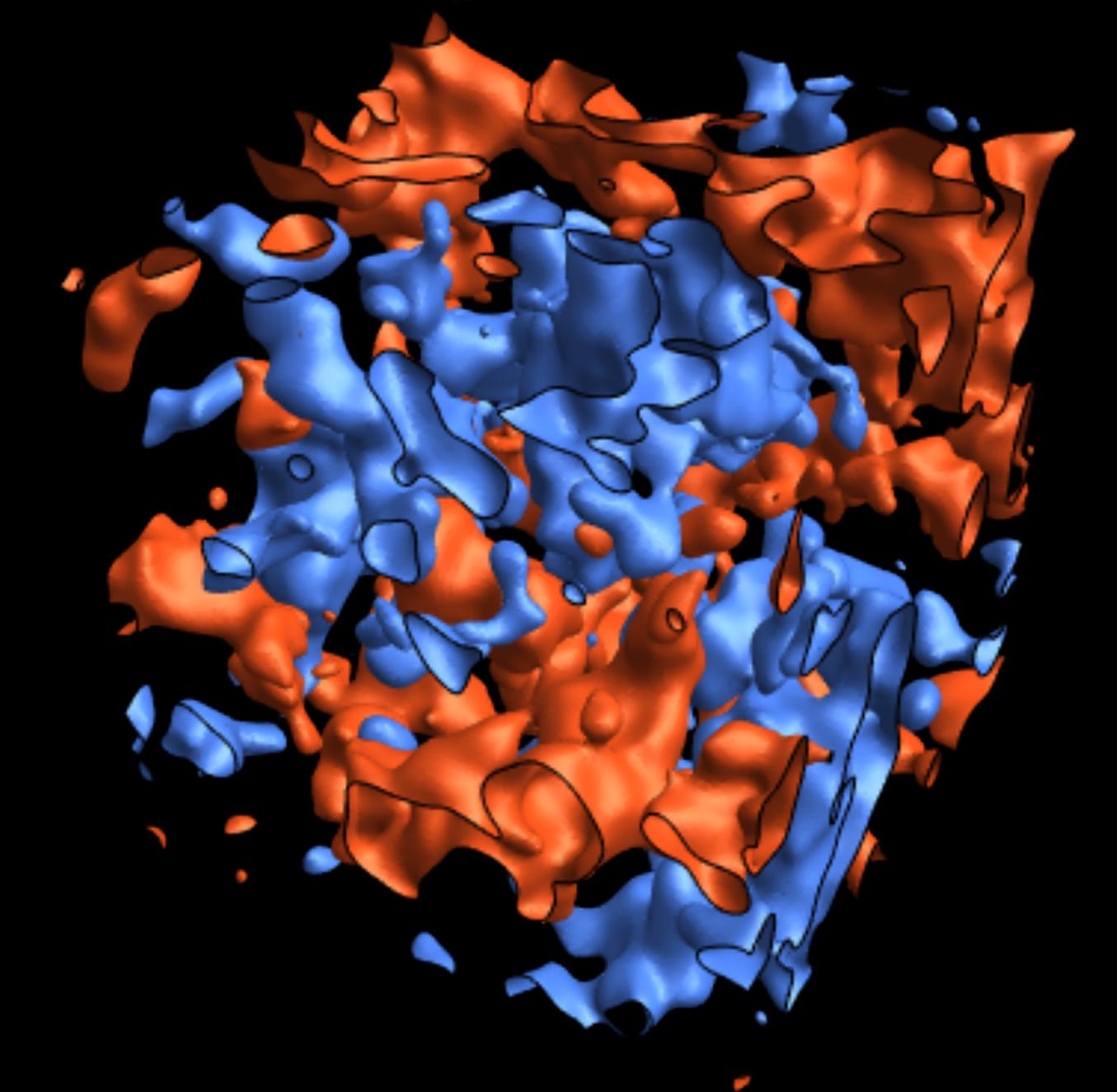
Entanglement entropy

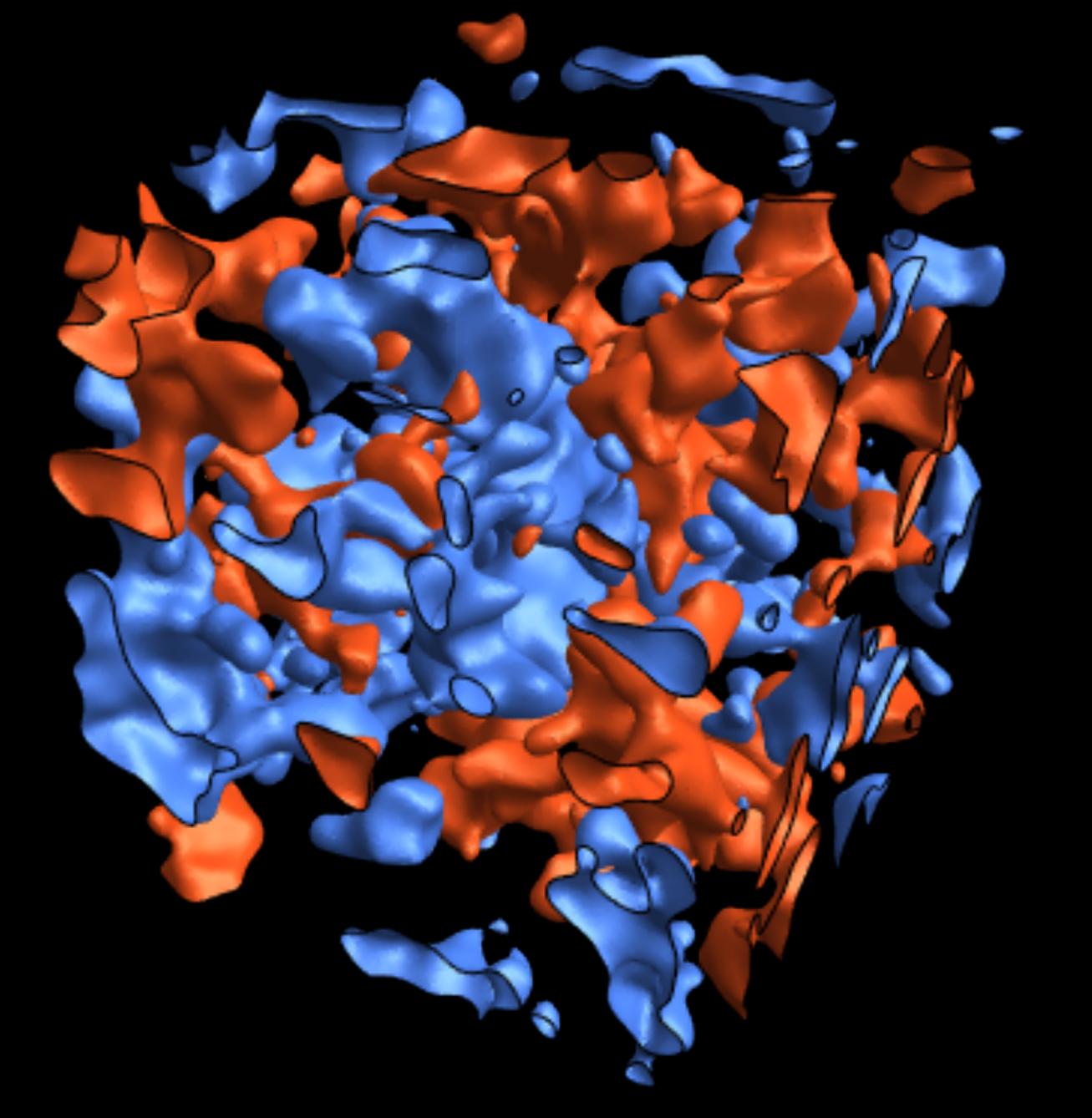
$$S_A = -\operatorname{Tr}_A(\rho_A \log \rho_A) = -\sum_n p_n$$

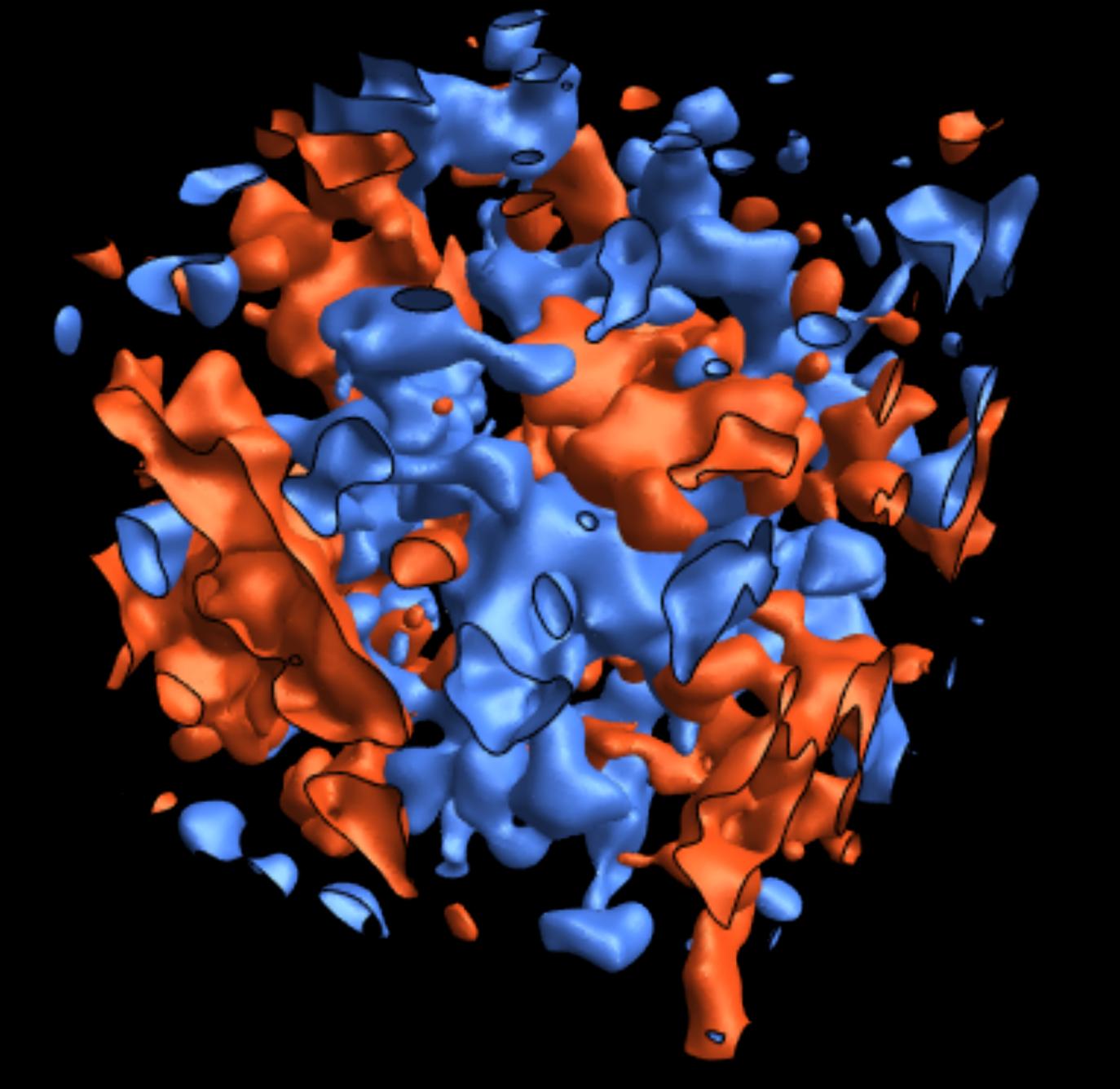
The Vacuum

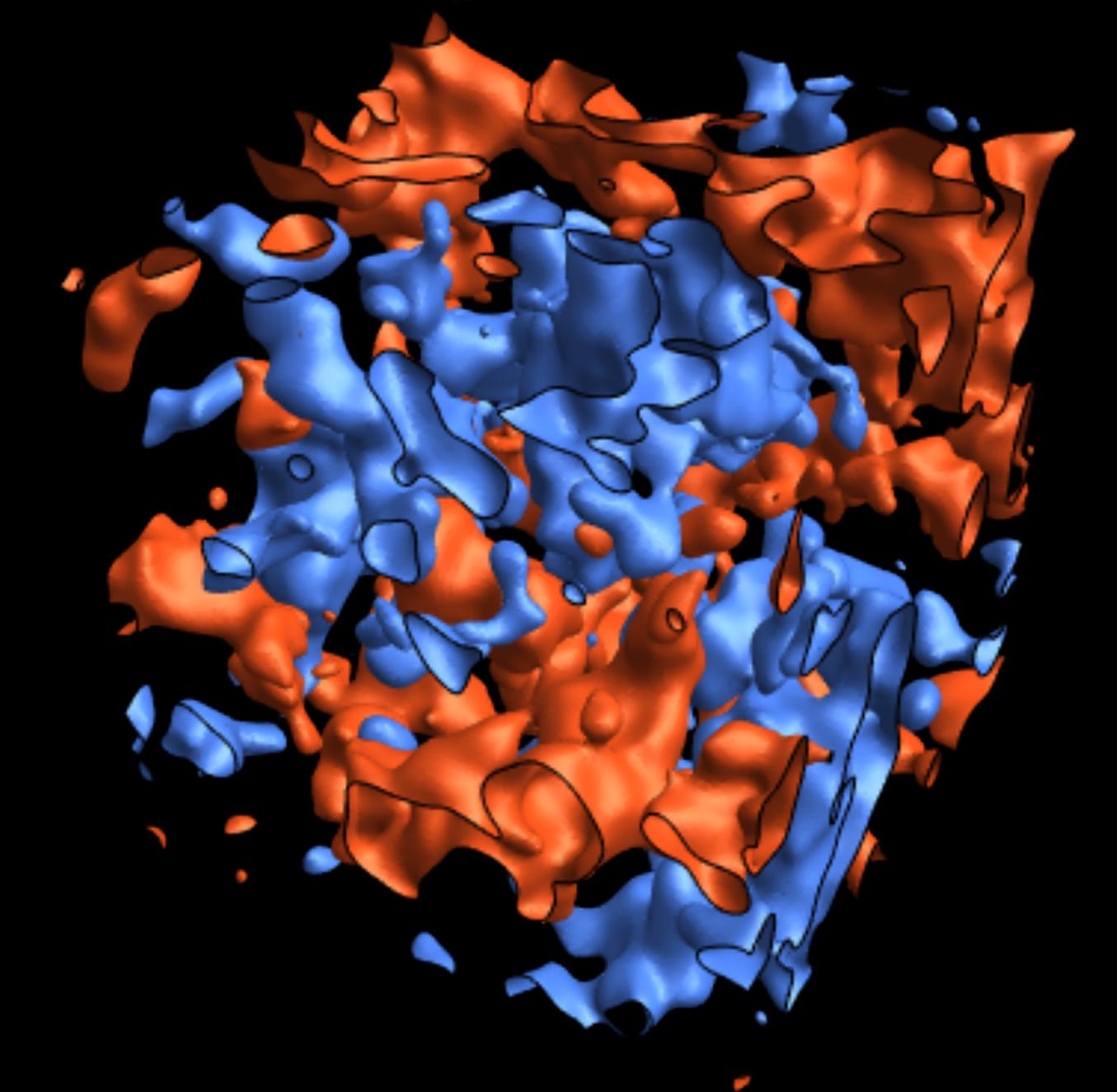
The Vacuum State of a Quantum Field









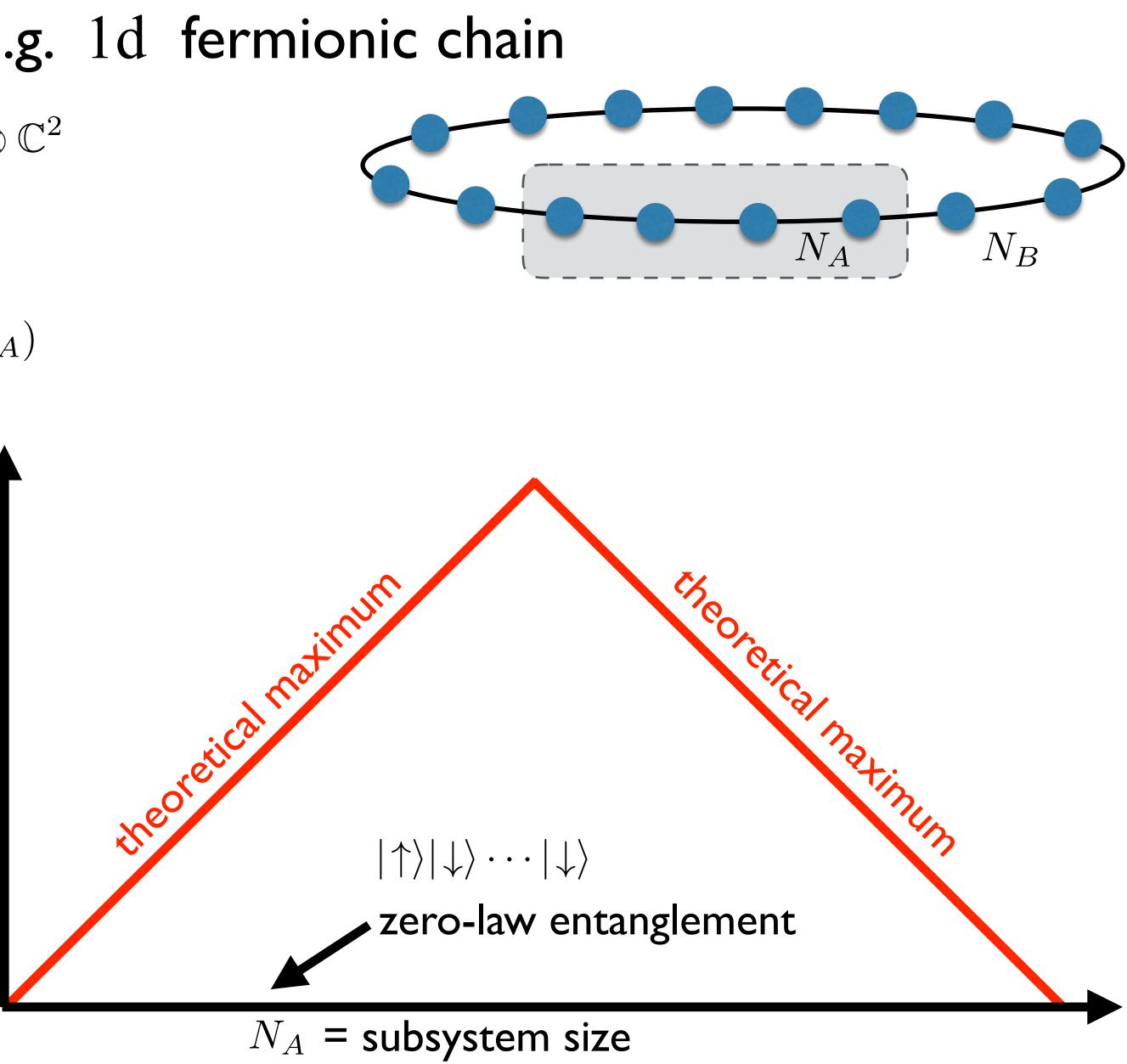


Hilbert space: 2^N dimensional $\mathcal{H} = \mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2$

Geometric subsystem $\rho_A = \text{Tr}_B(|\psi\rangle\langle\psi|)$

Entanglement entropy $S_A(|\psi\rangle) = -\text{Tr}_A(\rho_A \log \rho_A)$

1) Factorized basis states $|\uparrow\rangle|\downarrow\rangle\cdots|\downarrow\rangle$ zero law



Hilbert space: 2^N dimensional $\mathcal{H} = \mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2$

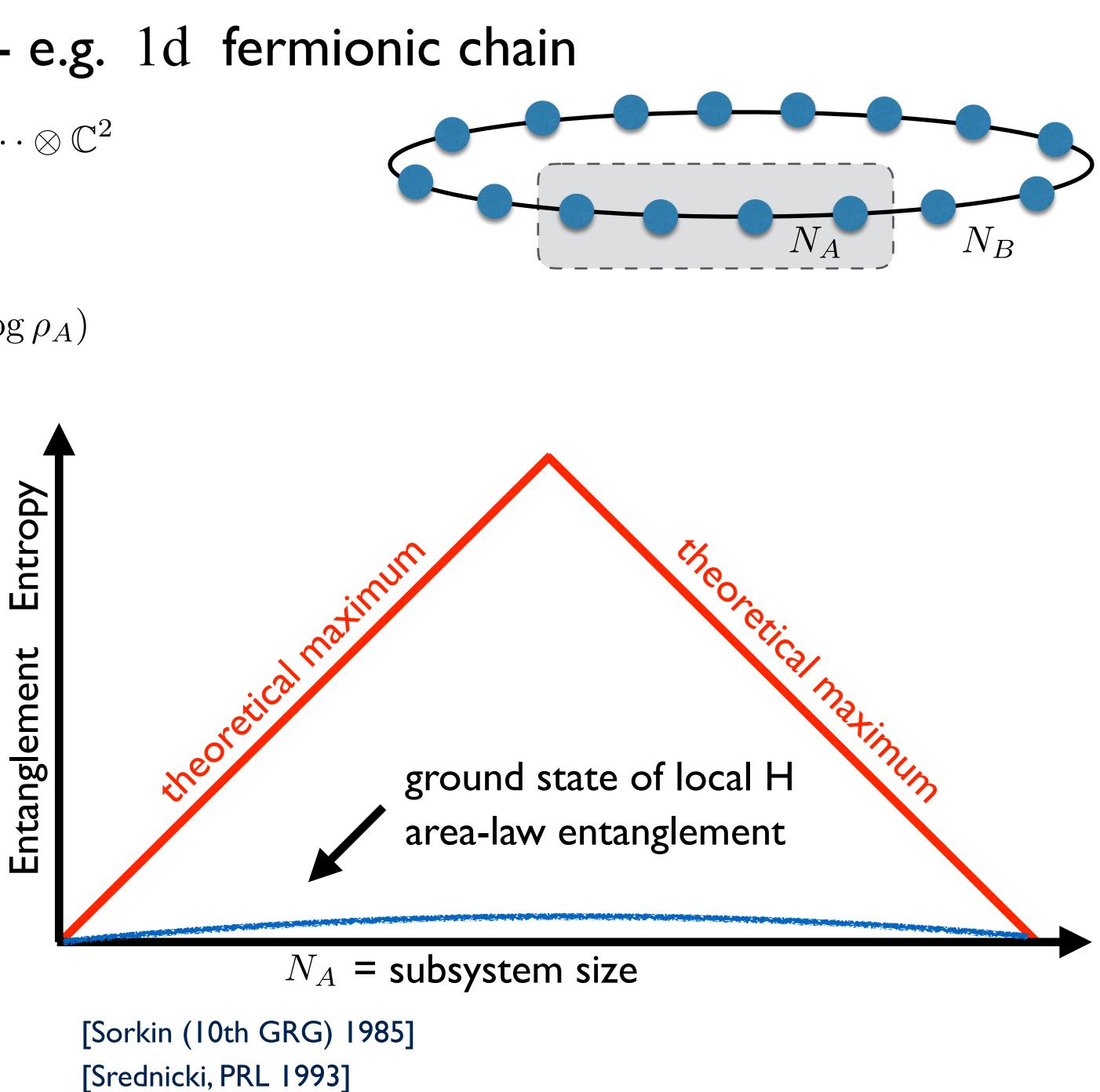
Geometric subsystem $\rho_A = \text{Tr}_B(|\psi\rangle\langle\psi|)$

Entanglement entropy $S_A(|\psi\rangle) = -\text{Tr}_A(\rho_A \log \rho_A)$

Entropy

1) Factorized basis states $|\uparrow\rangle|\downarrow\rangle\cdots|\downarrow\rangle$ zero law

2) Ground state of a local Hamiltonian area law



Hilbert space: 2^N dimensional $\mathcal{H} = \mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2$

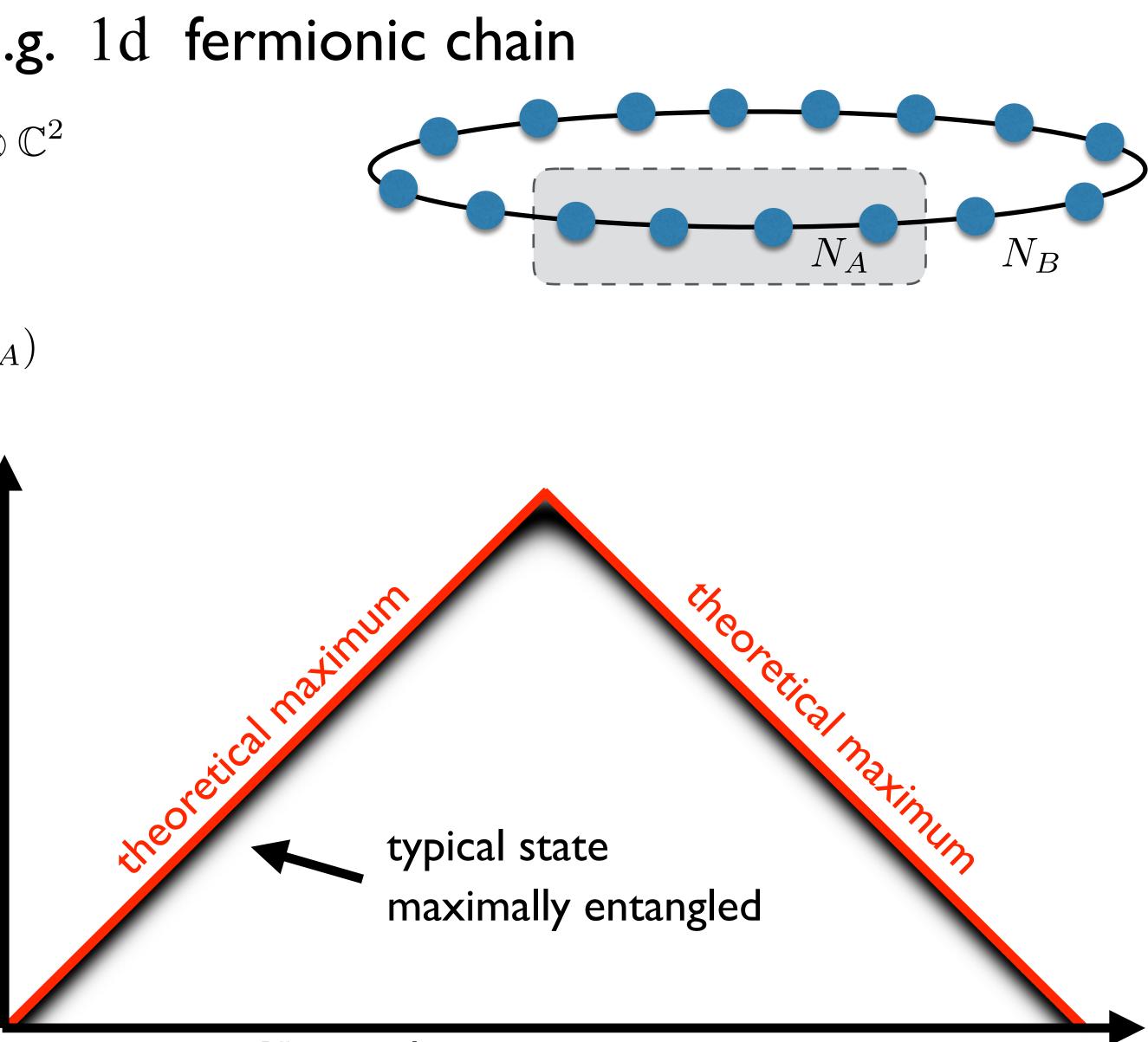
Geometric subsystem $\rho_A = \text{Tr}_B(|\psi\rangle\langle\psi|)$

Entanglement entropy $S_A(|\psi\rangle) = -\text{Tr}_A(\rho_A \log \rho_A)$

1) Factorized basis states $|\uparrow\rangle|\downarrow\rangle\cdots|\downarrow\rangle$ zero law

2) Ground state of a local Hamiltonian area law

3) Typical state in the Hilbert space volume law - maximally entangled



 N_A = subsystem size

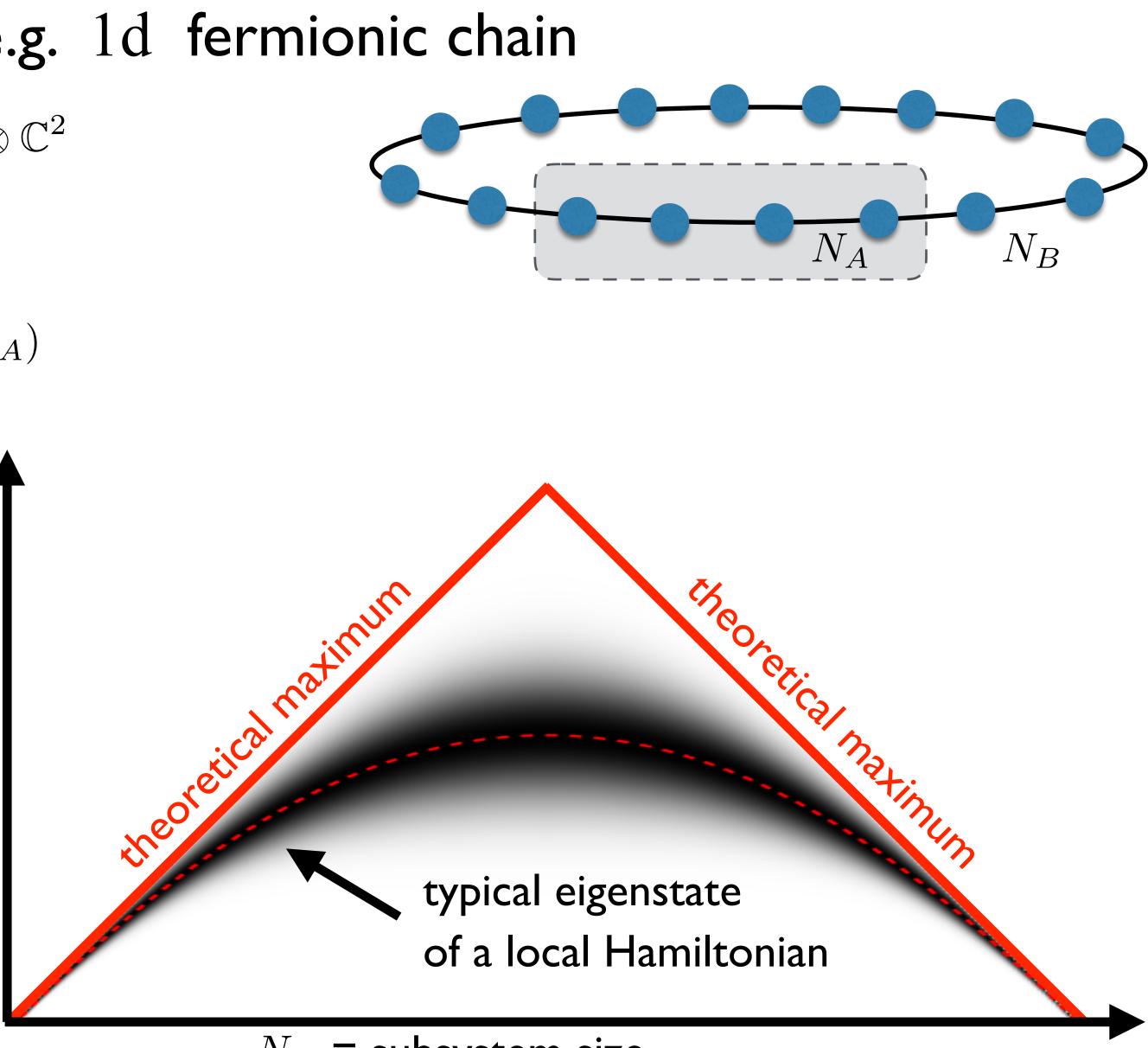
[Page, PRL 1993]

Hilbert space: 2^N dimensional $\mathcal{H} = \mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2$

Geometric subsystem $\rho_A = \text{Tr}_B(|\psi\rangle\langle\psi|)$

Entanglement entropy $S_A(|\psi\rangle) = -\text{Tr}_A(\rho_A \log \rho_A)$

- 1) Factorized basis states $|\uparrow\rangle|\downarrow\rangle\cdots|\downarrow\rangle$ zero law
- 2) Ground state of a local Hamiltonian area law
- 3) Typical state in the Hilbert space volume law maximally entangled
- 4) Typical excited state of a local Hamiltonian have non-maximal ent. at finite fraction



 N_A = subsystem size

[E.B.-Hackl-Rigol-Vidmar, PRL 2017]

Entropy

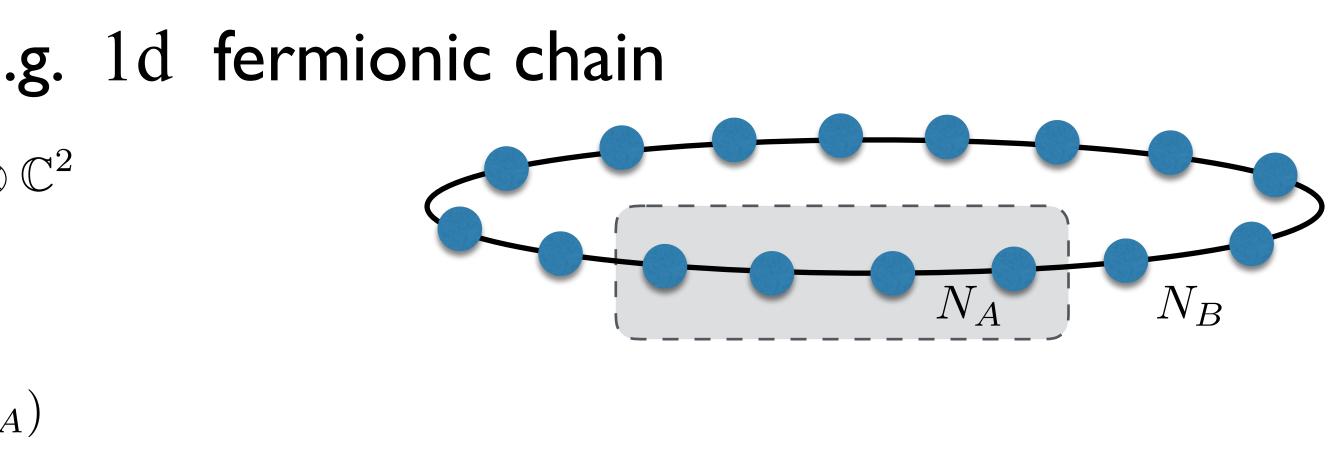
Entanglement

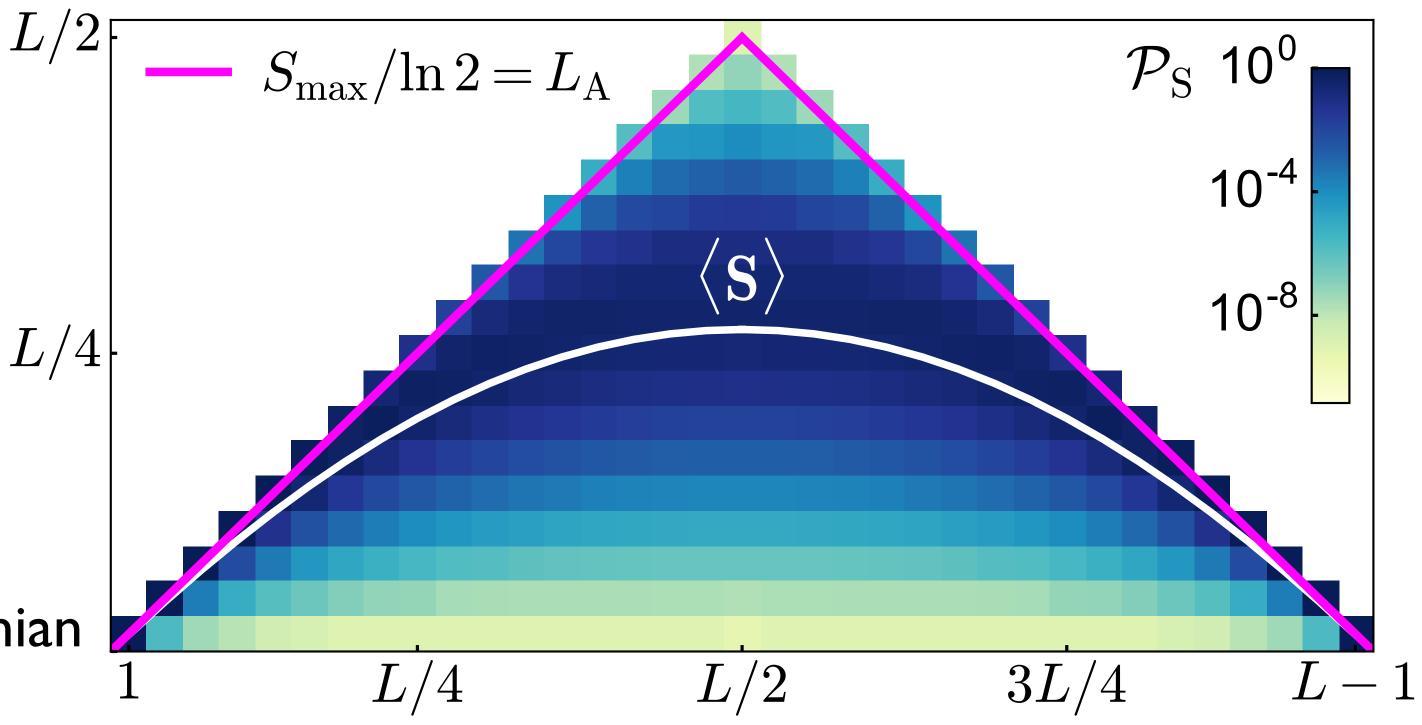
Hilbert space: 2^N dimensional $\mathcal{H} = \mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2$

Geometric subsystem $\rho_A = \text{Tr}_B(|\psi\rangle\langle\psi|)$

Entanglement entropy $S_A(|\psi\rangle) = -\text{Tr}_A(\rho_A \log \rho_A)$

- 1) Factorized basis states $|\uparrow\rangle|\downarrow\rangle\cdots|\downarrow\rangle$ L/2zero law
- 2) Ground state of a local Hamiltonian area law
- 3) Typical state in the Hilbert space volume law maximally entangled
- 4) Typical excited state of a local Hamiltonian have non-maximal ent. at finite fraction





[E.B.-Hackl-Rigol-Vidmar, PRL 2017]

Plan:

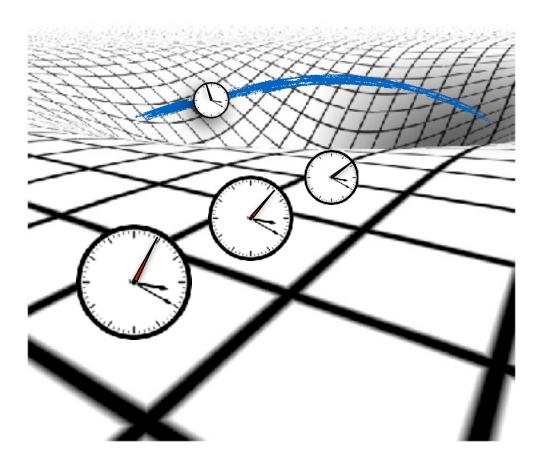
I) Entanglement in simple systems

→ II) Building space from entanglement

III) Entanglement in the sky

General Relativity 1915

Degrees of freedom of gravity: - Geometry of spacetime

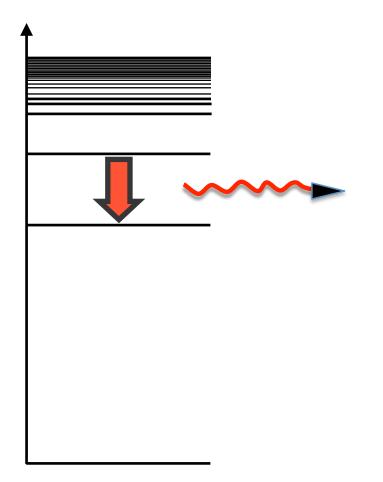


Two fundamental descriptions of the world: an unfinished revolution

Quantum Mechanics ~1925

Degrees of freedom:

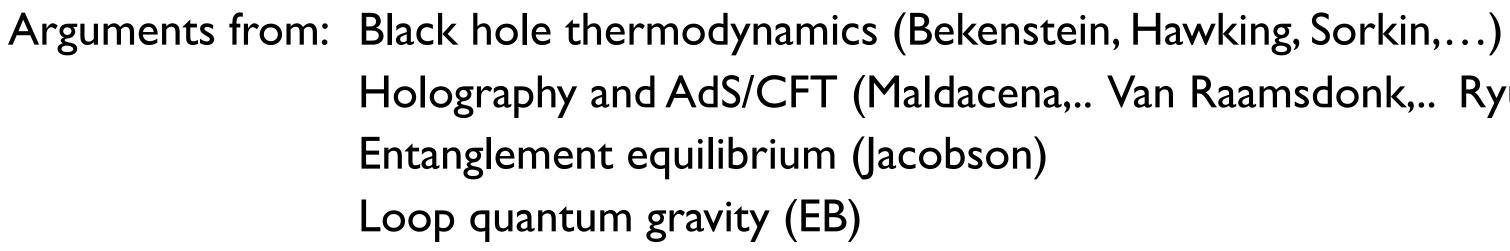
- Discrete spectra
- Entangled



Entanglement and the architecture of a spacetime geometry

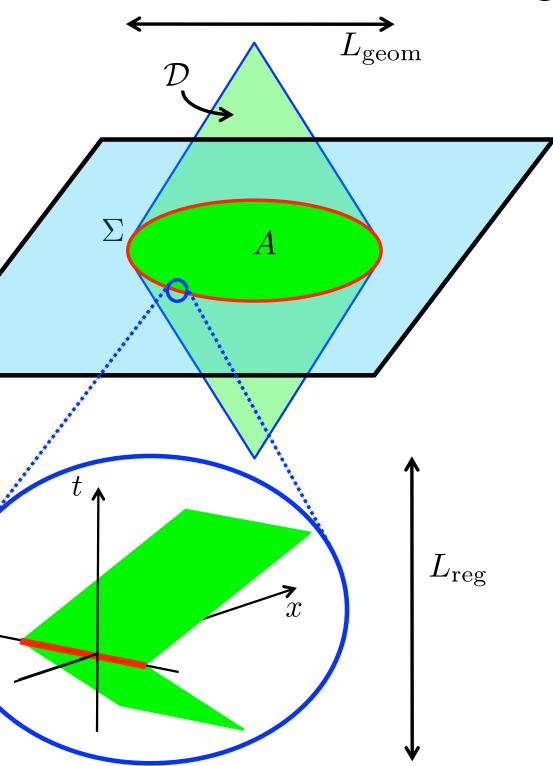
- Entanglement entropy as a probe of the architecture of spacetime Area-law not generic, property of semiclassical states

$$S_A(|0\rangle) = 2\pi \frac{\operatorname{Area}(\partial A)}{L_{Planck}^2} + .$$



EB and R.Myers, CQG (2012)

"On the Architecture of Spacetime Geometry"

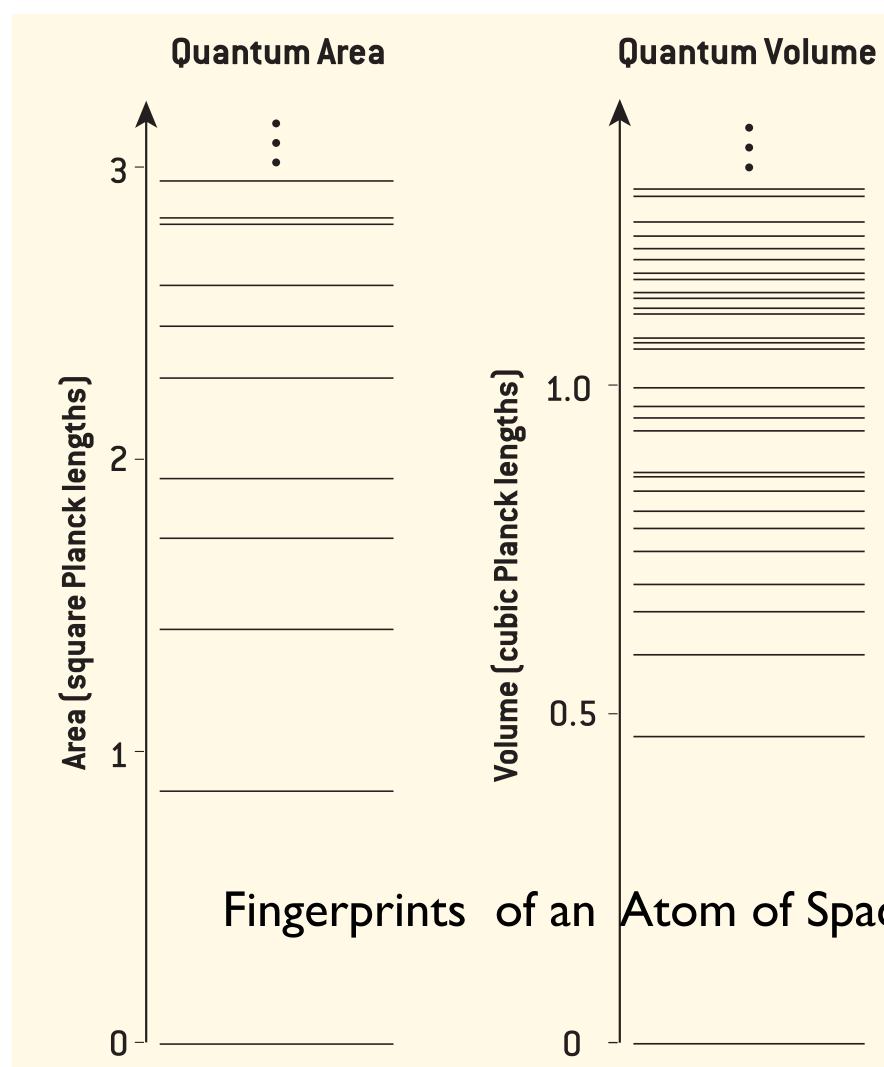


Holography and AdS/CFT (Maldacena,... Van Raamsdonk,... Ryu, Takayanagi,...)

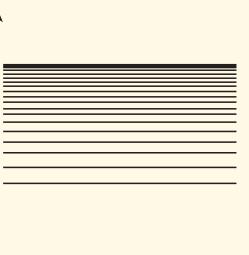
Loop Quantum Gravity

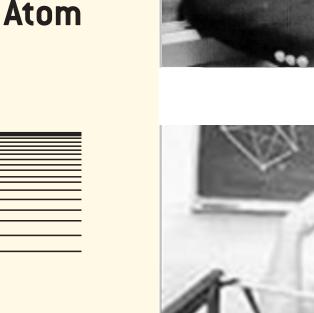
• • •

- 1986 New Variables for General Relativity Abhay Ashtekar
- 1987 The Loop Representation Carlo Rovelli and Lee Smolin
- 1992 Discrete Quanta of Space Ashtekar-Rovelli-Smolin

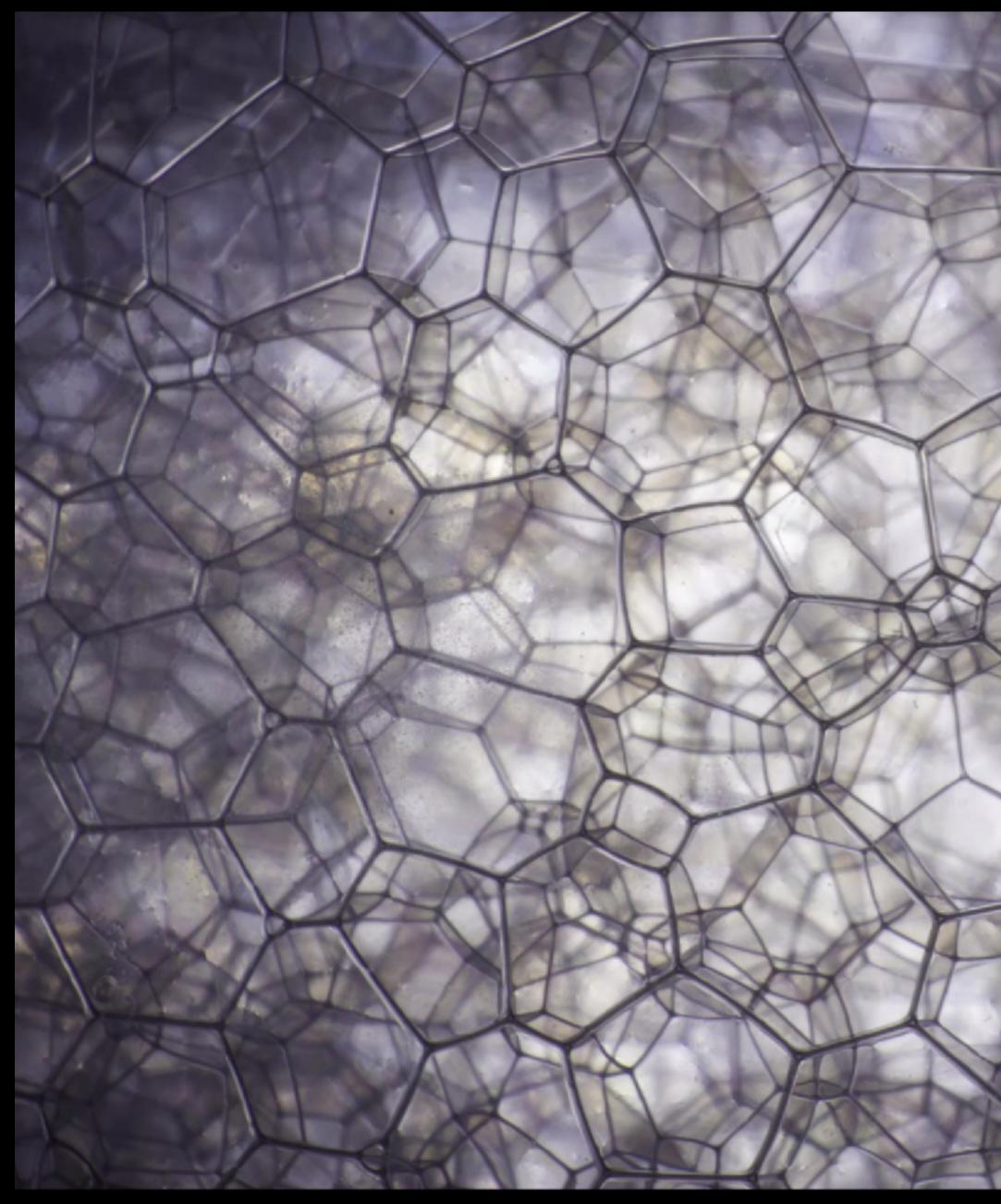


•	ļ	
•		
		=
		_
	Energy	-
	Ene	
of Space		





Quantum geometry of spacetime:



discrete, non-commutative, entangled.

Degrees of freedom of covariant loop quantum gravity (aka spin-foams)

Spacetime manifold and the notion of 2d-foam

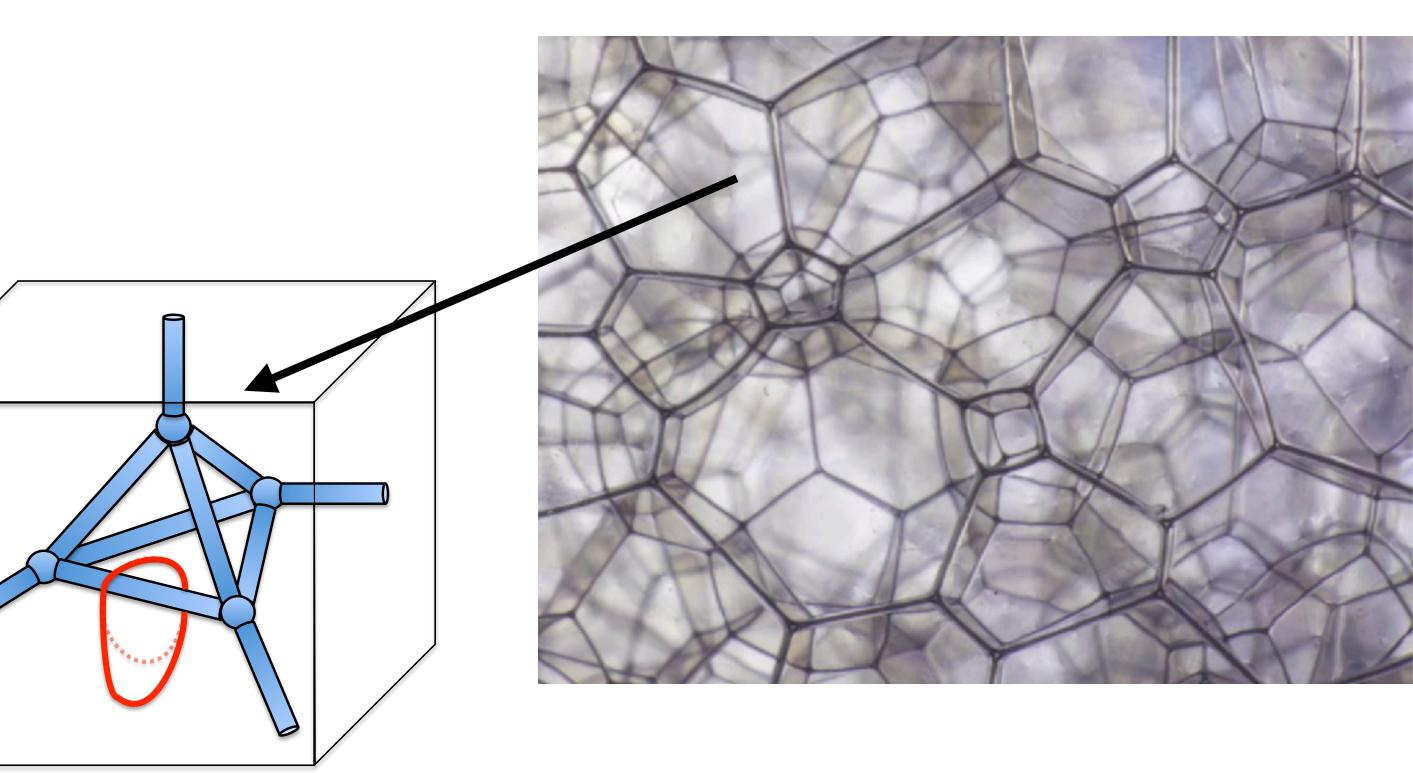
- M = 4d manifold of trivial topology
- Δ = Topological decomposition of M

4-cells Δ_4 = 4-ball $\partial \Delta_4$ = 3-cells Δ_3 $\partial \Delta_3 = 2$ -cells Δ_2

- Set $\{\Delta_2\}$ = 2-skeleton of (M, Δ) = 2d-foam

* The manifold $M' = M - \{\Delta_2\}$ is non-simply-connected, non-trivial π_1

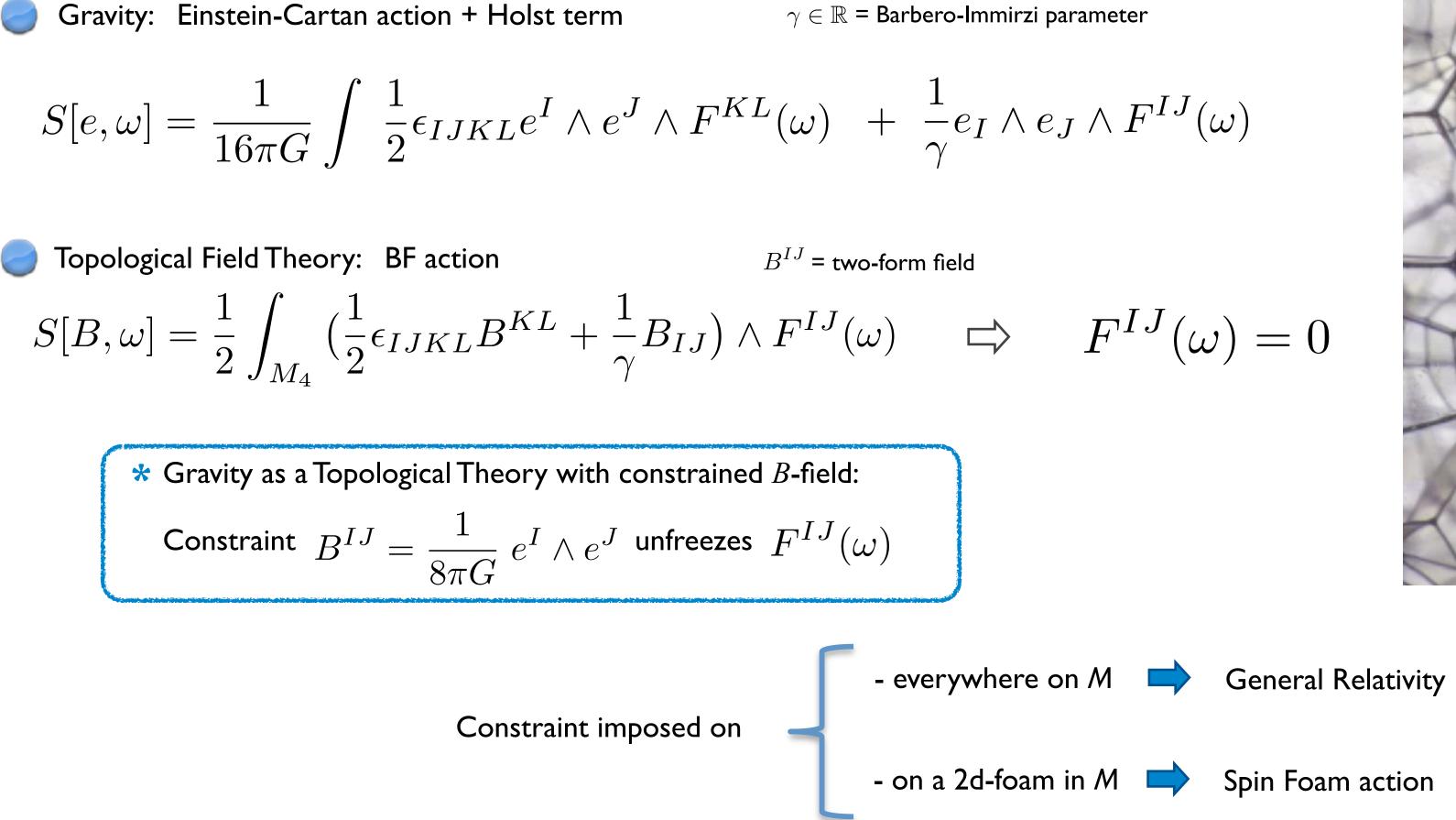
non-contractible loops around Δ_2



Rovelli-Reisenberger '96 Barrett-Crane '98 Engle-Pereira-Rovelli-Livine '08 EB '09

• • •

Dynamics of covariant loop quantum gravity (aka spin-foams)

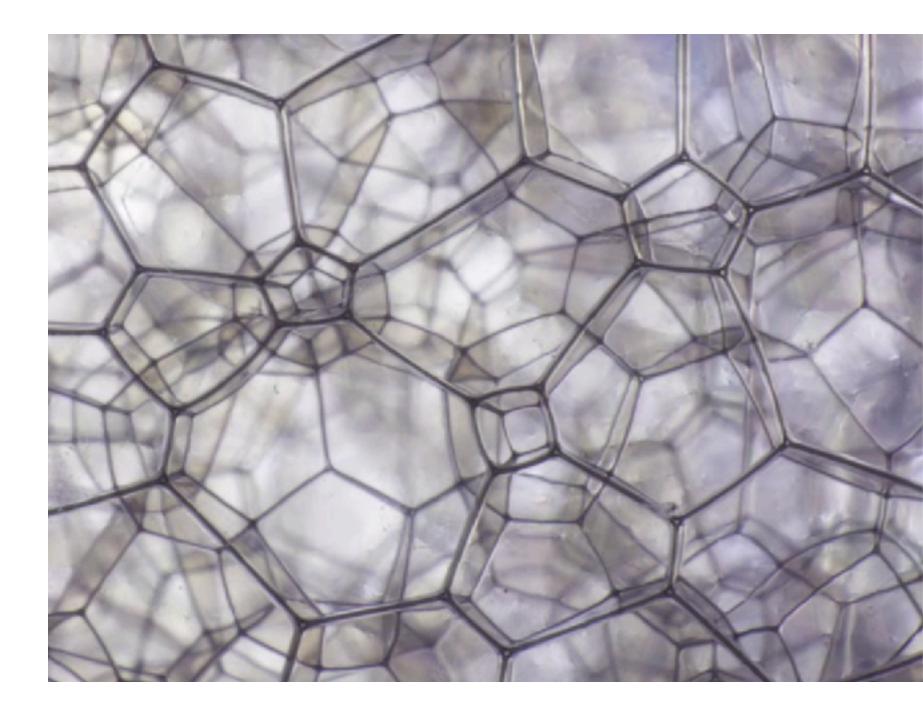


2d-foam allows to unfreeze a finite number of gravitational degrees of freedom:

- quantization straightforward
- perspective: General Relativity as Effective field theory description

$$e_I \wedge e_J \wedge F^{IJ}(\omega)$$

$$\Rightarrow \quad F^{IJ}(\omega) = 0$$



Rovelli-Reisenberger '96 Barrett-Crane '98 Engle-Pereira-Rovelli-Livine '08 EB '09

• • •

Bosonic formulation of LQG on a graph [also known as the *twistorial* formulation]

- Two oscillators per end-point of a link

spin from oscillators $|j,m\rangle = \frac{(a^{0\dagger})^{j+m}}{\sqrt{(j+m)!}} \frac{(a^{1\dagger})^{j-m}}{\sqrt{(j-m)!}}|0\rangle$

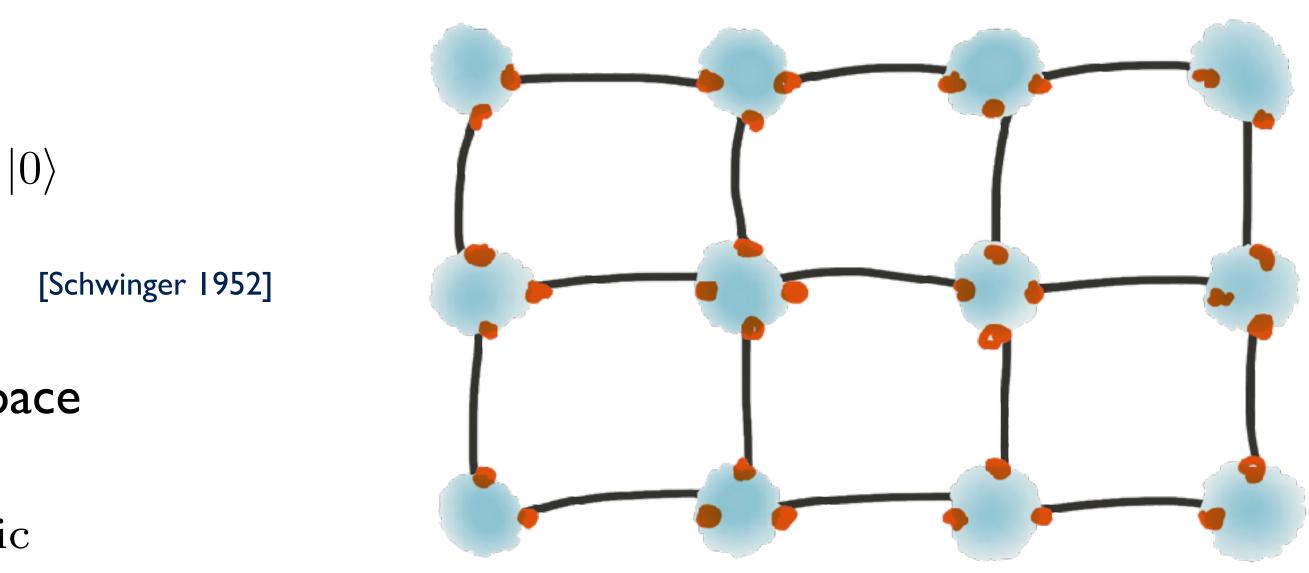
- Hilbert space of LQG and the bosonic Hilbert space

$$L^2(SU(2)^L/SU(2)^N) \subset \mathcal{H}_{\mathrm{bosoni}}$$

$$|\psi\rangle = \sum_{n_i=1}^{\infty} c_{n_1\cdots n_{4L}} |n_1,\ldots,n_{4L}|$$

- The bosonic Hilbert space factorizes over nodes: easy to define and compute the entanglement entropy

- Geometric operators in a region R of the graph generate a subalgebra



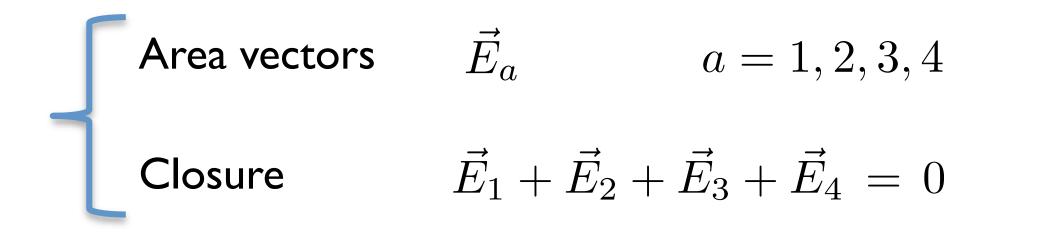
$$_{_{\prime}4L}\rangle$$

[Girelli-Livine 2005] [Freidel-Speziale 2010] [Livine-Tambornino 2011] [Wieland 2011]

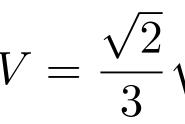
[EB-Guglielmon-Hackl-Yokomizo 2016]

$$\mathcal{A}_R^{\mathrm{LQG}} \subset \mathcal{A}_R^{\mathrm{bosonic}}$$

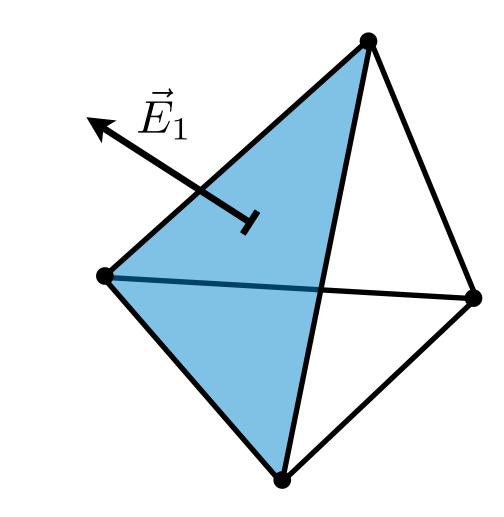
Classical geometry of a <u>tetrahedron</u> in \mathbb{R}^3



- area of a face
$$A_a = |\vec{E}_a|$$

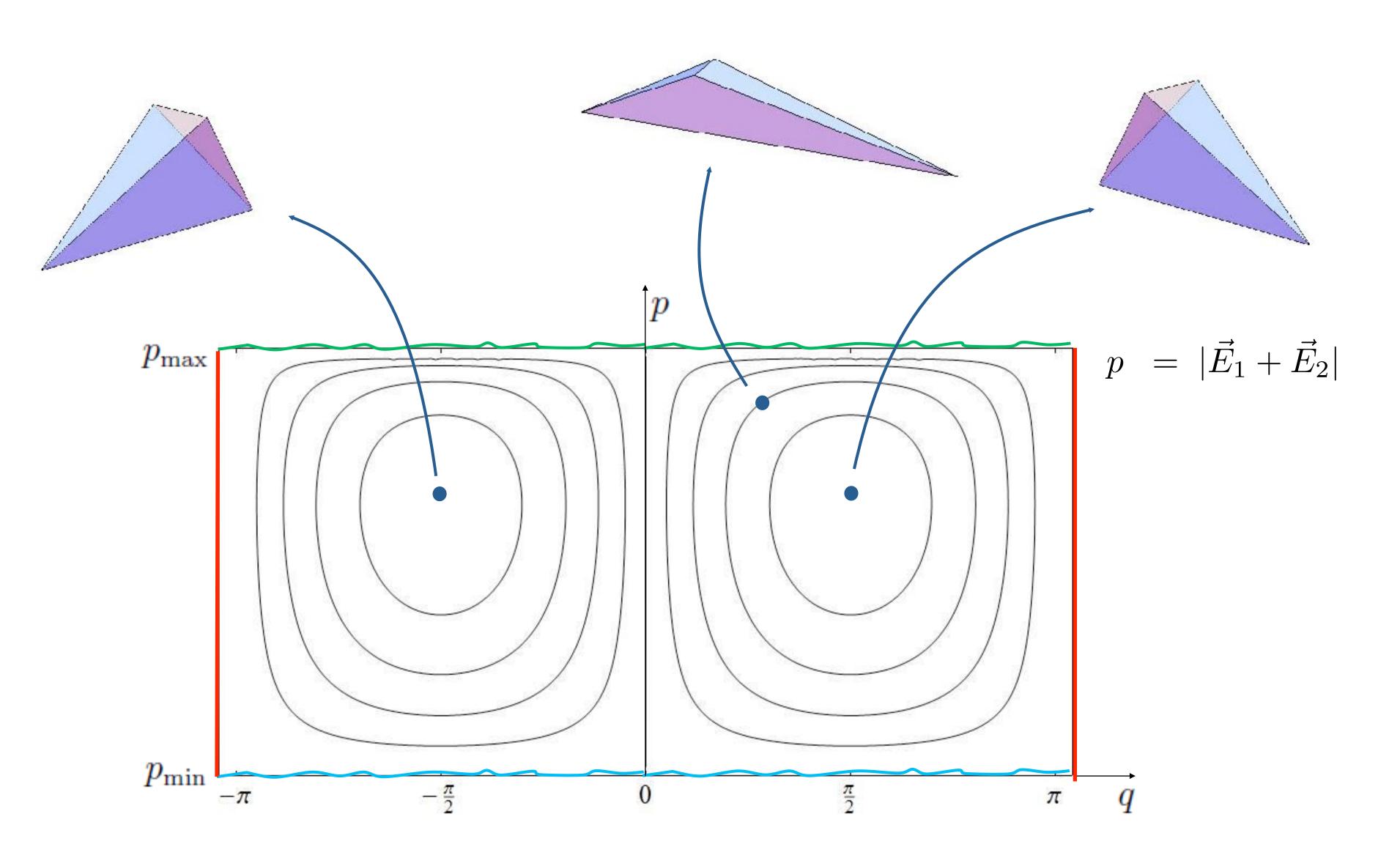


- area vectors



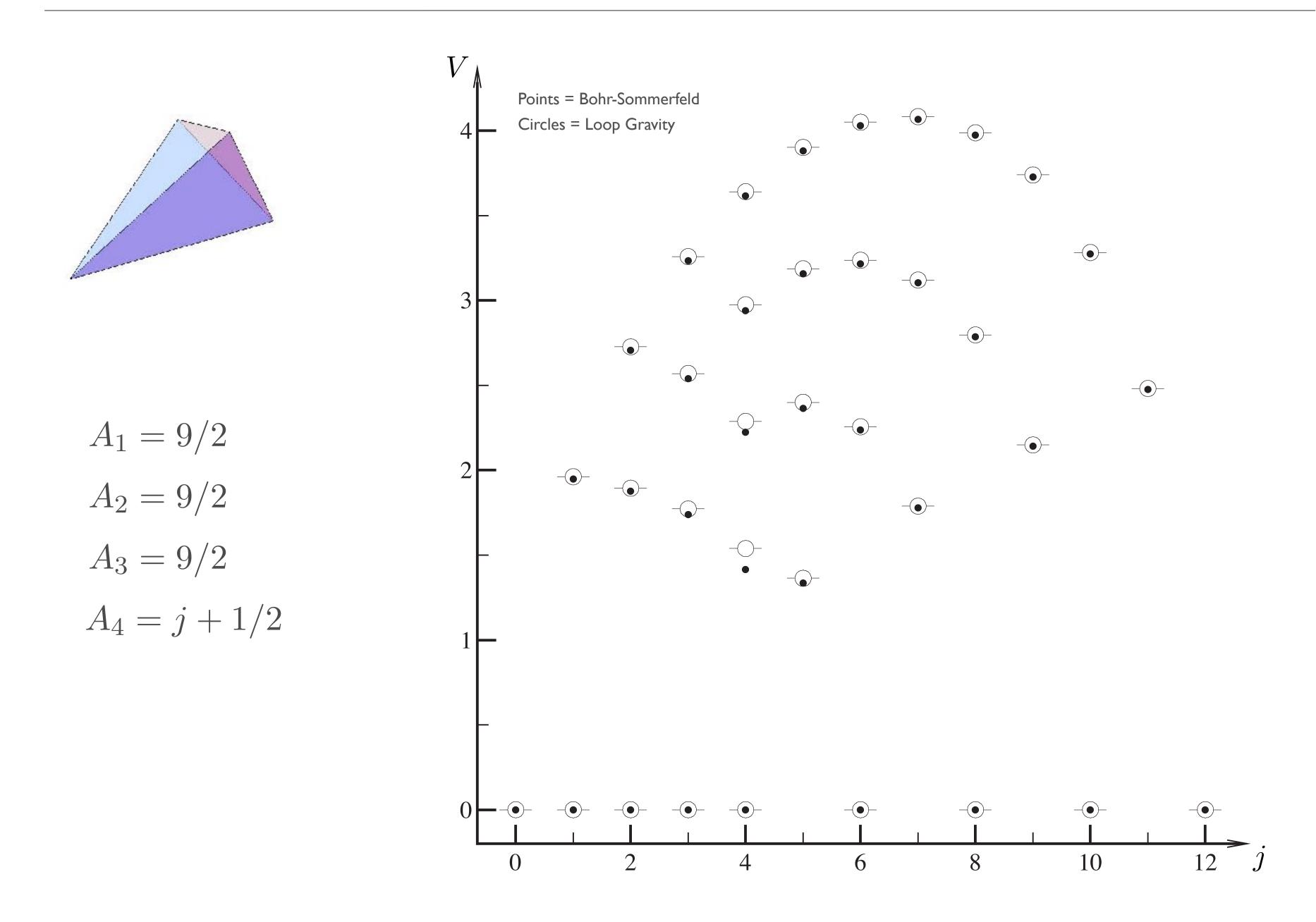
- volume of the tetrahedron $V = \frac{\sqrt{2}}{3} \sqrt{|\vec{E_1} \cdot (\vec{E_2} \times \vec{E_3})|}$

The phase space of a tetrahedron



(face-areas A_a fixed)

Bohr-Sommerfeld quantization of the Volume

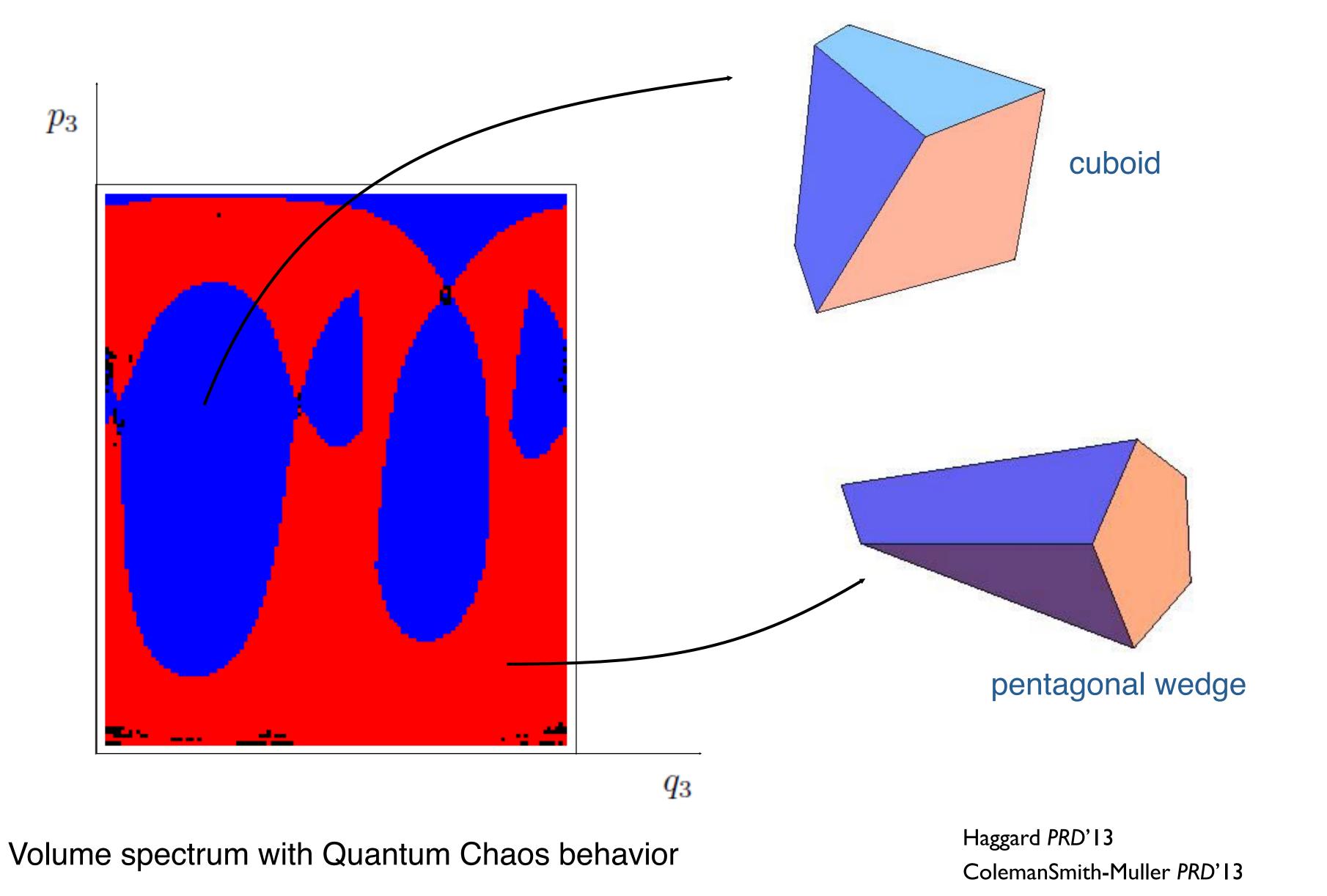


Bohr-Sommerfeld quantization of the Volume

	17		
		\mathcal{A}	
/			1
L	 		

Table: Volume spectrum				
$j_1 \ j_2 \ j_3 \ j_4$	Loop gravity	Bohr-Sommerfeld	Accuracy	
$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	0.310	0.252	19%	
$\frac{1}{2}$ $\frac{1}{2}$ 1 1	0.396	0.344	13%	
$\frac{1}{2}$ $\frac{1}{2}$ $\frac{3}{2}$ $\frac{3}{2}$	0.464	0.406	12%	
$\frac{1}{2}$ 1 1 $\frac{3}{2}$	0.498	0.458	8%	
1111	0	0	exact	
	0.620	0.566	9%	
$\frac{1}{2}$ $\frac{1}{2}$ 2 2	0.522	0.458	12%	
$\frac{1}{2}$ 1 $\frac{3}{2}$ 2	0.577	0.535	7%	
$1 \ 1 \ 1 \ 2$	0.620	0.598	4%	
$\frac{1}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$	0.620	0.598	4%	
$1 \ 1 \ \frac{3}{2} \ \frac{3}{2}$	0	0	exact	
	0.753	0.707	6%	
	1.828	1.795	1.8%	
6667	3.204	3.162	1.3%	
	4.225	4.190	0.8%	
	5.133	5.105	0.5%	
	5.989	5.967	0.4%	
	6.817	6.799	0.3%	

Beyond tetrahedra: F = 6, the space of shapes of ...



Gluing quantum polyhedra with entanglement

- Fluctuations of nearby quantum shapes are in general uncorrelated: twisted geometry
- Saturating uniformly the short-ranged relative entropy

$$\frac{\left(\langle \mathcal{O}_A \, \mathcal{O}_B \rangle - \langle \mathcal{O}_A \rangle \langle \mathcal{O}_B \rangle\right)^2}{2 \, \|\mathcal{O}_A\|^2 \, \|\mathcal{O}_B\|^2} \le I(A, B)$$

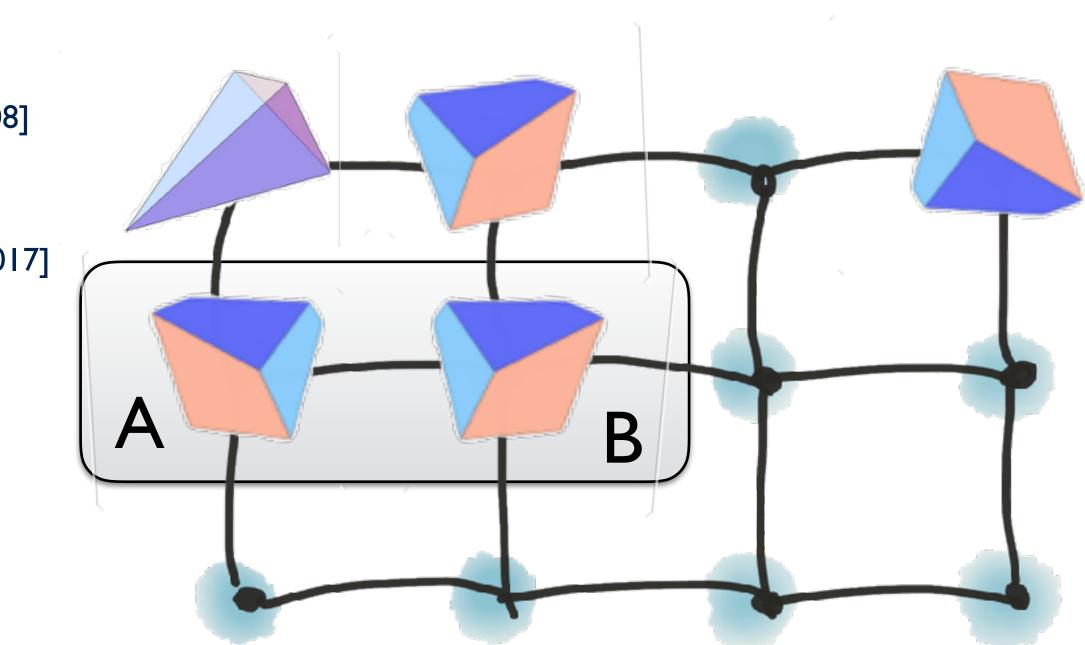
where

$$I(A,B) \equiv S(\rho_{AB}|\rho_A \otimes \rho_B) = S_A + S_B - S_{AB}$$

correlates fluctuations of the quantum geometry

State with
$$\max \sum_{\langle A,B \rangle} I(A,B)$$

[Dittrich-Speziale 2008] [EB 2008] [Freidel-Speziale 2010] [EB-Dona-Speziale 2010] [Dona-Fanizza-Sarno-Speziale 2017]



Glued geometry from entanglement

[EB-Baytas-Yokomizo, to appear]

Plan:

- I) Entanglement in simple systems
- II) Building space from entanglement
 - a) Entanglement, mutual information and bosonic correlators
 - b) Gluing quantum polyhedra with entanglement
 - c) Entanglement and Lorentz invariance
- III) Entanglement in the sky

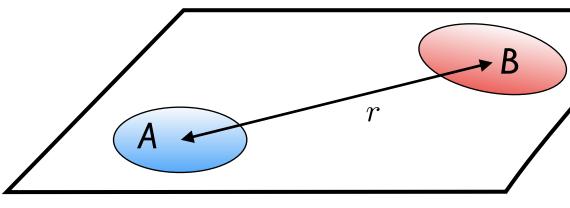
Correlations at space-like separation

- In quantum field theory

Fock space $\mathcal{F} = \mathbb{C} \oplus \mathcal{H} \oplus S(\mathcal{H} \otimes \mathcal{H}) \oplus \cdots$

contains states with no space-like correlations
 (ii) states with specific short-ranged correlations (e.g. Minkowski vacuum) crucial ingredient for quantum origin of cosmological perturbations

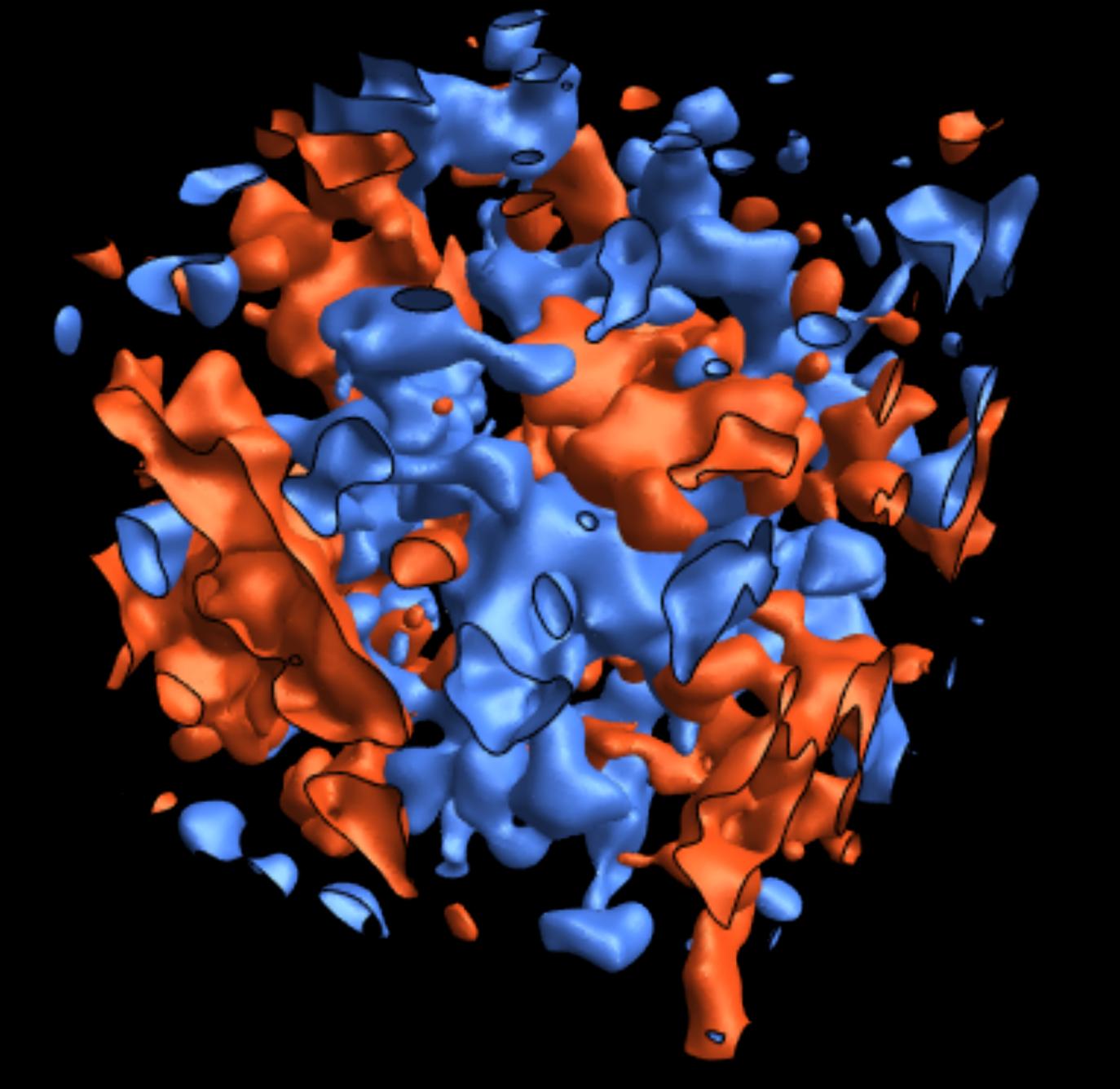
- In loop quantum gravity Hilbert space $\mathcal{H}_{\Gamma} = L^2 (SU(2)^L / SU(2)^N)$ (i) states with *no* space-like correlations (ii) states *with* long-range space-like correlations contains

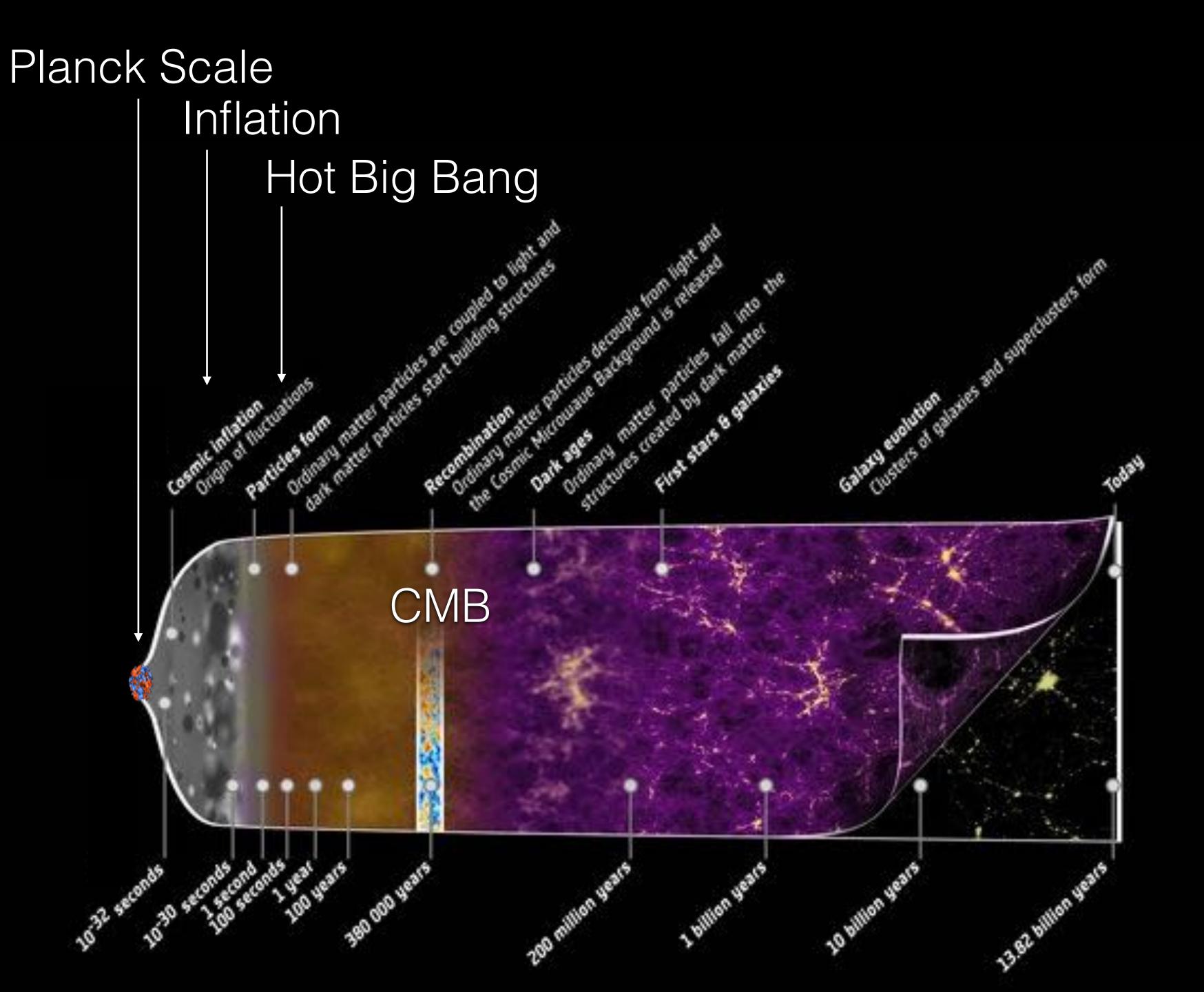


(e.g. spin-networks)

(e.g. squeezed vacua)

The vacuum state of a quantum field is highly entangled



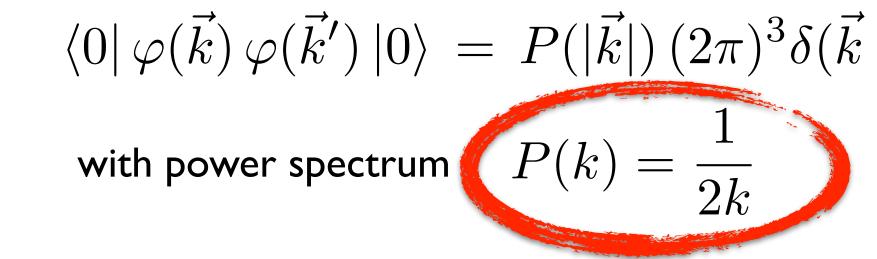


The Vacuum State of a Quantum Field

Vanishing expectation value $\left< 0 \right| \varphi(\vec{x}) \left| 0 \right> = 0$ but non-vanishing fluctuations

Uncorrelated momenta

No particles



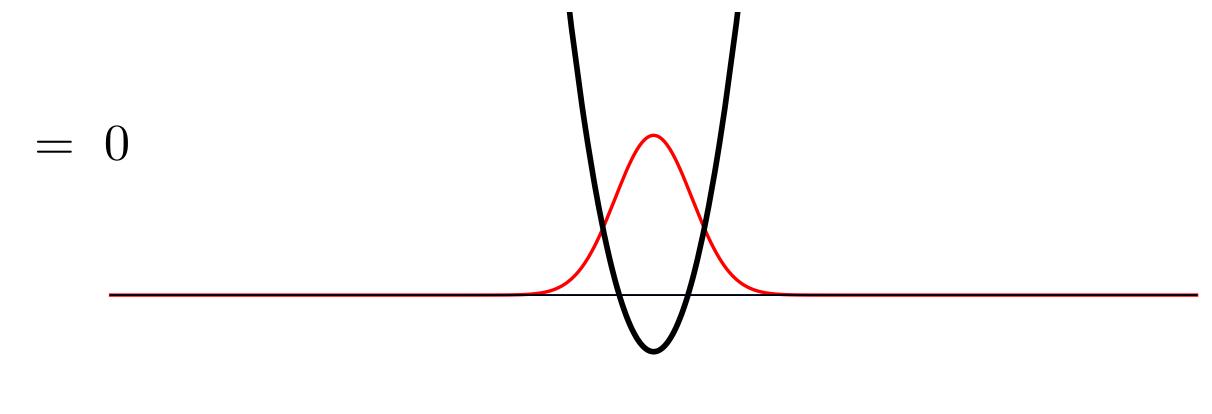
 $a(\vec{k}) |0\rangle = 0$

Non-vanishing correlations at space-like separation

$$\langle 0|\,\varphi(\vec{x})\,\varphi(\vec{y})\,|0\rangle \,=\, \int_0^\infty \frac{k^3\,P(k)}{2\pi^2}\,\frac{\sin(k\,|\vec{x}-\vec{y}|)}{k\,|\vec{x}-\vec{y}|}\frac{dk}{k} \,=\, \frac{1}{(2\pi)^2}\frac{1}{|\vec{x}-\vec{y}|^2}$$

Fluctuations of the field averaged over a region

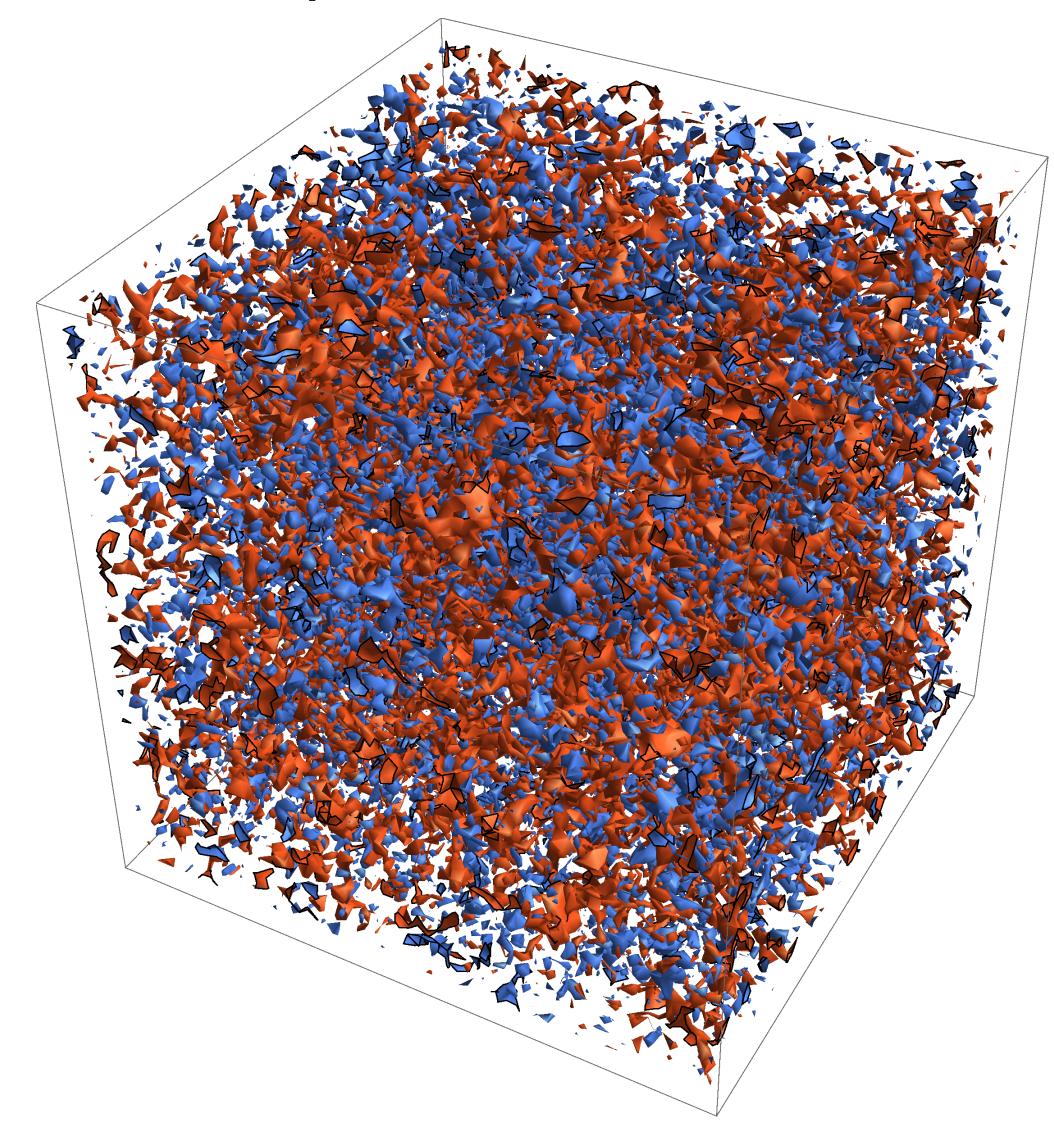
$$(\Delta \varphi_R)^2 \equiv \langle 0 | \varphi_R \varphi_R | 0 \rangle - (\langle 0 | \varphi_R | 0 \rangle)^2 \sim \frac{1}{R^2}$$



$$^{3}\delta(\vec{k}+\vec{k}')$$

of size
$$R$$

The vacuum of a quantum field after inflation



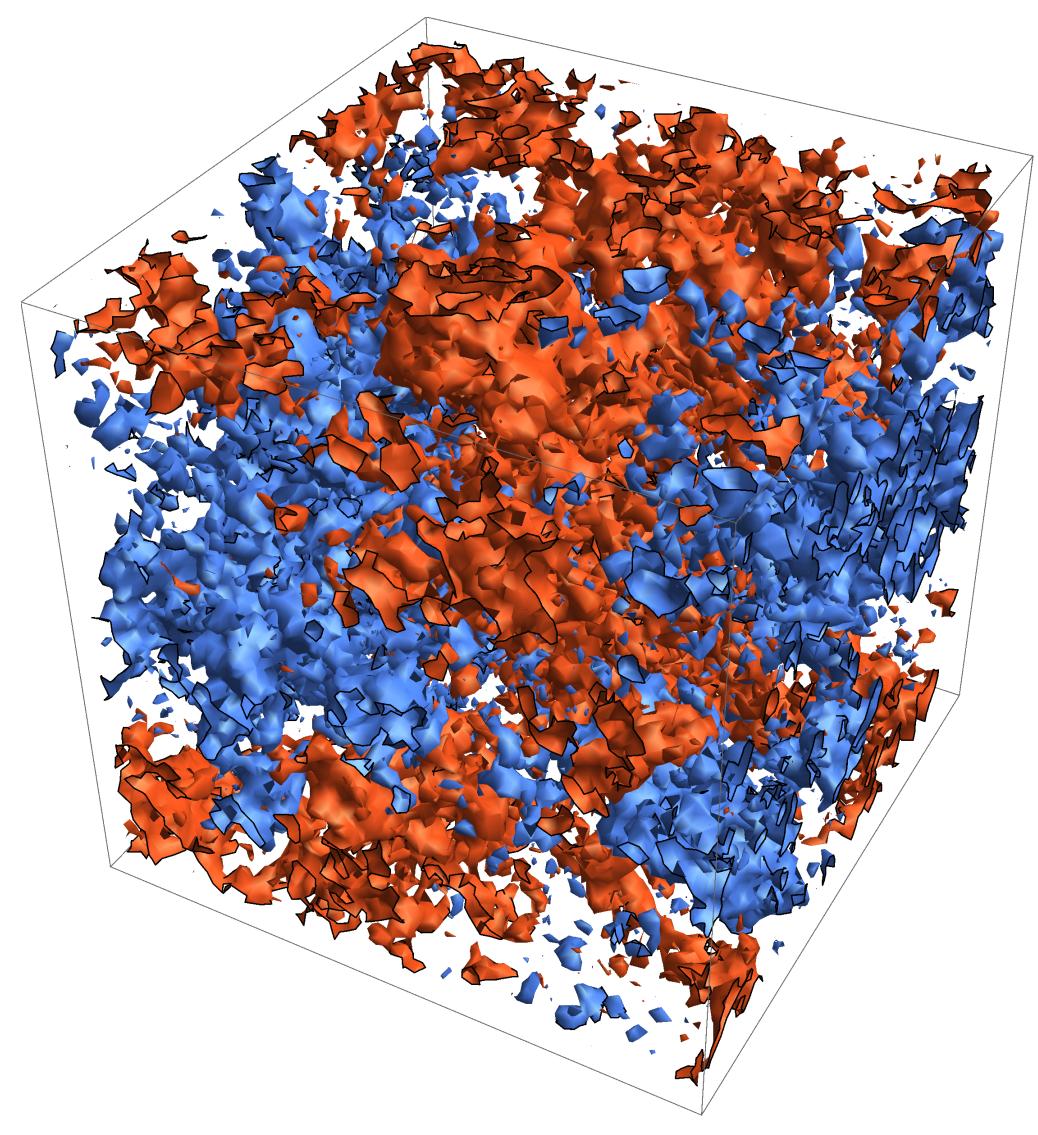
Minkowski $P(k) = \frac{1}{2k}$

The vacuum of a quantum field after inflation

Minkowski
$$P(k) = \frac{1}{2k}$$

de Sitter

$$P(k) = \frac{1}{2k}e^{-2H_0t} + \frac{H_0^2}{2k^3}$$



The vacuum of a quantum field after inflation

Minkowski
$$P(k) = \frac{1}{2k}$$

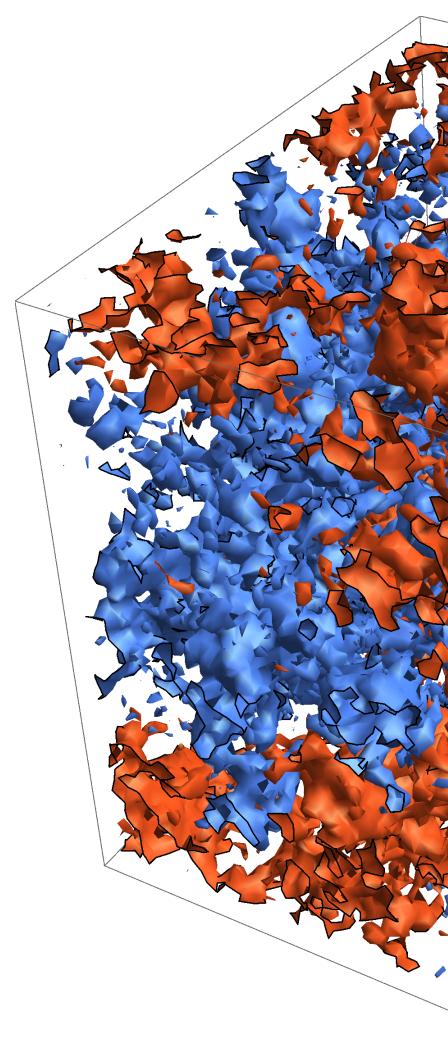
de Sitter

$$P(k) = \frac{1}{2k}e^{-2H_0t} + \frac{H_0^2}{2k^3}$$

Inflation (quasi-de Sitter)

$$P_s(k) \approx \frac{2\pi^2 A_s}{k^3} \left(\frac{k}{k_*}\right)^{n_s - 1}$$

with
$$A_s \sim \frac{G\hbar\,H_*^2}{\varepsilon_*}$$



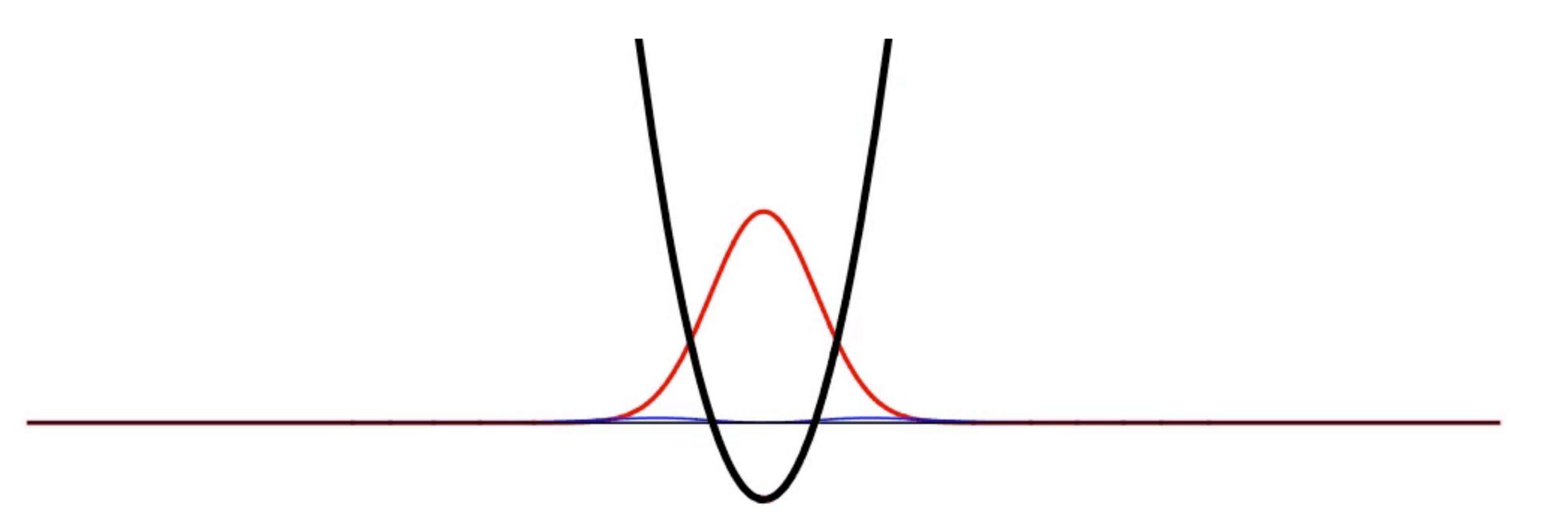
۰.

Mukhanov-Chibisov (1981)

Planck 2015

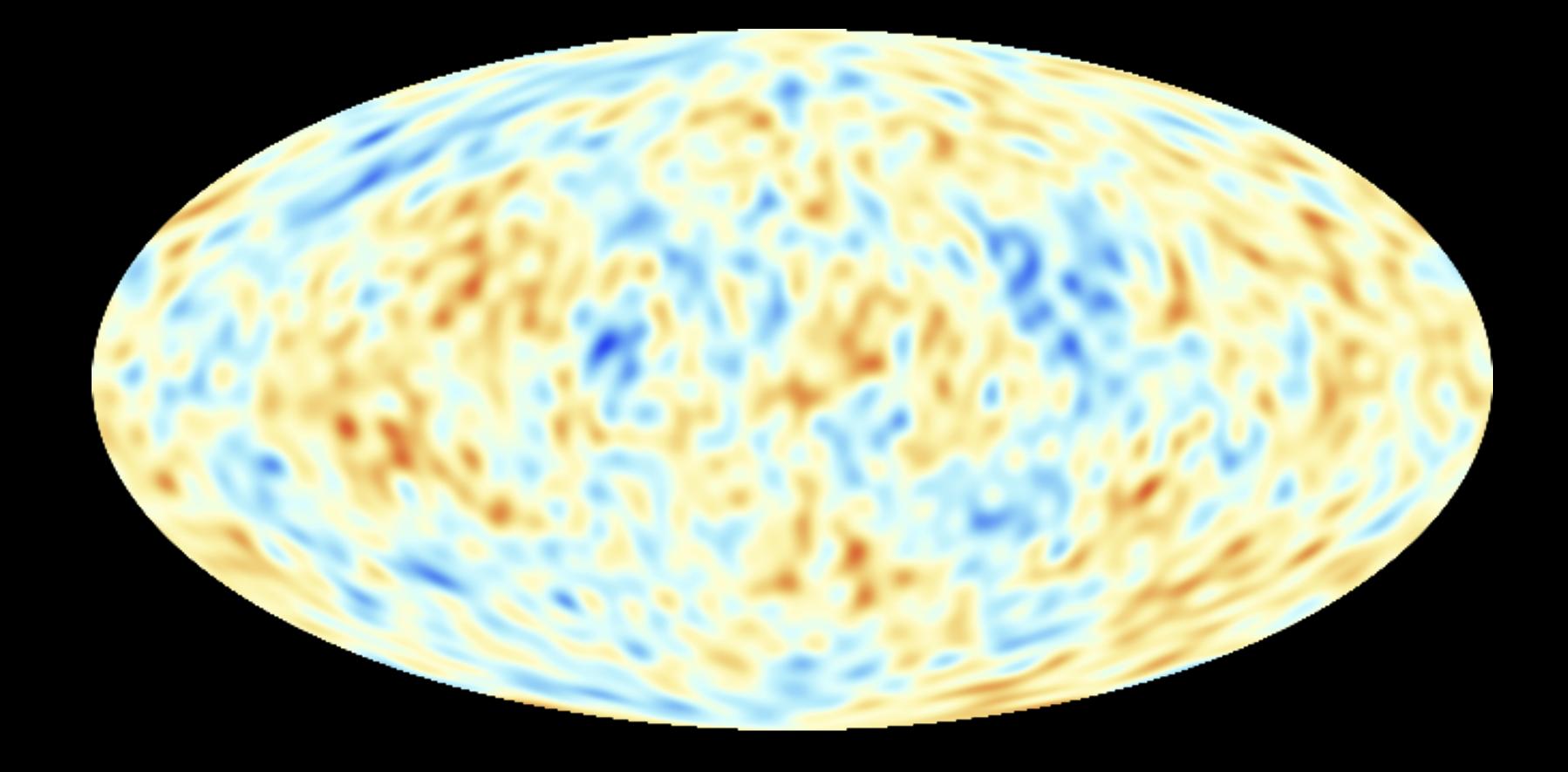
$$A_s(k_*) = 2.47 \times n_s(k_*) = 0.96$$

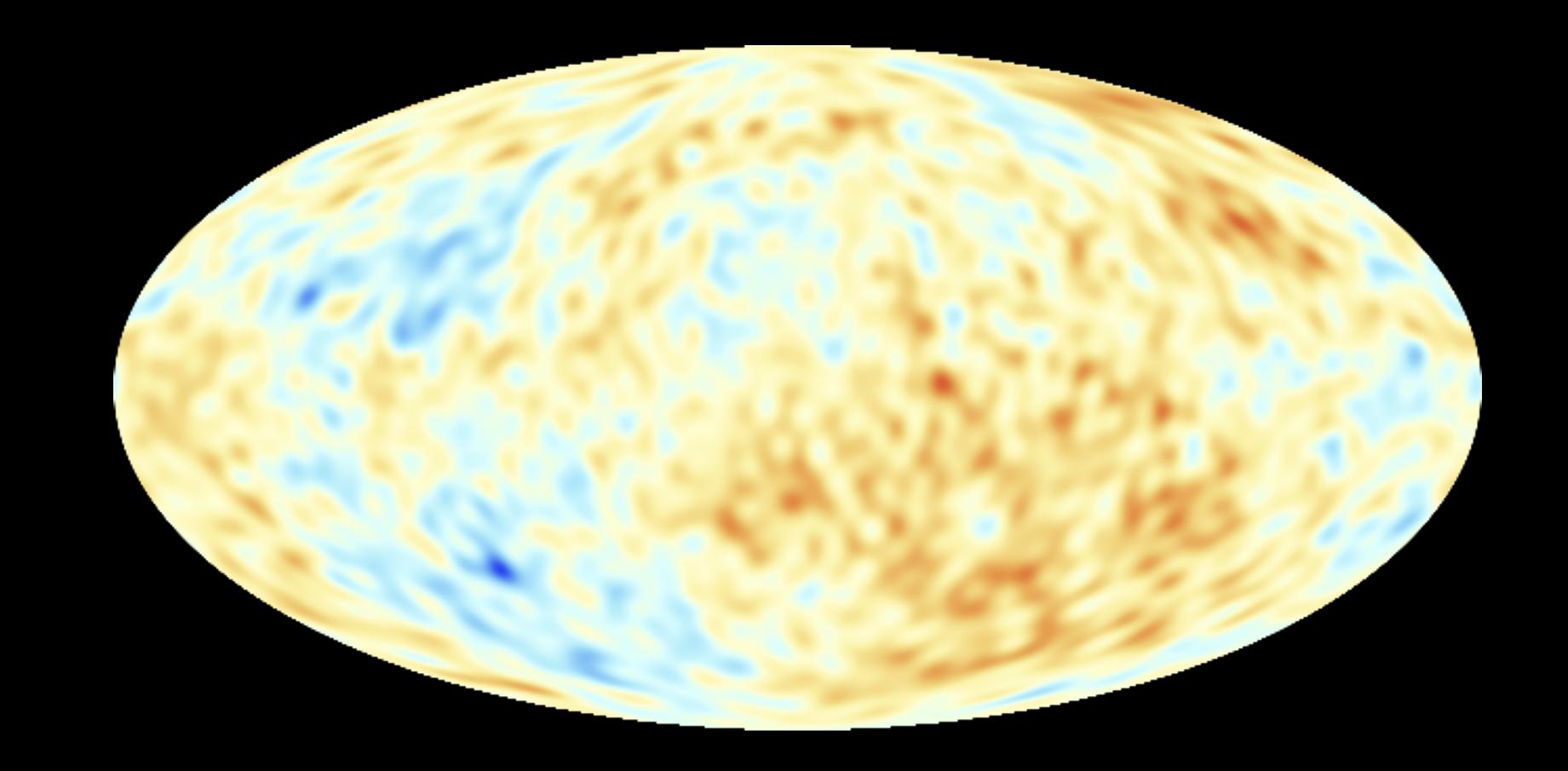
Mechanism: amplification of vacuum fluctuations by instabilities

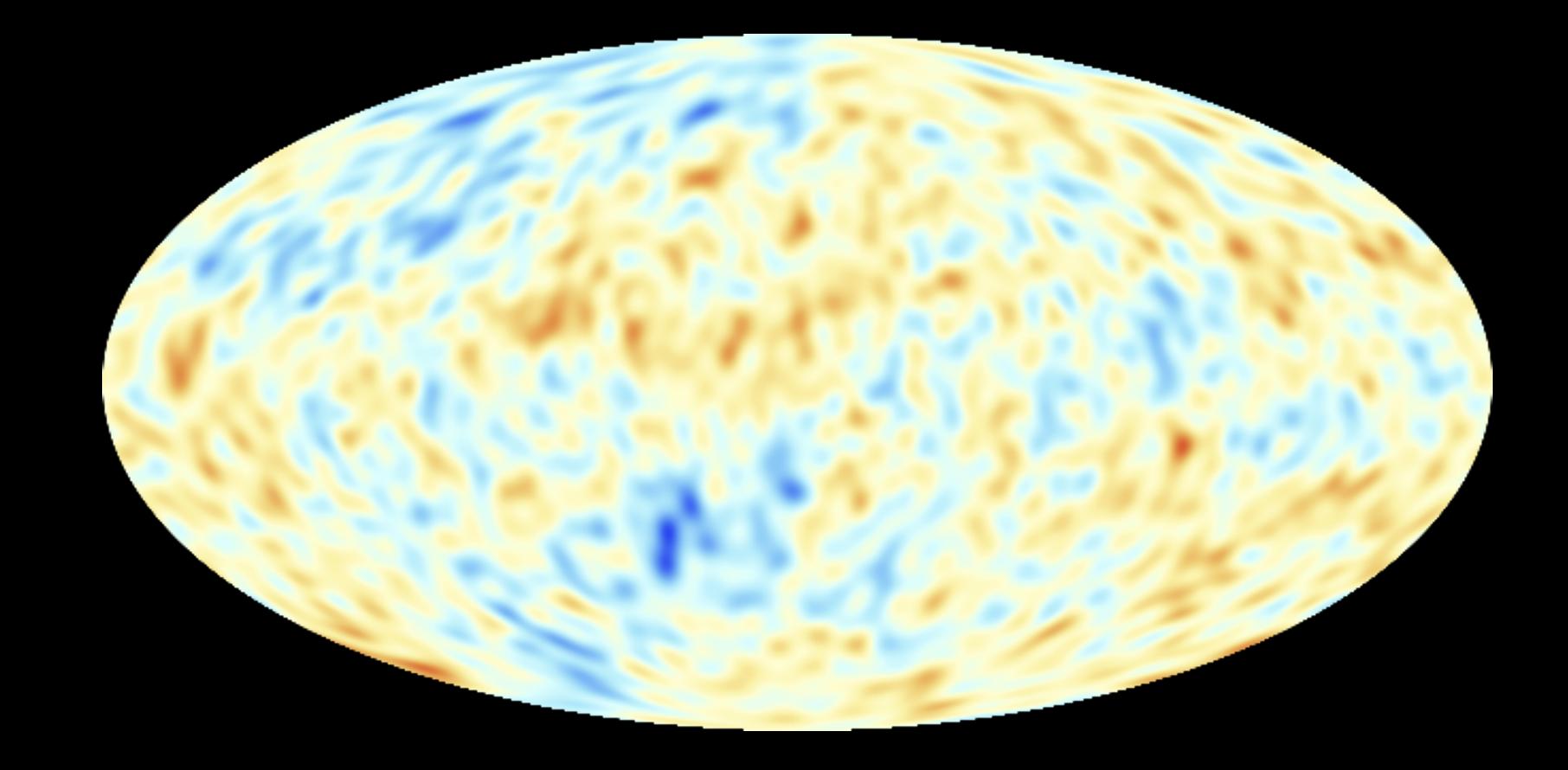


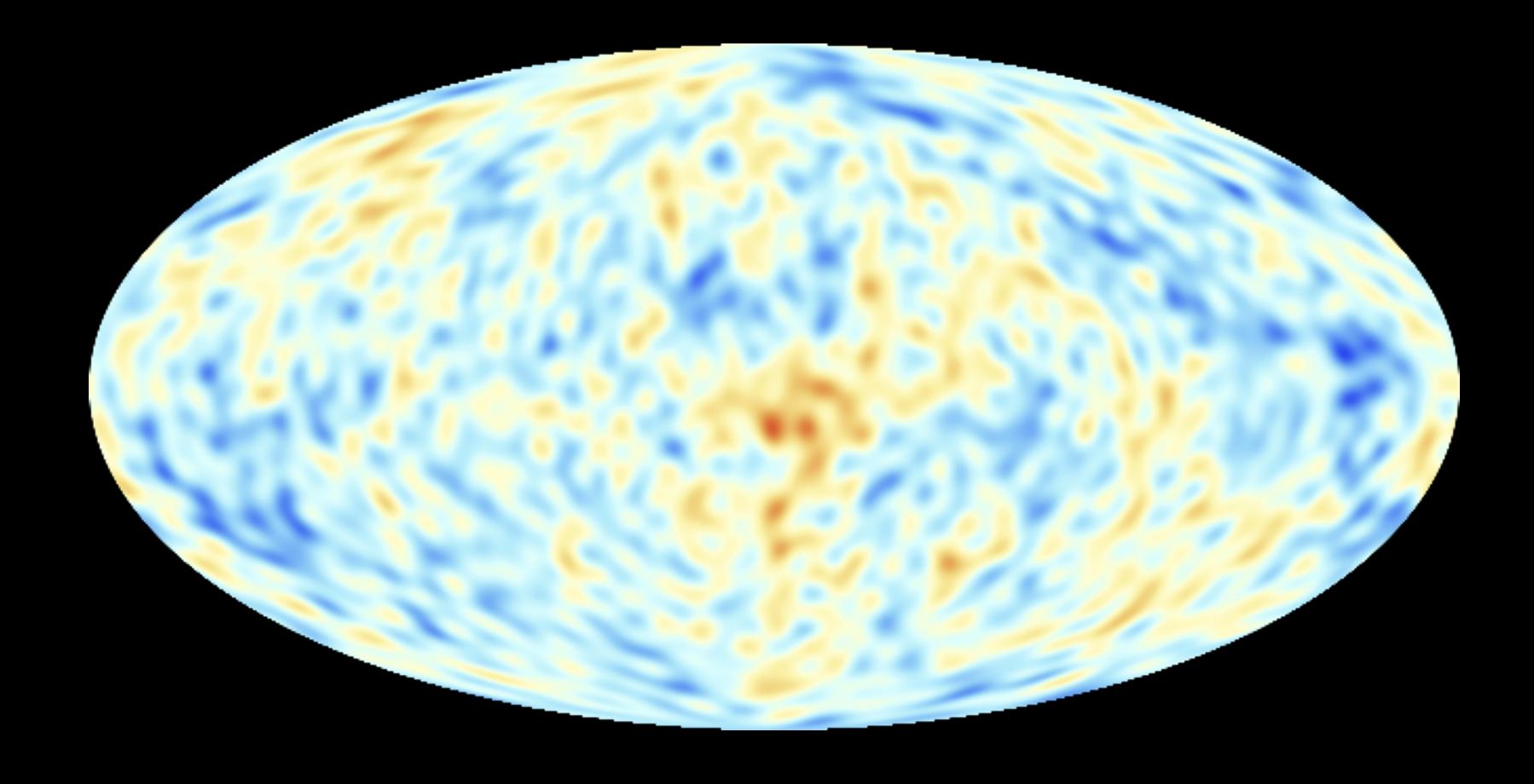
Harmonic oscillator with time-dependent frequency

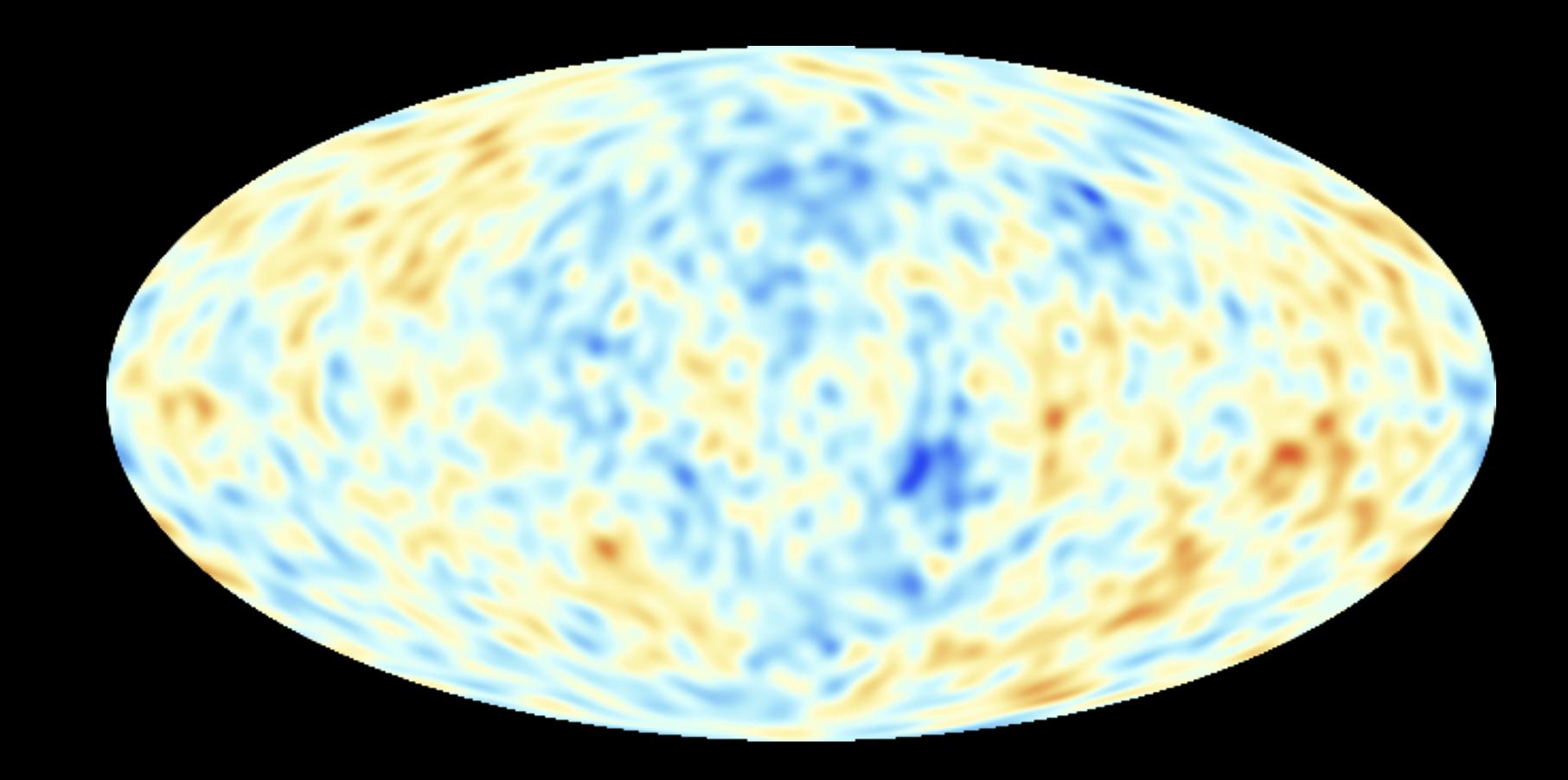
$$H(t) = \frac{1}{2}p^2 + \frac{1}{2}\left(k^2 - f(t)\right)q^2$$

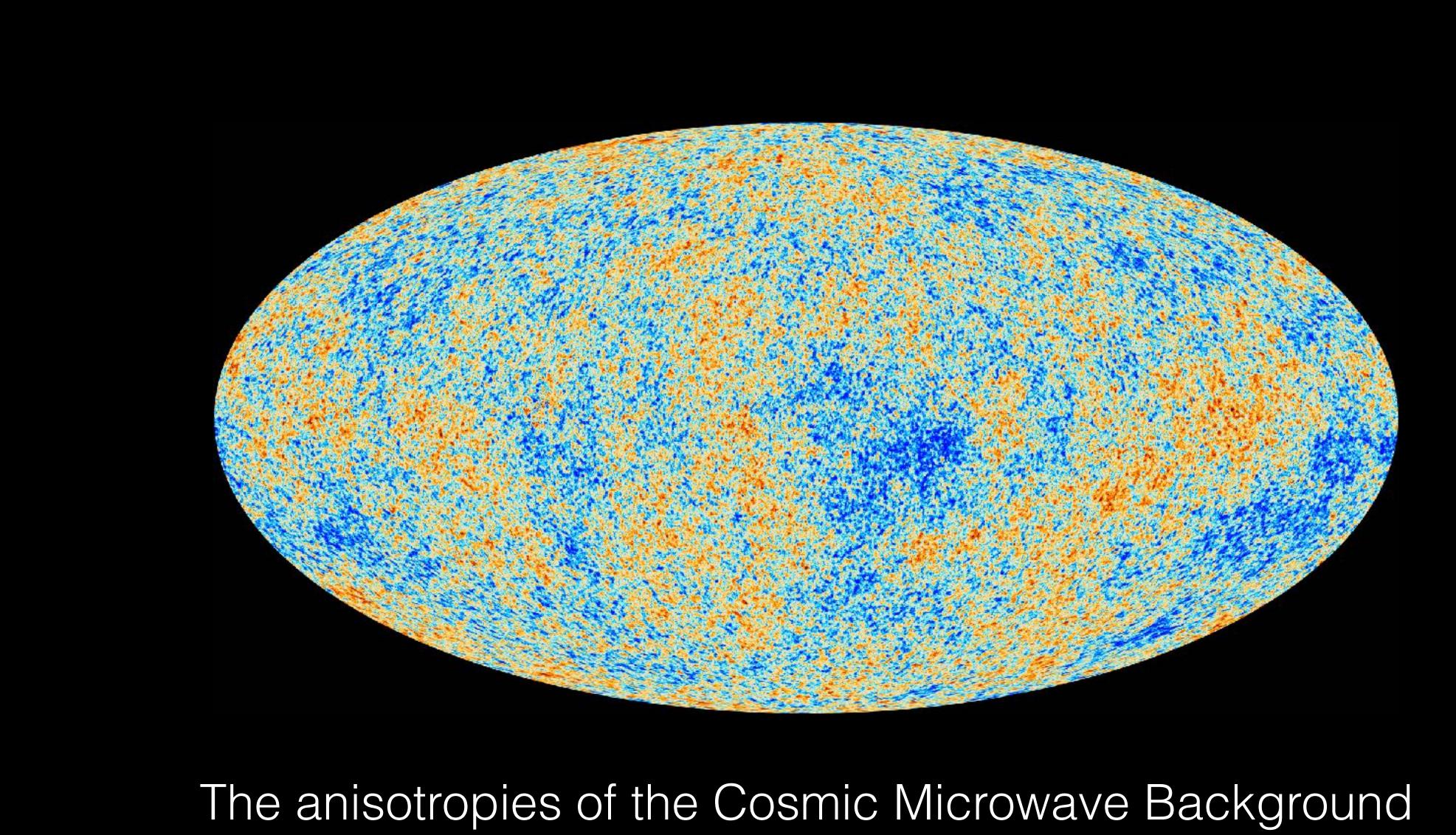




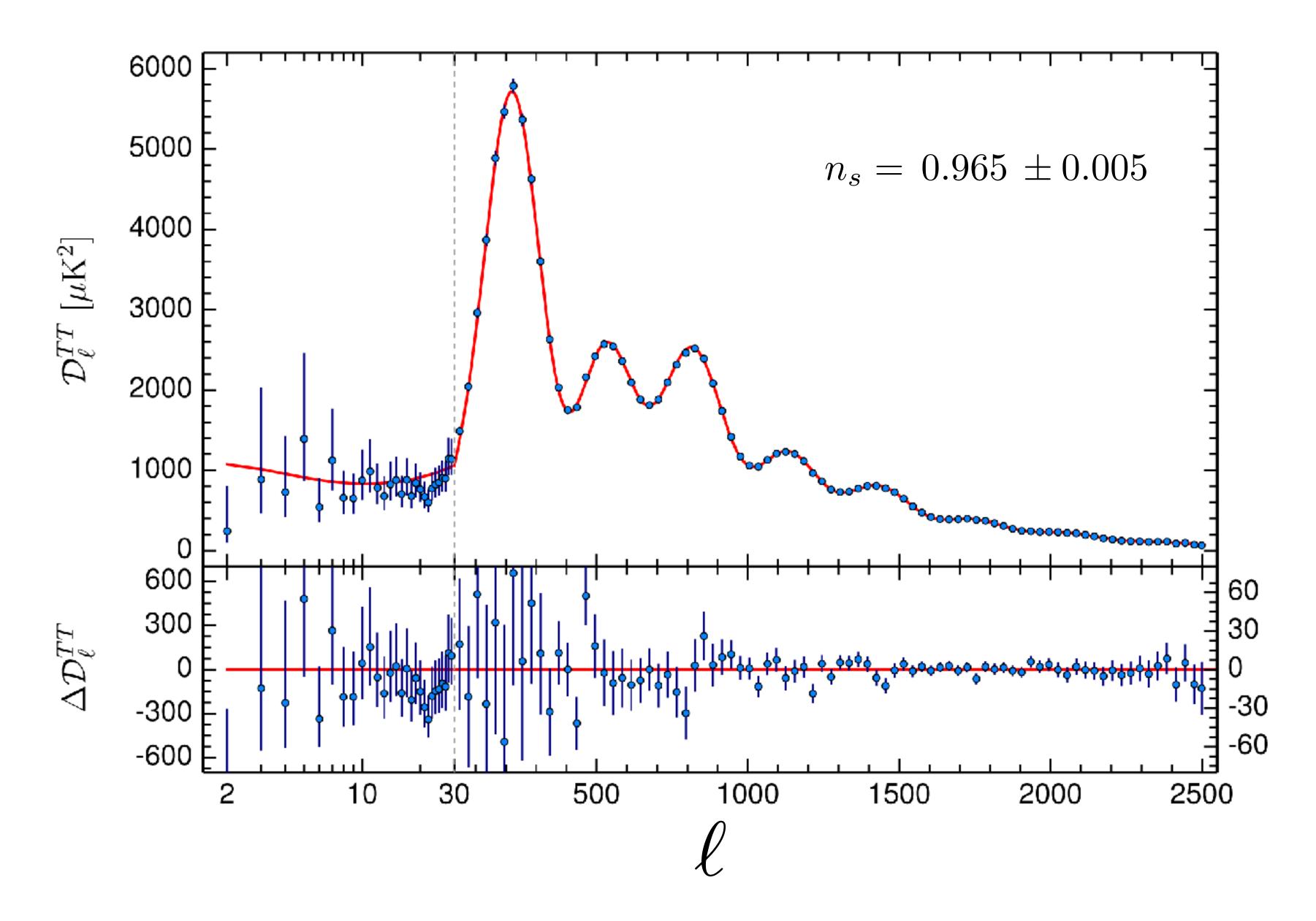




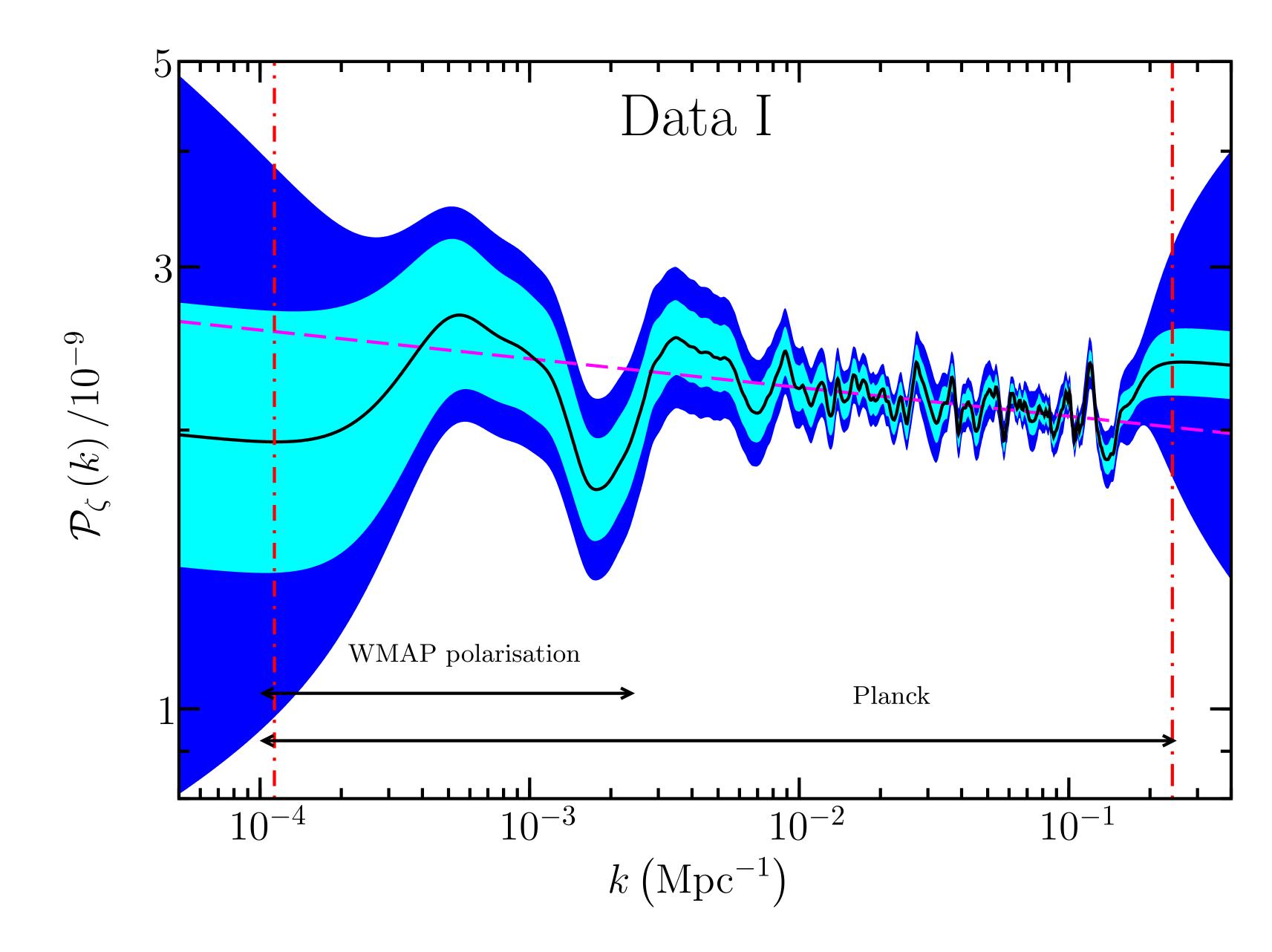




The anisotropies of the Cosmic Microwave Background as observed by Planck

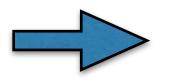


Planck Collaboration, arxiv.org/abs/1502.02114 "Planck 2015 results. XX. Constraints on inflation"



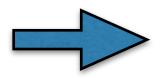
Reconstructed primordial power spectrum of curvature perturbations [Hunt & Sarkar, JCAP 2015]

A distinguishing feature of loop quantum gravity:



existence of states with no correlation at space-like separation

Scenario



uncorrelated initial state and its phenomenological imprints

Emergence of space-like correlations in loop quantum gravity

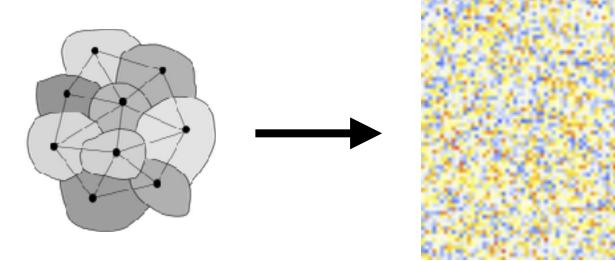
States with no space-like correlations: allowed in quantum gravity

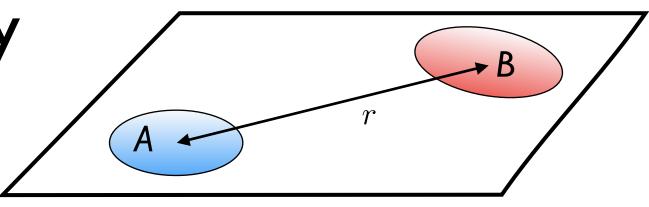
BKL conjecture (Belinsky-Khalatnikov-Lifshitz 1970) In classical General Relativity, the spatial coupling of degrees of freedom is suppressed in the approach to a space-like singularity

Quantum BKL conjecture (E.B.-Hackl-Yokomizo 2015)

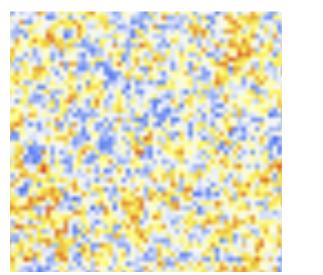
In quantum gravity, correlations between spatially separated degrees of freedom are suppressed in the approach to a Planck curvature phase

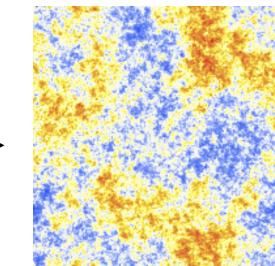
Scenario: the correlations present at the beginning of slow-roll inflation are produced in a pre-inflationary phase when the LQG-to-QFT transition takes place





 $\begin{cases} \hat{H}\Psi[g_{ij}(x),\varphi(x)] = 0\\ \lim_{a \to 0} \Psi[a,\phi,\delta g_{ij}(x),\delta\varphi(x)] = \prod_{\vec{x}} \psi(\phi,\delta g_{ij}(x),\delta\varphi(x)) \end{cases}$





Inflation and spinfoams

- Effective spinfoam action $S[e^{I}, \omega^{IJ}, r, \lambda^{IJ}] = \int \left((1 + 2\alpha r) B_{IJ} \wedge F^{IJ} - \right) dr$

where
$$B_{IJ} = \frac{1}{8\pi G} \left(\frac{1}{2} \epsilon_{IJKL} e^K \wedge e^L - \frac{1}{\gamma} e_I \wedge e_J \right)$$

r = 0-form, effective Ricci scalar at a coarse-graining scale

- It provides an embedding in spinfoams of the Starobinsky model (1979)

$$S[g_{\mu\nu}] = \frac{1}{16\pi G} \int d^4x \sqrt{-g} \left(R + \alpha R^2\right)$$

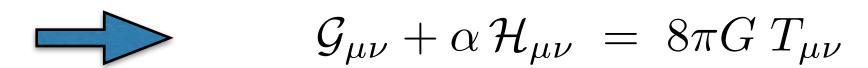
Friedman eq: $H^2 + 6\alpha \left(6H^2 \dot{H} - \dot{H}^2 + 2H\ddot{H} \right) = 0$

gravity-driven inflation

$$\frac{\alpha r^2}{1+\gamma^2} \frac{1}{4!} \epsilon_{IJKL} B^{IJ} \wedge B^{KL} + B_{IJ} \wedge \nabla \lambda^{IJ} \bigg)$$

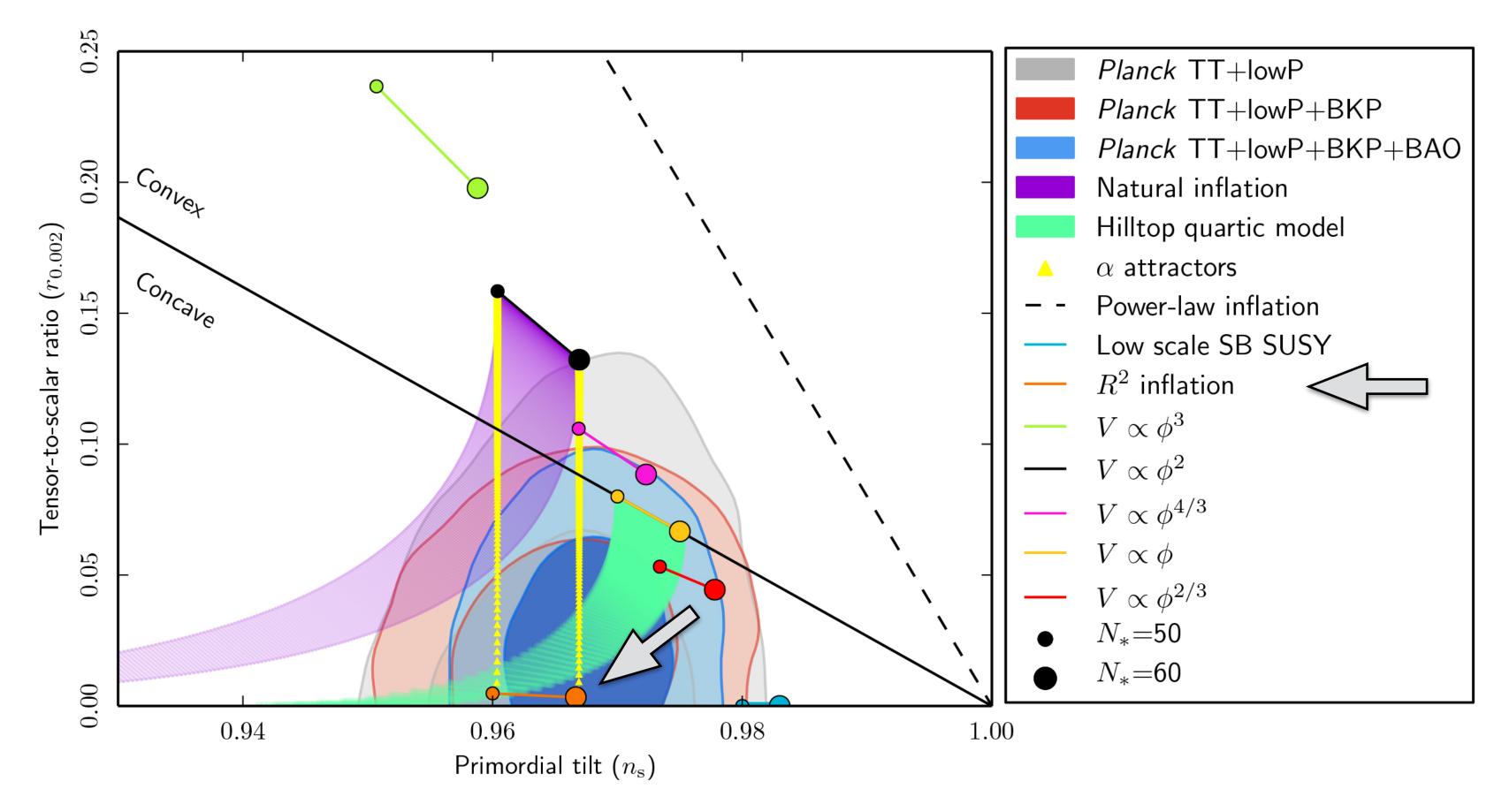
 $\gamma = Barbero-Immirzi parameter$

 $\alpha =$ coupling constant dimensions of Area



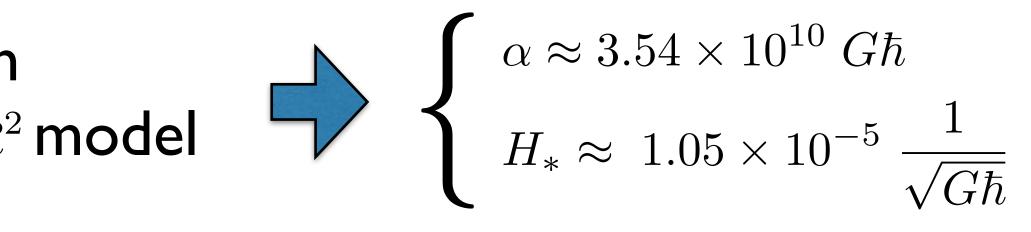
E.B.-Fernandez-Rincon 2017

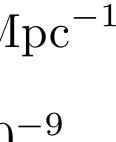
PLANCK 2015



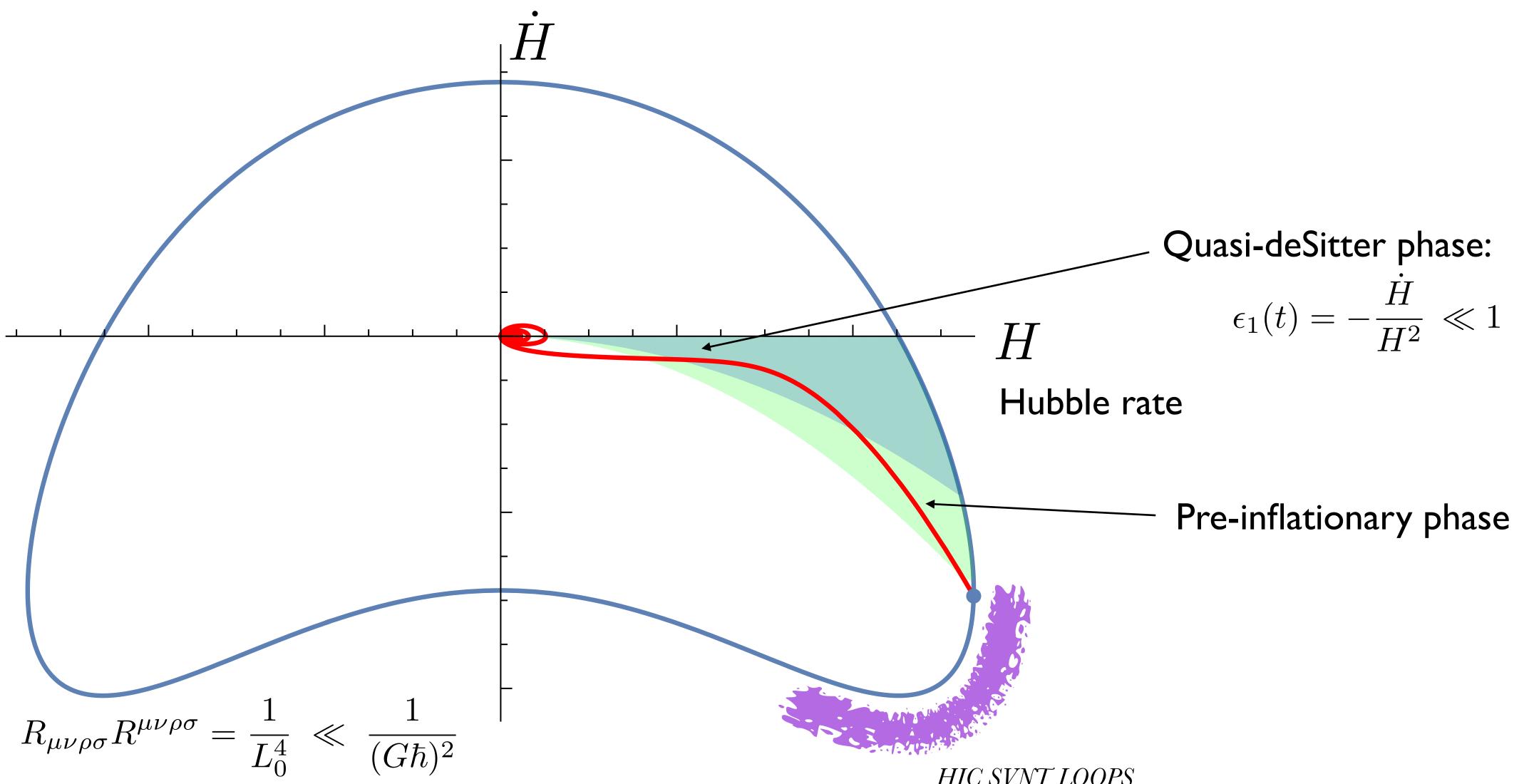
Primordial spectra from adiabatic vacuum in the quasi de-Sitter phase of the $R + \alpha R^2$ model

at the scale $k_* = 0.002 \text{ Mpc}^{-1}$ $A_s = (2.474 \pm 0.116) \times 10^{-9}$ $n_s = 0.9645 \pm 0.0062$ r < 0.11



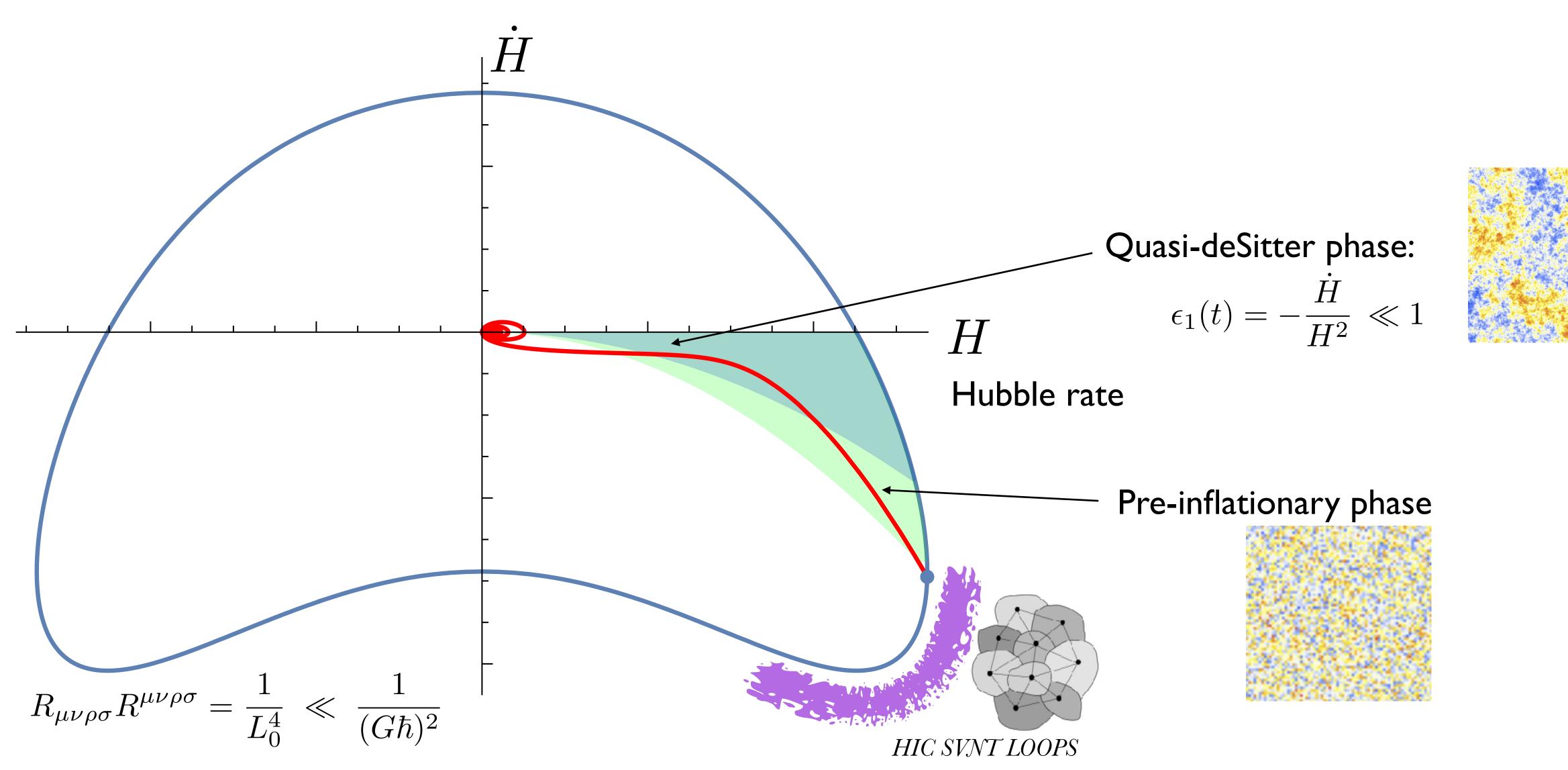


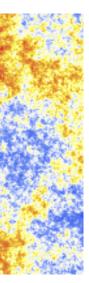
Background dynamics and pre-inflationary initial conditions



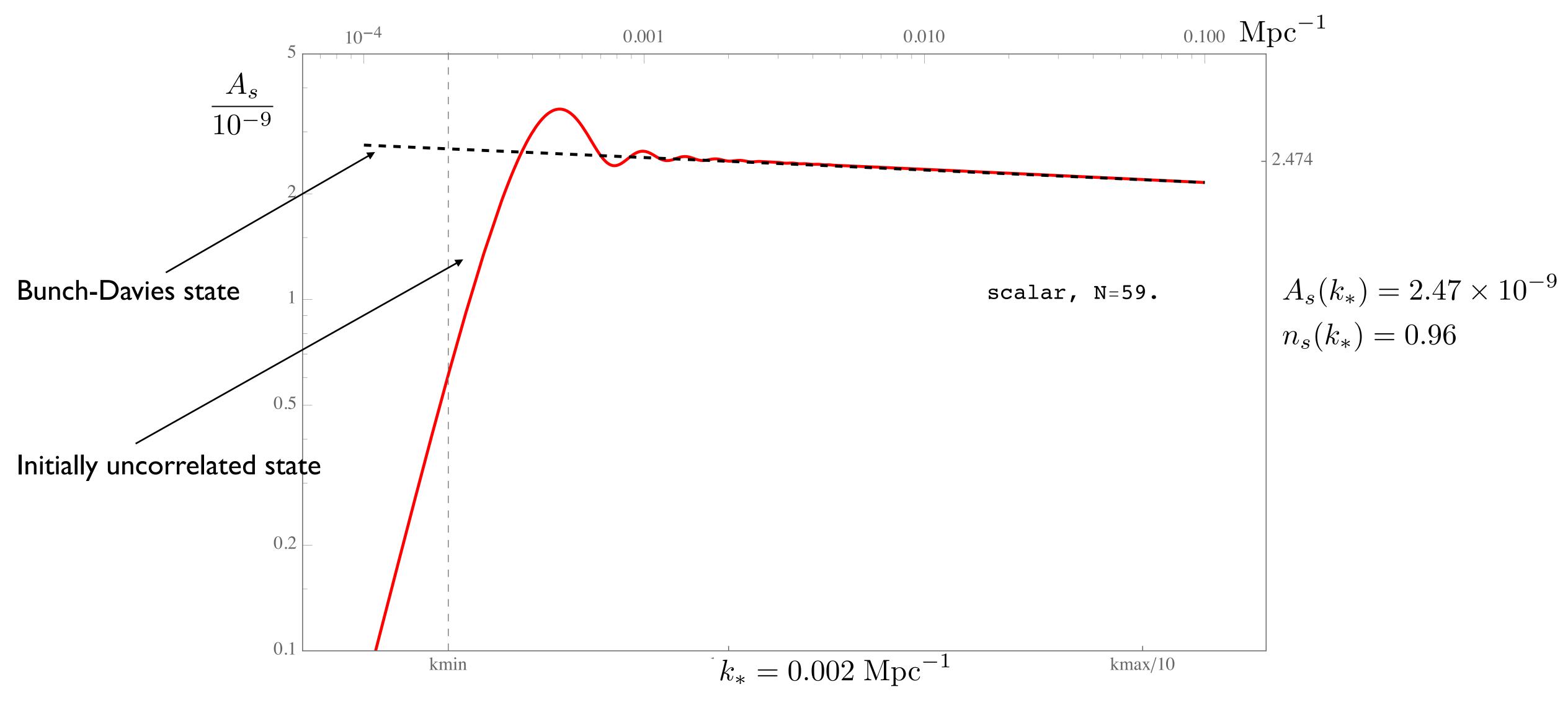
HIC SVNT LOOPS

Perturbations and pre-inflationary initial conditions



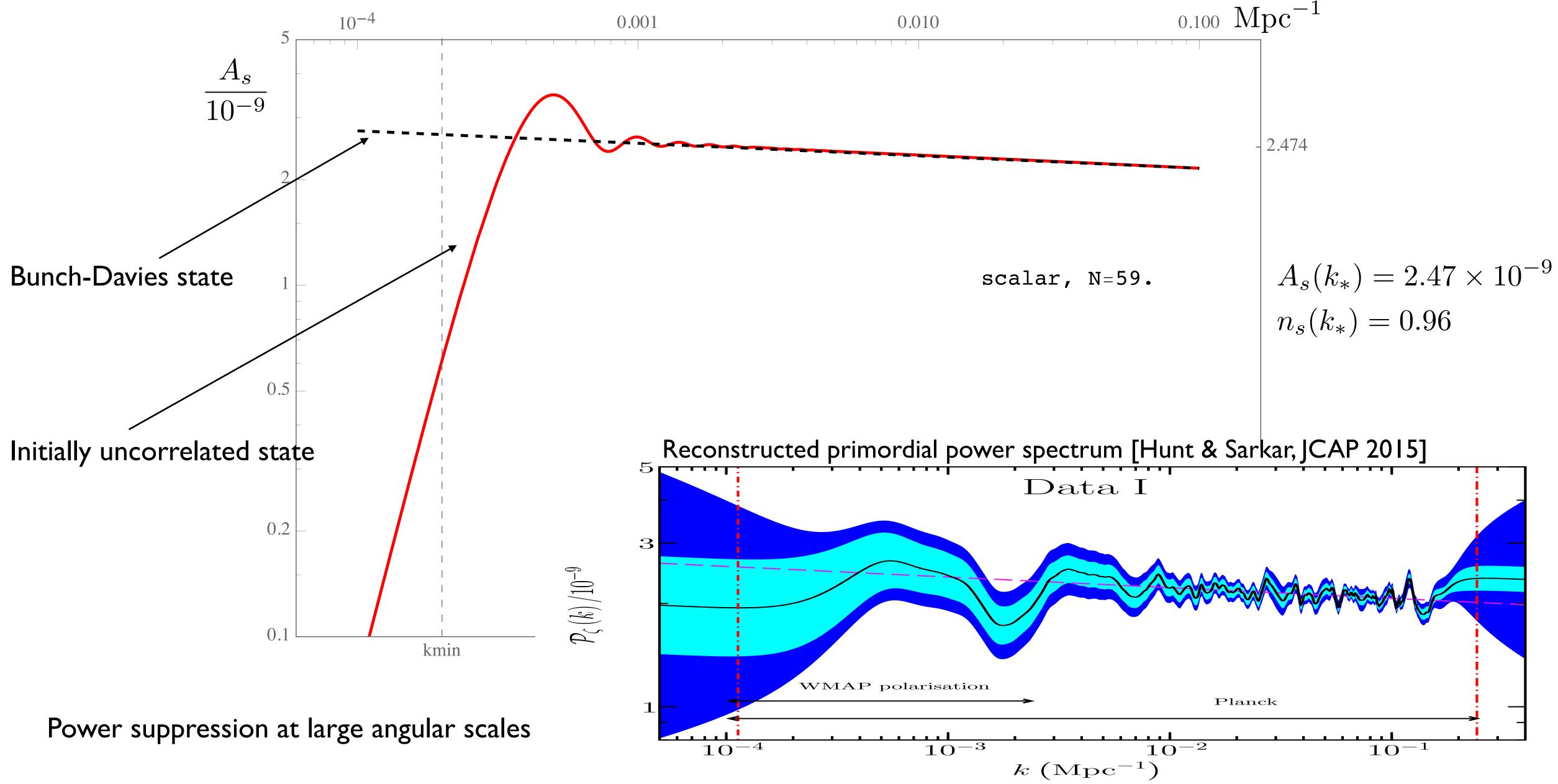


Scalar power spectrum with LQG-to-QFT initial conditions

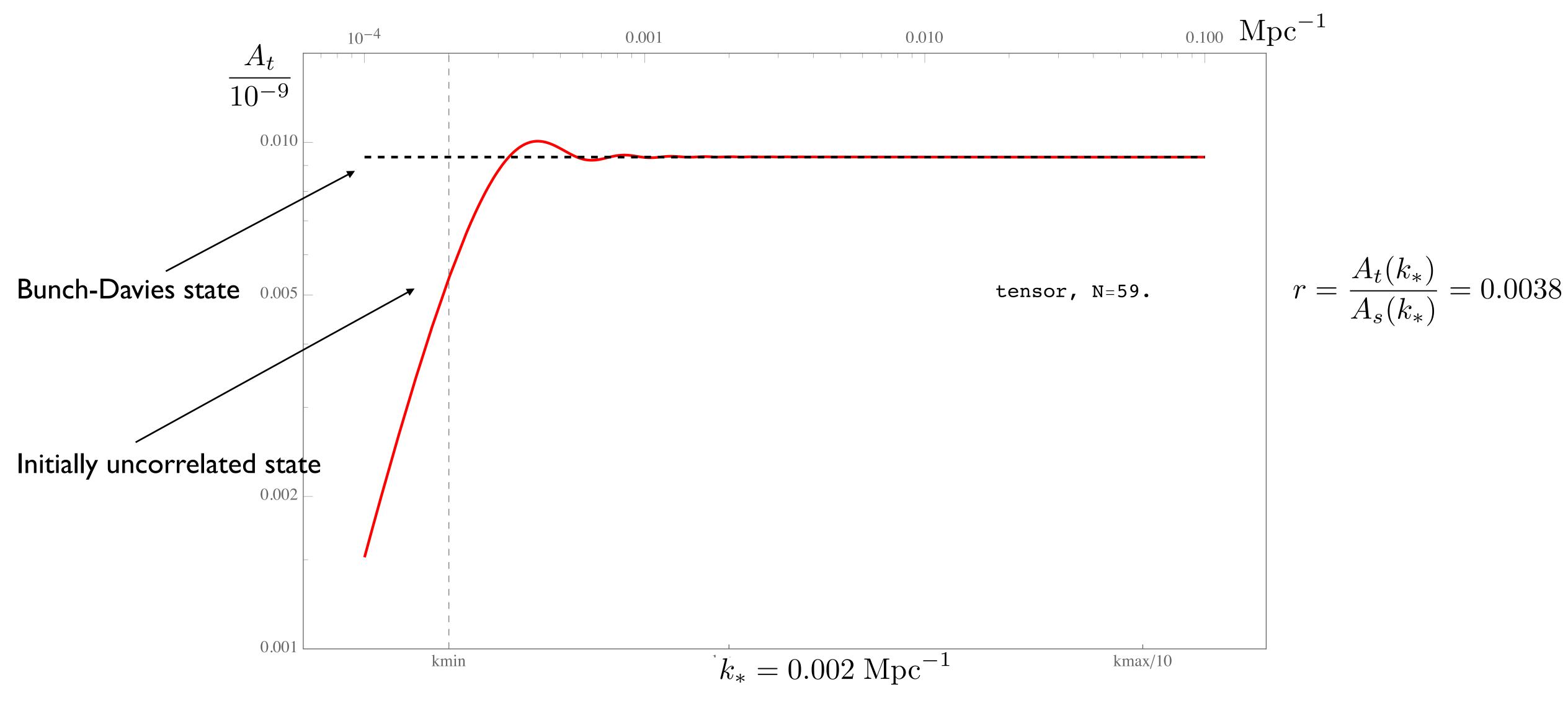


Power suppression at large angular scales

Scalar power spectrum with LQG-to-QFT initial conditions



Tensor power spectrum with LQG-to-QFT initial conditions

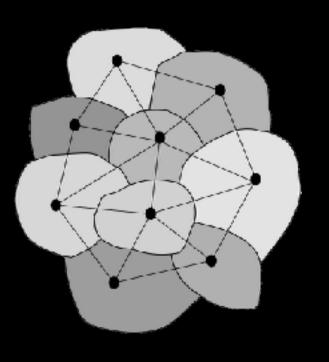


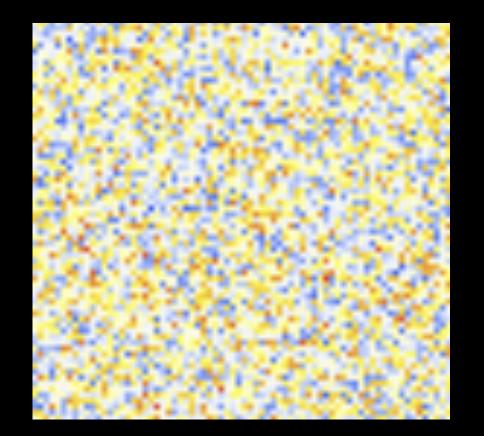
Power suppression at large angular scales

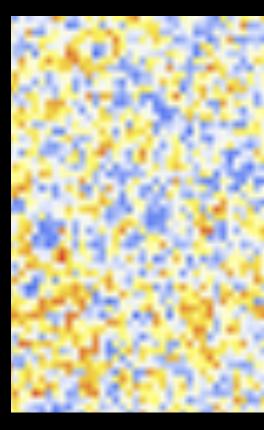
Scenario for the emergence of primordial entanglement in loop quantum gravity

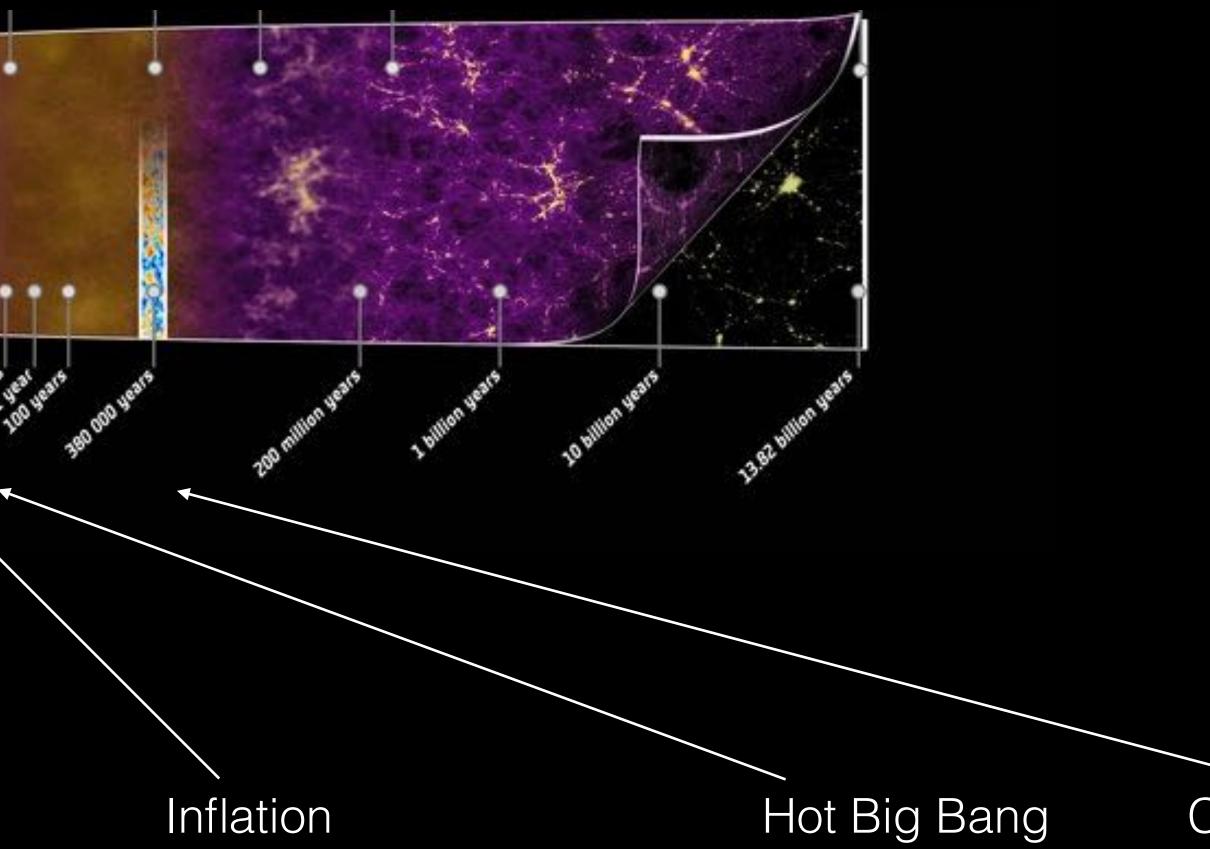
Planck Scale

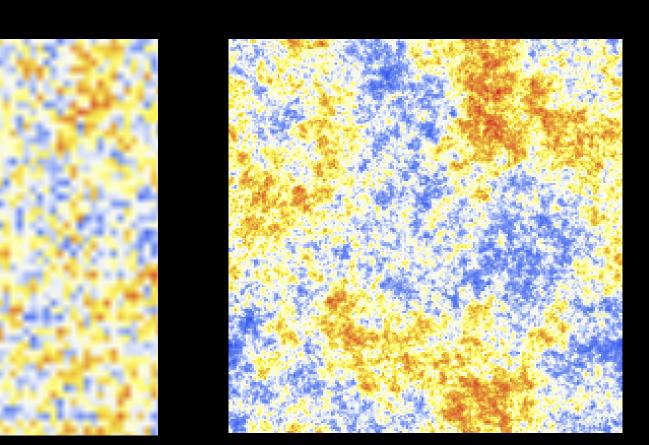
pre-infl. phase

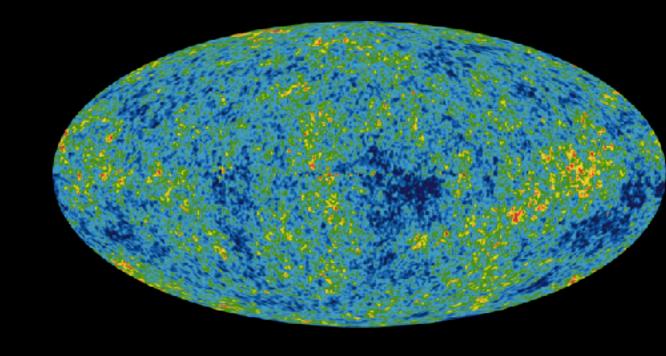












Inflation and spinfoams

- Effective spinfoam action $S[e^{I}, \omega^{IJ}, r, \lambda^{IJ}] = \int \left((1 + 2\alpha r) B_{IJ} \wedge F^{IJ} - \right) dr$

where
$$B_{IJ} = \frac{1}{8\pi G} \left(\frac{1}{2} \epsilon_{IJKL} e^K \wedge e^L - \frac{1}{\gamma} e_I \wedge e_J \right)$$

r = 0-form, effective Ricci scalar at a coarse-graining scale

- It provides an embedding in spinfoams of the Starobinsky model (1979)

$$S[g_{\mu\nu}] = \frac{1}{16\pi G} \int d^4x \sqrt{-g} \left(R + \alpha R^2\right)$$

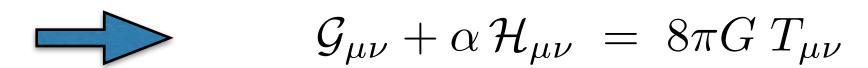
Friedman eq: $H^2 + 6\alpha \left(6H^2 \dot{H} - \dot{H}^2 + 2H\ddot{H} \right) = 0$

gravity-driven inflation

$$\frac{\alpha r^2}{1+\gamma^2} \frac{1}{4!} \epsilon_{IJKL} B^{IJ} \wedge B^{KL} + B_{IJ} \wedge \nabla \lambda^{IJ} \bigg)$$

 $\gamma = Barbero-Immirzi parameter$

 $\alpha =$ coupling constant dimensions of Area



E.B.-Fernandez-Rincon 2017

Primordial spectra from adiabatic vacuum in the quasi de-Sitter phase $36 \epsilon_1 \alpha H^2 = 1$

- Scalar perturbations

 $N_* \approx 70$

$$A_{s} \equiv \frac{k_{*}^{3} P_{s}(k_{*}, t_{*})}{2\pi^{2}} \approx \frac{Gh H_{*}^{2}}{2\pi \epsilon_{1*}}$$

$$n_{s} \equiv 1 + k \frac{d}{dk} \log \left(k^{3} P_{s}(k, t_{*})\right)\Big|_{k=k_{*}} \approx 1 - 2\epsilon_{1*} - \epsilon_{2*}$$

$$\approx 1 - 4\epsilon_{1*}$$
Tensor perturbations
$$A_{t} \equiv \frac{k_{*}^{3} P_{t}(k_{*}, t_{*})}{2\pi^{2}} \approx \frac{Gh H_{*}^{2}}{2\pi} 48 \epsilon_{1*}$$

$$n_{t} \equiv k \frac{d}{dk} \log \left(k^{3} P_{t}(k, t_{*})\right)\Big|_{k=k_{*}} \approx -2\epsilon_{1*} + \epsilon_{2*}$$

$$r \equiv \frac{A_{t}}{A_{s}} \approx 48\epsilon_{1*}^{2}$$

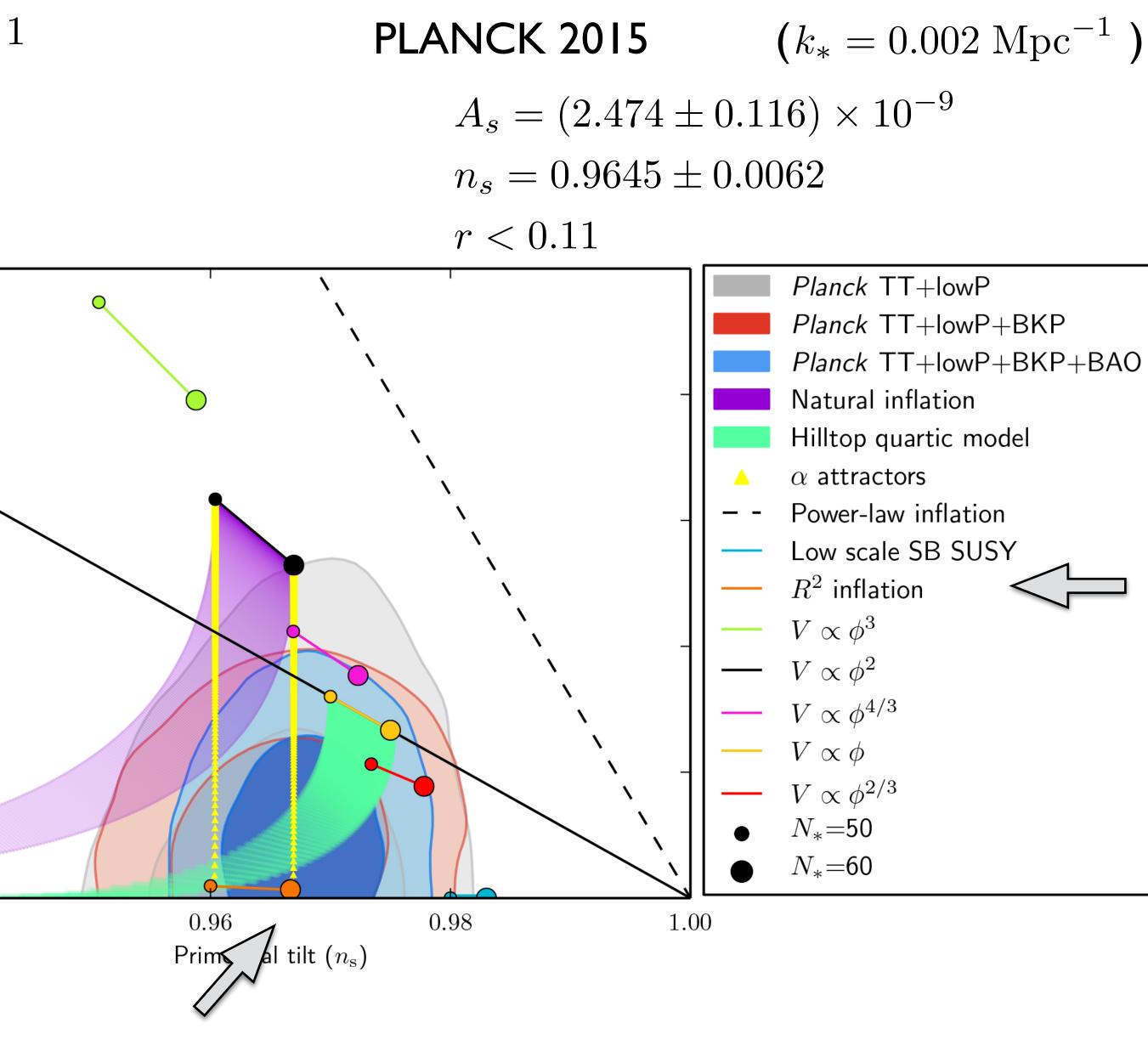
$$N_{*} = \int_{t_{*}}^{t_{end}} H(t) dt = 18 H_{*}^{2} \alpha - \frac{1}{2}$$

$$\alpha \approx 3.54 \times 10^{10} \ G\hbar$$

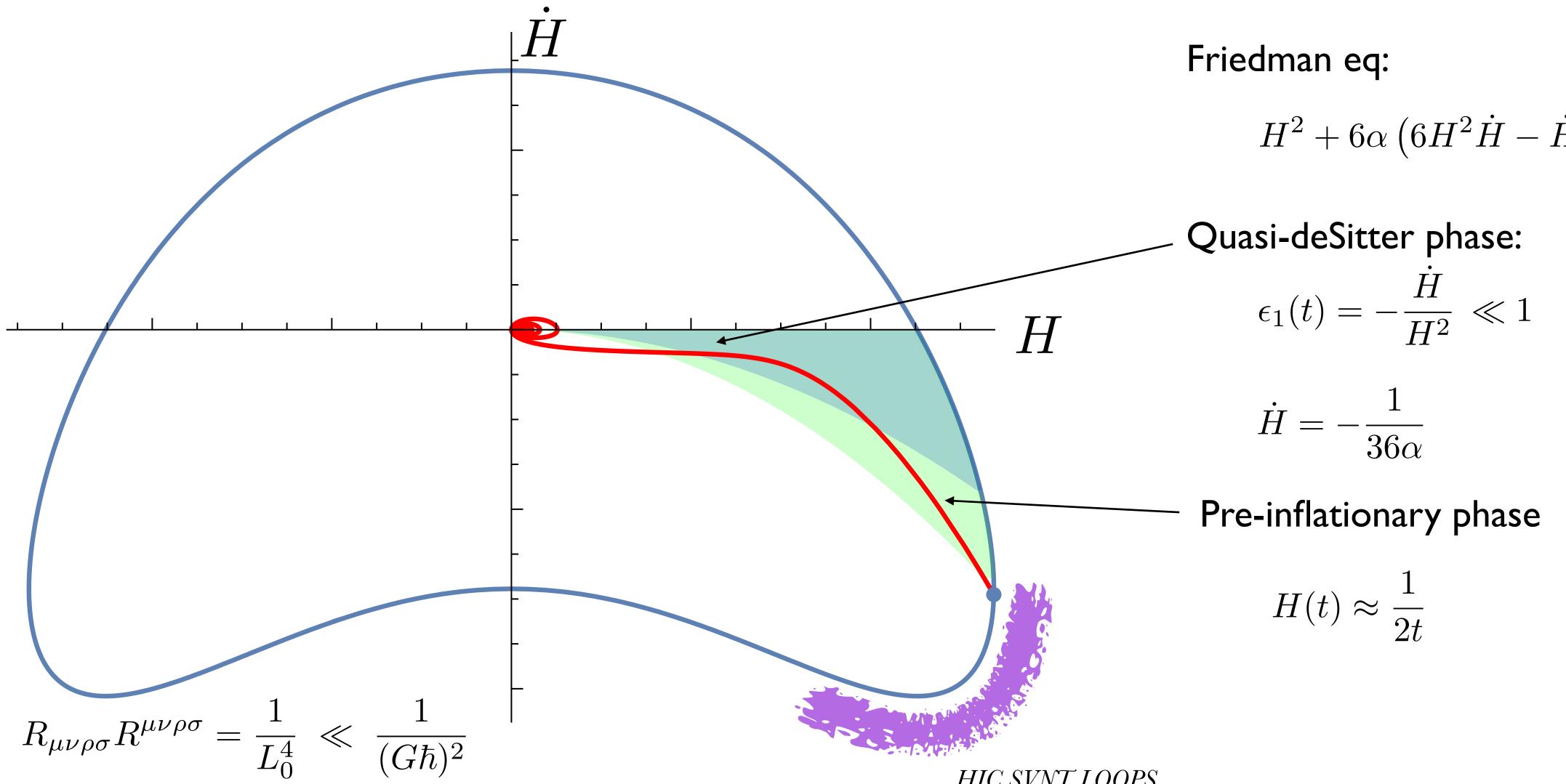
$$H_{*} \approx 1.05 \times 10^{-5} \ \frac{1}{\sqrt{G\hbar}}$$

$$r \approx 2.4 \times 10^{-3}$$

 $A_s = (2.474 \pm 0.116) \times 10^{-9}$ $n_s = 0.9645 \pm 0.0062$

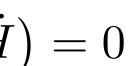


Background dynamics and pre-inflationary initial conditions

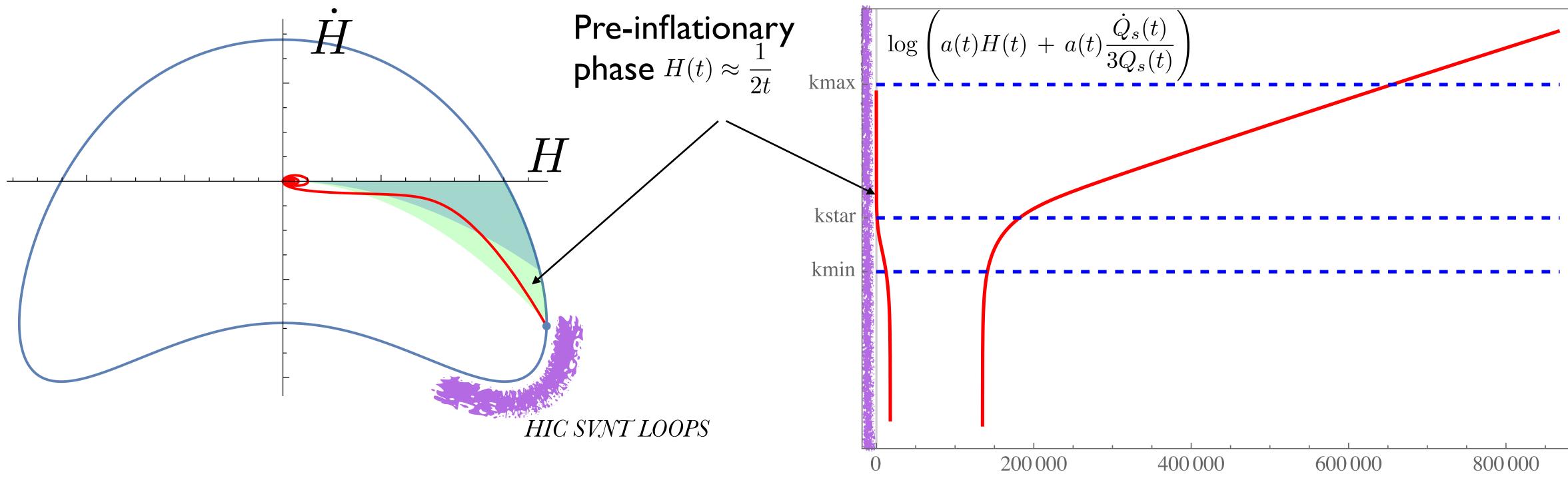


 $H^{2} + 6\alpha \left(6H^{2}\dot{H} - \dot{H}^{2} + 2H\ddot{H} \right) = 0$

HIC SVNT LOOPS



Pre-inflationary initial conditions: scalar and tensor modes



In the pre-inflationary phase both scalar and tensor perturbations satisfy $\ddot{u}(k,t) + \frac{1}{t} \dot{u}(k,t) + \frac{k^2}{H_c t} u(k,t) = 0$ adiabatic vacuum $u_0(k,t) = \sqrt{\frac{\pi}{2}} \left(J_0(2k\sqrt{t/H_c}) - i Y_0(2k\sqrt{t/H_c}) \right)$

vanishing correlations in the limit t
ightarrow 0, Bunch-Davies like correlations produced before the quasi-de Sitter phase

Plan:

- I) Entanglement in simple systems
- II) Building space from entanglement
- - b) Gluing quantum polyhedra with entanglement
 - c) Entanglement and Lorentz invariance
- III) Entanglement in the sky

<u>Defining entanglement entropy in loop quantum gravity</u>

Entanglement entropy

characterizes the statistical fluctuations in a sub-algebra of observables

Two extreme choices of subalgebra:

- a) Determine the algebra of Dirac observables of LQG, then consider a subalgebra
- b) Enlarge the Hilbert space of LQG to a bosonic Fock space, then consider a bosonic subalgebra

Other choices:

- In lattice gauge theory, trivial center sub-algebra
- Adding d.o.f. (on the boundary), electric center subalgebra
- Intertwiner subalgebra (at fixed spin)

- . . .

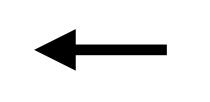
 $S_R(|\psi\rangle) = -\text{Tr}(\rho \log \rho)$

[Ohya-Petz book 1993]

 $\mathcal{A}_R \subset \mathcal{A}$

difficult to use

[EB-Hackl-Yokomizo 2015]



useful for building space

[Casini-Huerta-Rosalba 2013]

[Donnelly 2012] [Donnelly-Freidel 2016] [Anza-Chirco 2016][Han et al 2017] [Chirco-Mele-Oriti-Vitale et al 2017] [Delcalp-Dittrich-Riello 2017]

[Livine-Feller 2017]

Bosonic formulation of LQG on a graph [also known as the *twistorial* formulation]

- Two oscillators per end-point of a link

spin from oscillators $|j,m\rangle = \frac{(a^{0\dagger})^{j+m}}{\sqrt{(j+m)!}} \frac{(a^{1\dagger})^{j-m}}{\sqrt{(j-m)!}}|0\rangle$

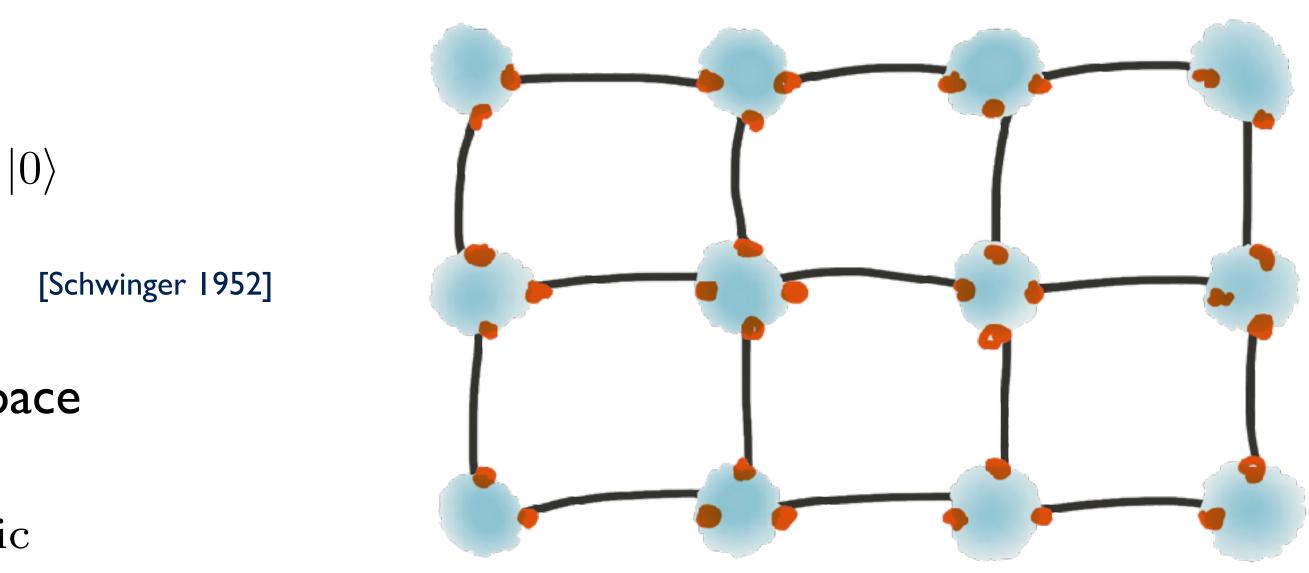
- Hilbert space of LQG and the bosonic Hilbert space

$$L^2(SU(2)^L/SU(2)^N) \subset \mathcal{H}_{\mathrm{bosoni}}$$

$$|\psi\rangle = \sum_{n_i=1}^{\infty} c_{n_1\cdots n_{4L}} |n_1,\ldots,n_{4L}|$$

- The bosonic Hilbert space factorizes over nodes: easy to define and compute the entanglement entropy

- Geometric operators in a region R of the graph generate a subalgebra



$$_{_{\prime}4L}\rangle$$

[Girelli-Livine 2005] [Freidel-Speziale 2010] [Livine-Tambornino 2011] [Wieland 2011]

[EB-Guglielmon-Hackl-Yokomizo 2016]

$$\mathcal{A}_R^{\mathrm{LQG}} \subset \mathcal{A}_R^{\mathrm{bosonic}}$$

Entanglement entropy of a bosonic subalgebra A

- Spin-network state $|\Gamma, j_l, i_n\rangle$

factorized over nodes

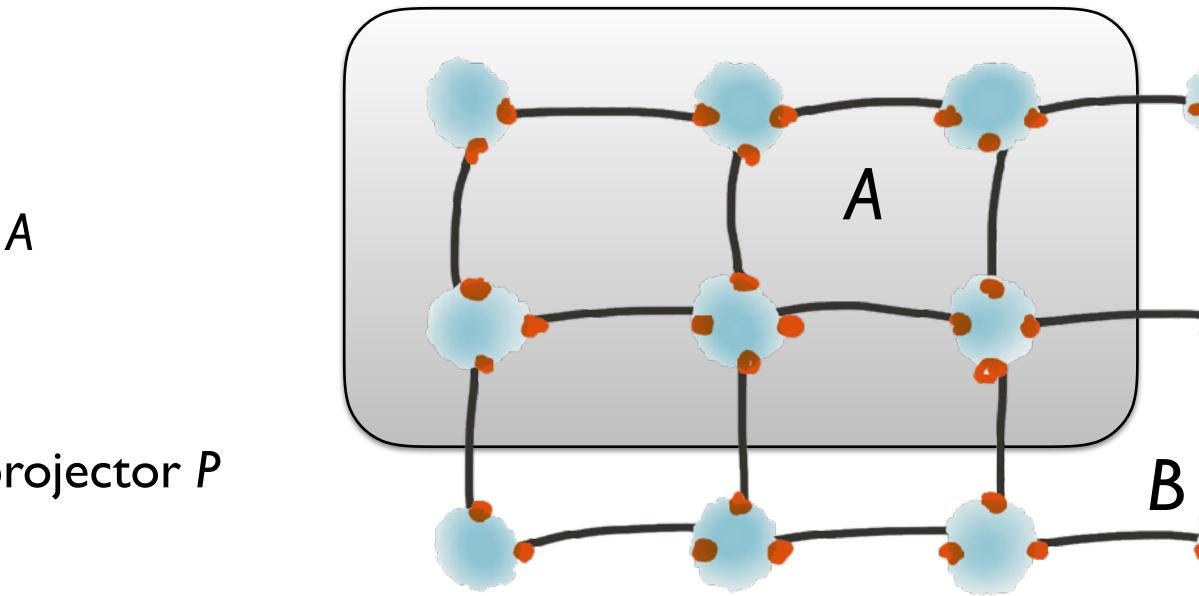
no correlations, zero entanglement entropy in A

- Coherent states
$$P|z
angle=P\;e^{\,z_A^i\,a_i^{A\,\dagger}}|0
angle$$

not factorized over nodes only because of the projector P exponential fall off of correlations area law from Planckian correlations only

- Squeezed states $P|\gamma\rangle = P \ e^{\gamma^{ij}_{AB} a^{A\dagger}_i a^{B\dagger}_j}|0\rangle$

long-range correlations from γ_{AB}^{ij} efficient parametrization of a corner of the Hilbert space characterized by correlations zero-law, area-law, volume-law entanglement entropy depending on γ^{ij}_{AB}



not factorized over nodes because of the projector P and because of off-diag. terms in γ^{ij}_{AB}

Long-range correlations and the bosonic mutual information

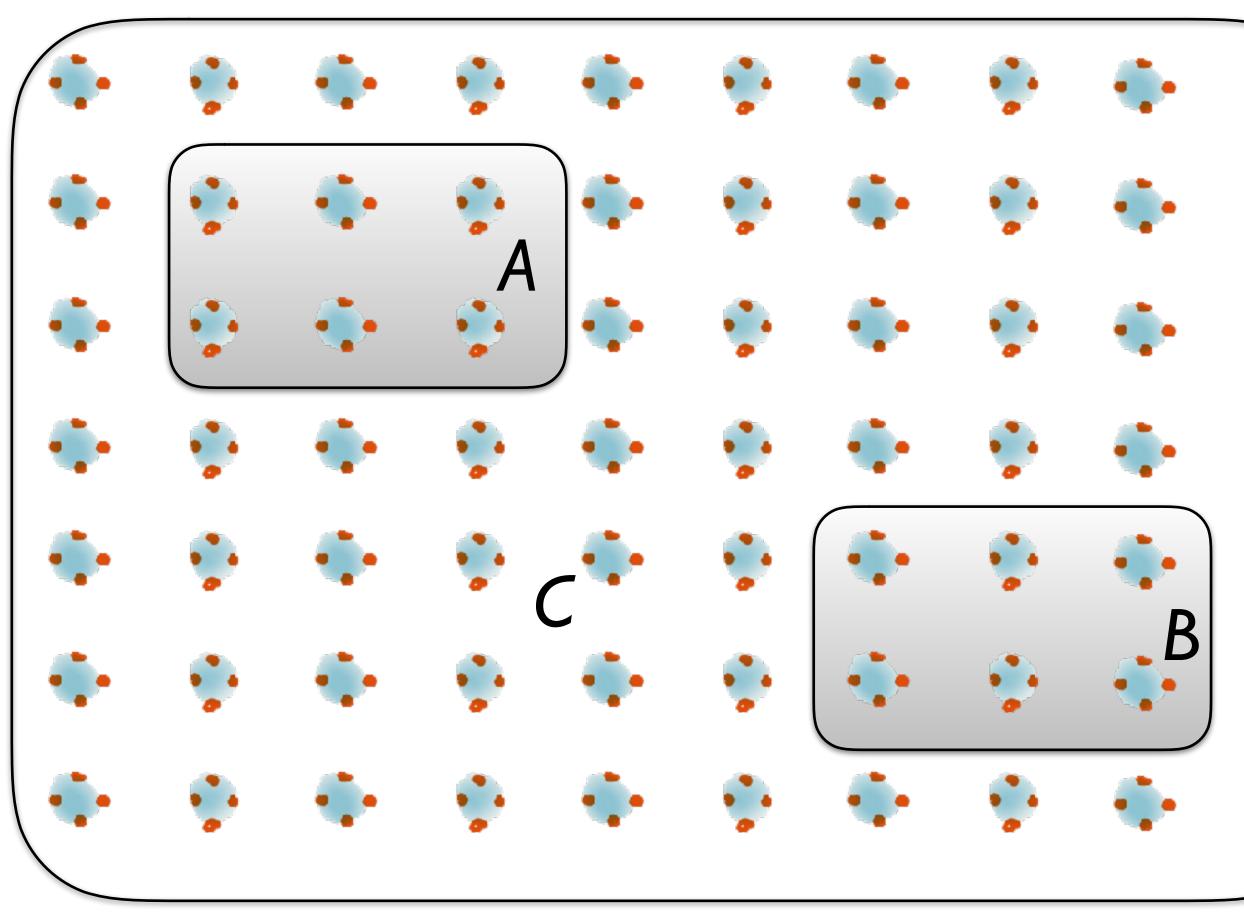
- Macroscopic observables in region A and B
- Correlations bounded by relative entropy of A, B

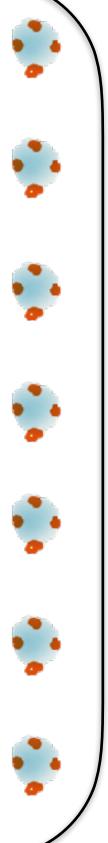
$$\frac{\left(\langle \mathcal{O}_A \, \mathcal{O}_B \rangle - \langle \mathcal{O}_A \rangle \langle \mathcal{O}_B \rangle\right)^2}{2 \, \|\mathcal{O}_A\|^2 \, \|\mathcal{O}_B\|^2} \le I(A, B)$$

where

$$I(A,B) \equiv S(\rho_{AB}|\rho_A \otimes \rho_B) = S_A + S_B - S_{AB}$$

The bosonic formulation is useful because it allows us to define and compute the mutual information I(A, B)This quantity bounds from above the correlations of all LQG-geometric observables in A and B





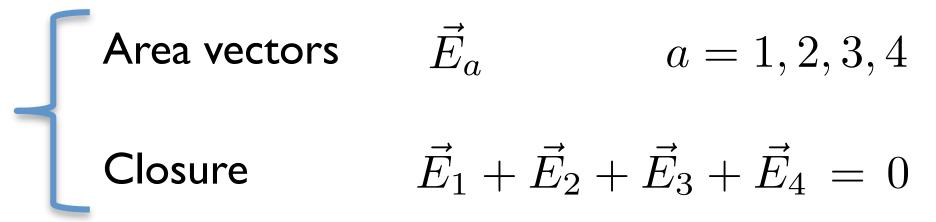
Plan:

- I) Entanglement in simple systems
- II) Building space from entanglement
 - a) Entanglement, mutual information and bosonic correlators

- c) Entanglement and Lorentz invariance
- III) Entanglement in the sky

b) Gluing quantum polyhedra with entanglement

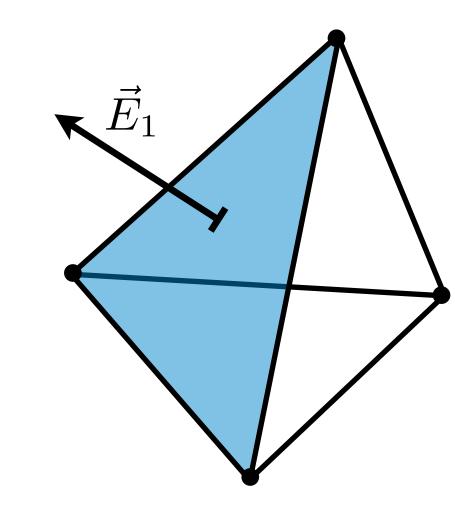
Classical geometry of a <u>tetrahedron</u> in \mathbb{R}^3



- area of a face
$$A_a = |\vec{E}_a|$$

- angle between two faces $\vec{E}_a \cdot \vec{E}_b = A_a A_b \cos \theta_{ab}$

- area vectors



$$\sqrt{|\vec{E_1} \cdot (\vec{E_2} \times \vec{E_3})|}$$

The phase space of a tetrahedron

$$\vec{E}_a = A_a \, \vec{n}_a \qquad \qquad a = 1, 2, 3, 4$$

Function $f: S^2 \times S^2 \times S^2 \times S^2 \to \mathbb{R}$

Poisson brackets

$$\left\{f(\vec{E}_a), g(\vec{E}_a)\right\} = \sum_{a=1}^{4} \vec{E}_a \cdot \left(\frac{\partial f}{\partial \vec{E}_a}\right)$$

Fuctions invariant under rotations

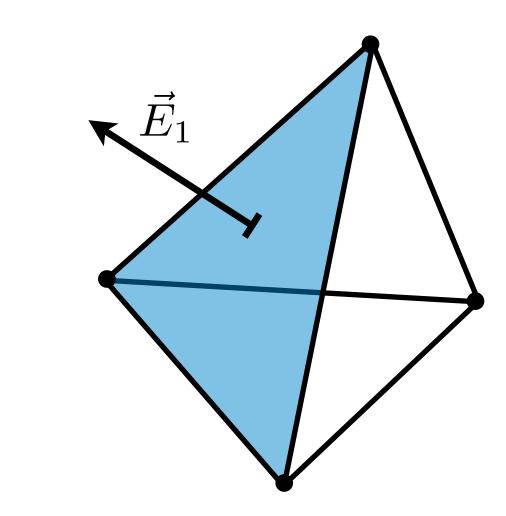
 $\left\{ \begin{array}{ll} q & = \text{ angle between } \vec{E_1} \times \vec{E_2} & \text{ and } \vec{E_3} \times \vec{E_4} \\ \\ p & = |\vec{E_1} + \vec{E_2}| \end{array} \right.$

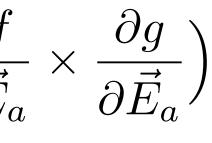
Canonical variables $\{q, p\} = 1$

Volume as a function of q and p

$$V = \frac{\sqrt{2}}{3}\sqrt{|\vec{E}_1 \cdot (\vec{E}_2 \times \vec{E}_3)|} = \frac{1}{3\sqrt{2}}\sqrt{p(p^2 - 4A^2)|\sin q|}$$

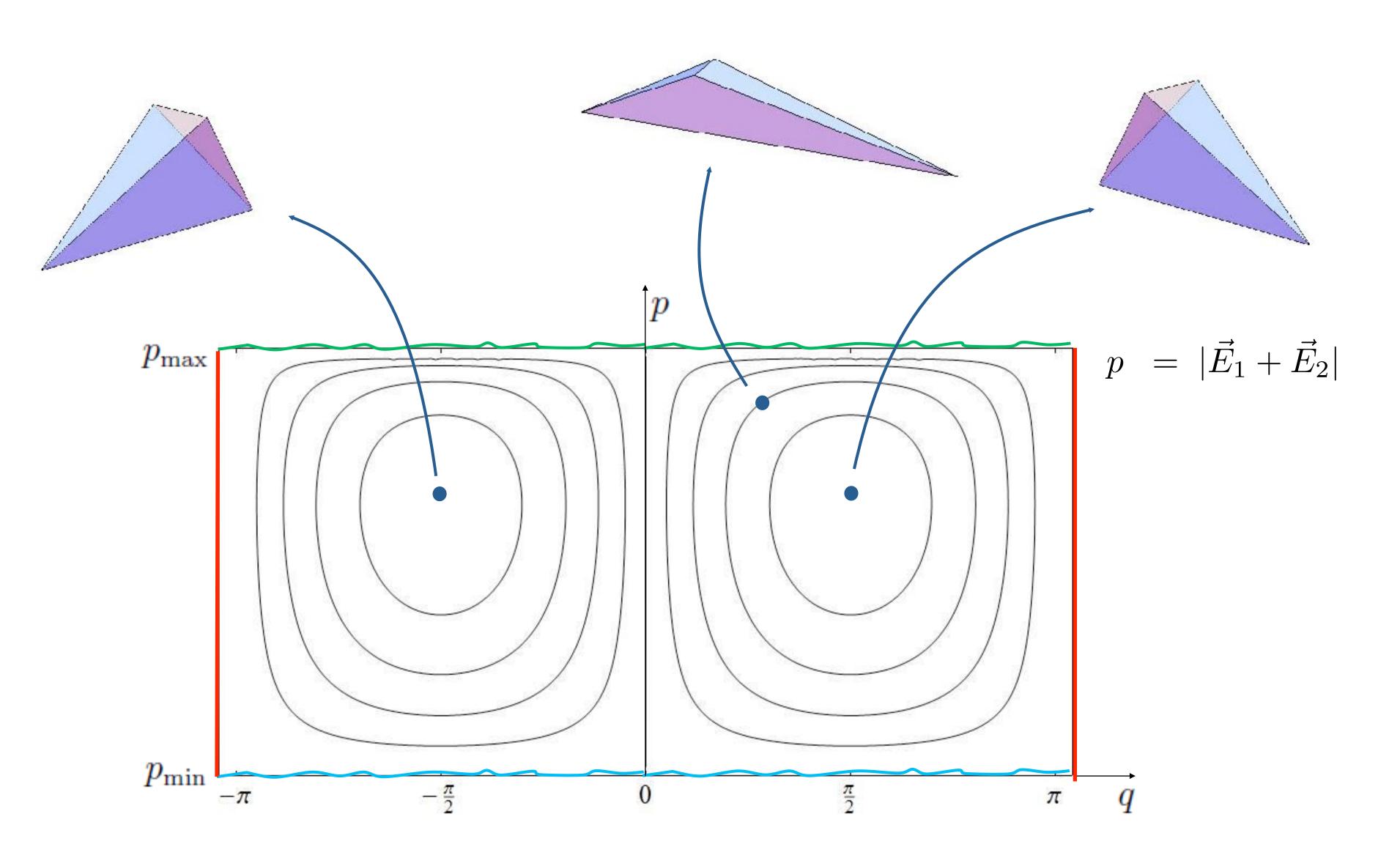
(face-areas A_a fixed)





(equal areas)

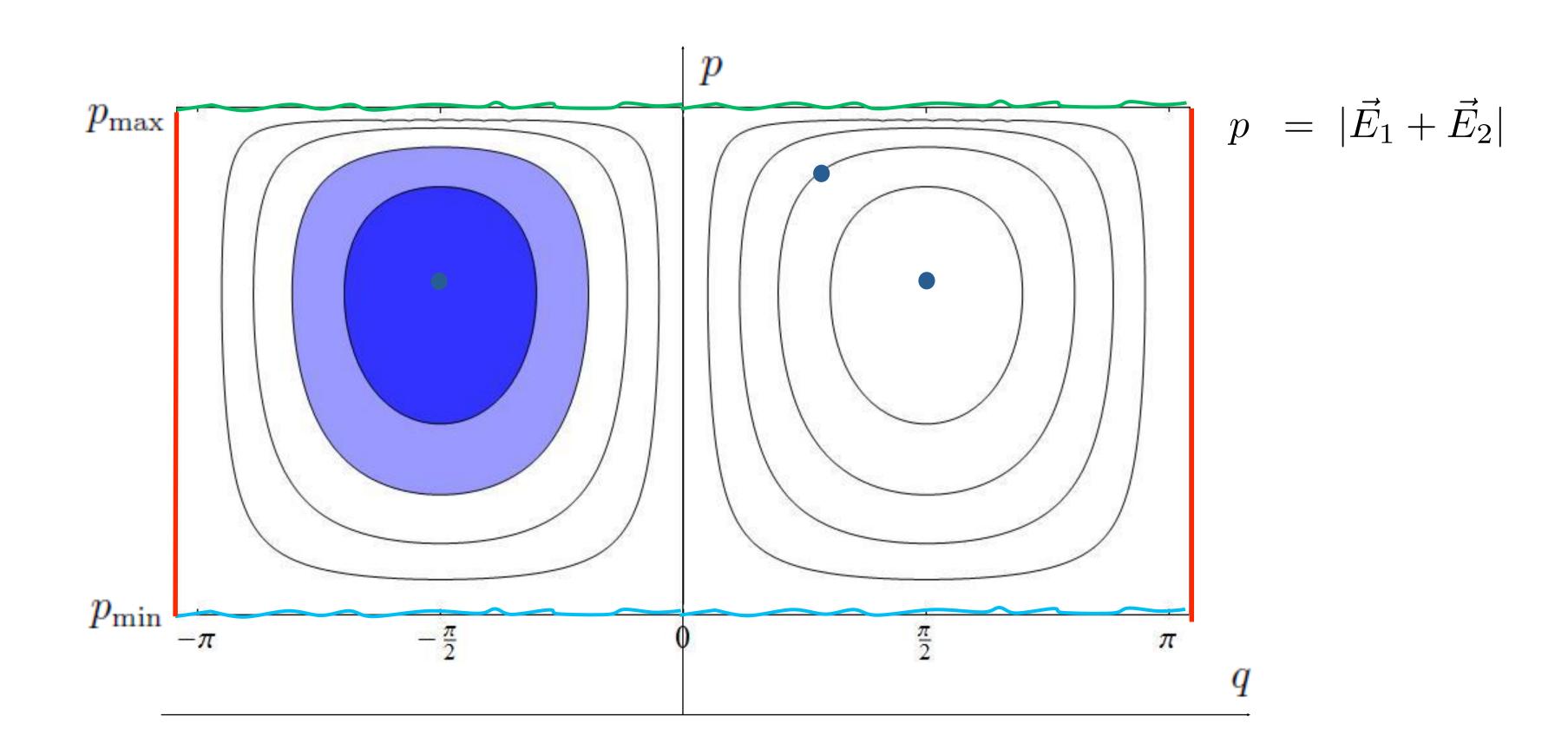
The phase space of a tetrahedron



(face-areas A_a fixed)

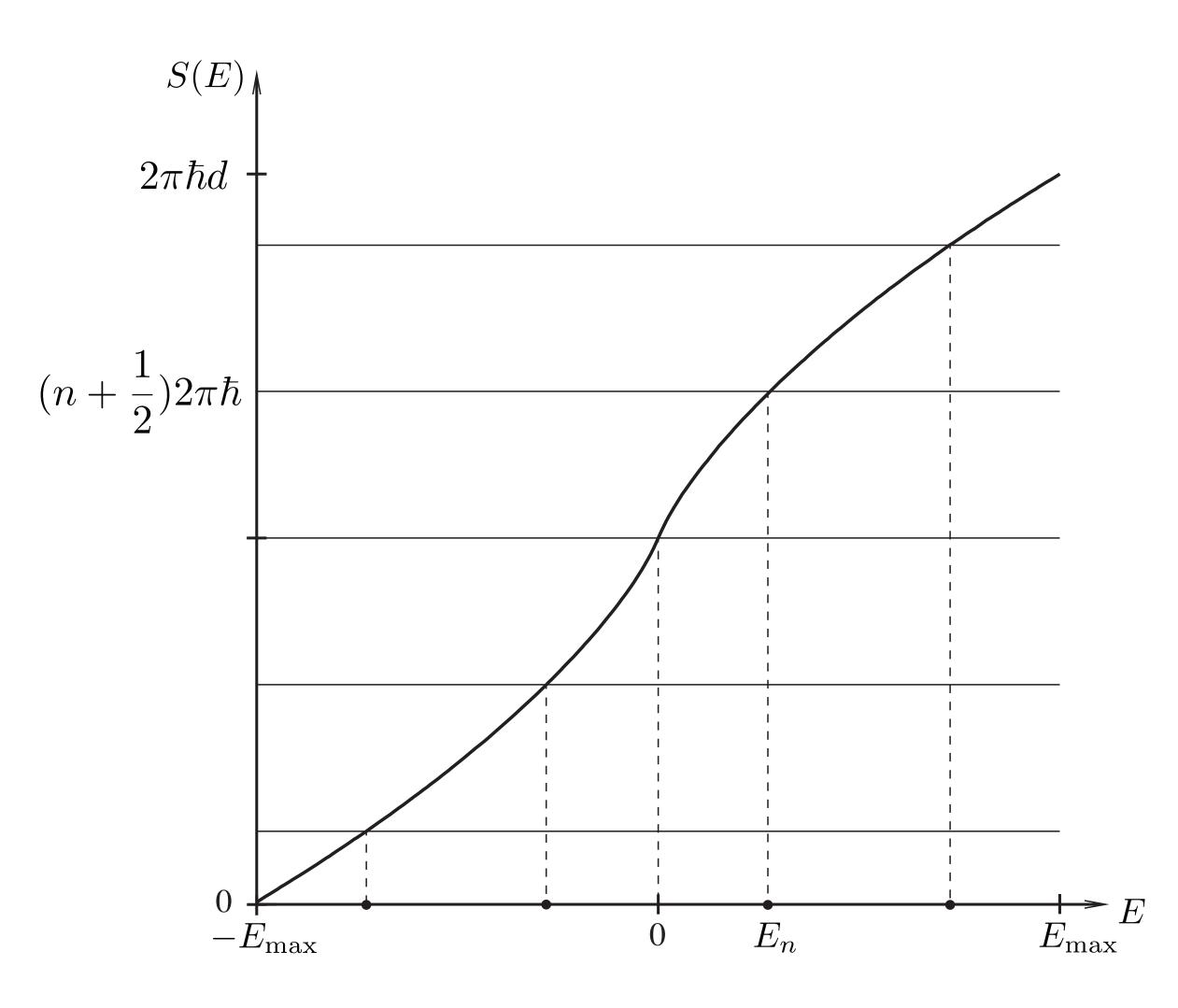
Quantization condition:

orbits of constant volume enclose an integer number of phase-space cells of area $2\pi\hbar$



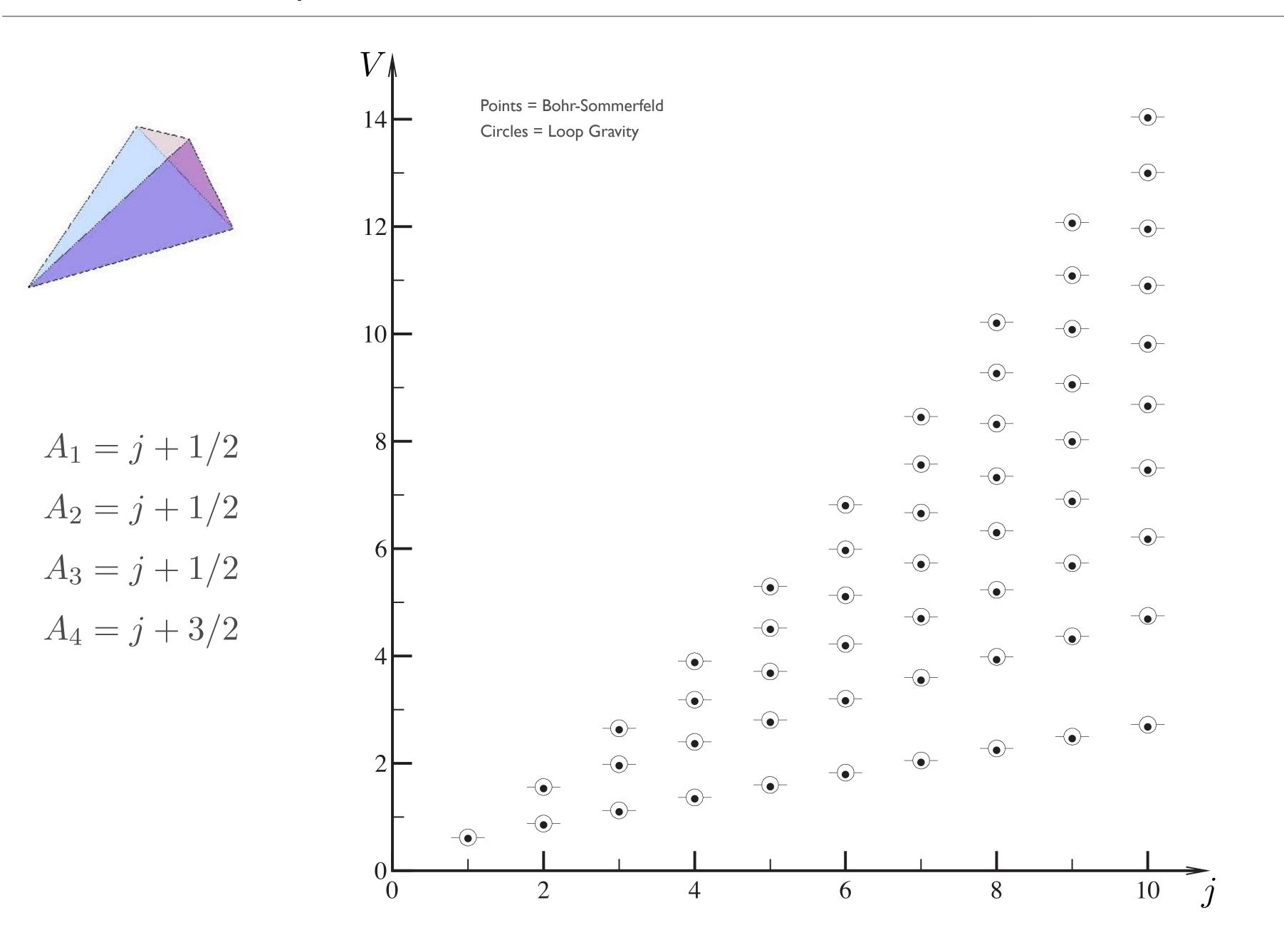
Quantization condition:

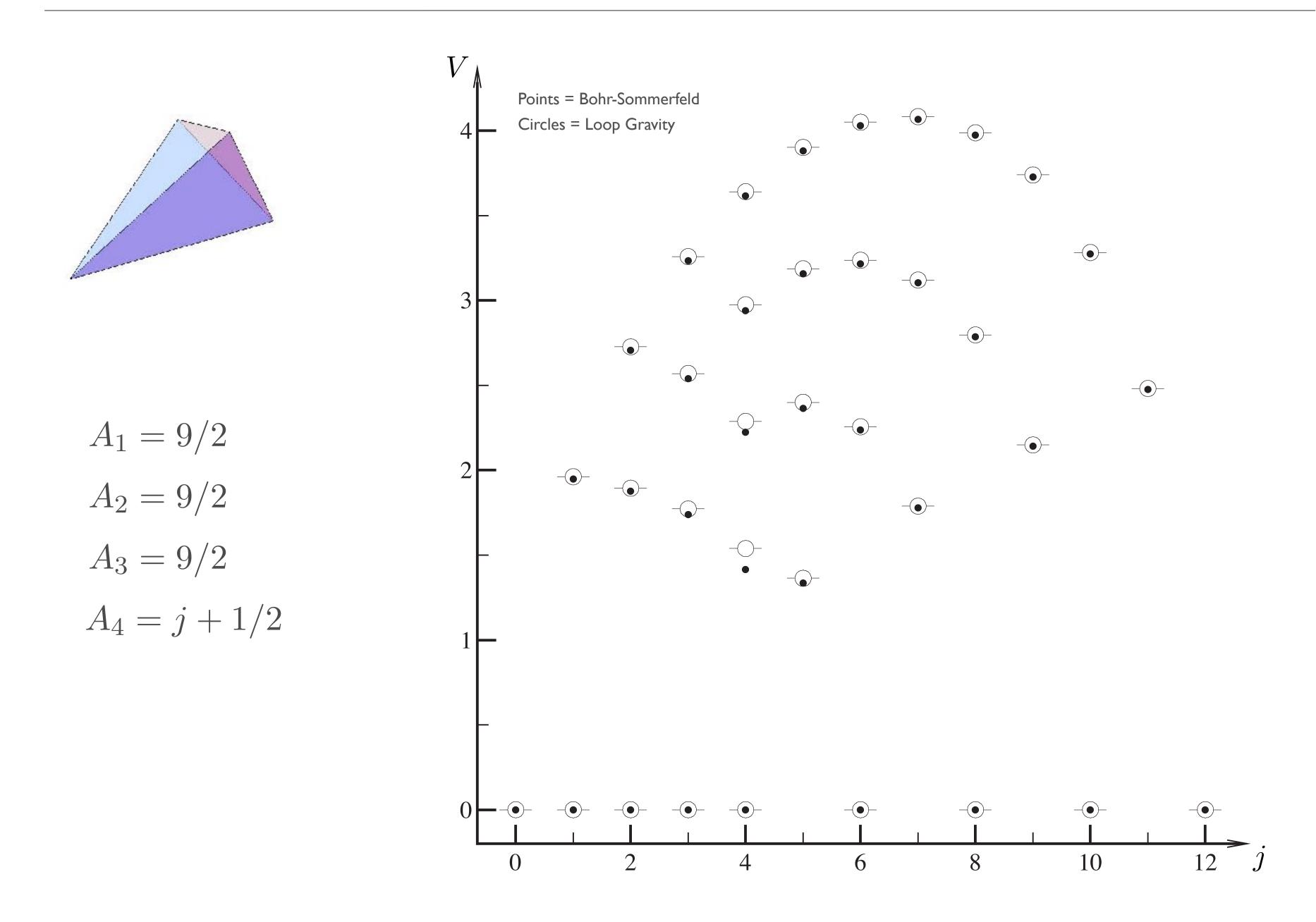
orbits of constant volume enclose an integer number of phase-space cells of area $2\pi\hbar$



	1	
		$\mathbf{\lambda}$
		11
		No.
1/		
L		

	Table: Vol	ume spectrum	
$j_1 \; j_2 \; j_3 \; j_4$	Loop gravity	Bohr-Sommerfeld	Accuracy
$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	0.310	0.252	19%
$\frac{1}{2}$ $\frac{1}{2}$ 1 1	0.396	0.344	13%
$\frac{1}{2}$ $\frac{1}{2}$ $\frac{3}{2}$ $\frac{3}{2}$	0.464	0.406	12%
$\frac{1}{2}$ 1 1 $\frac{3}{2}$	0.498	0.458	8%
$1\ 1\ 1\ 1$	0	0	exact
	0.620	0.566	9%
$\frac{1}{2}$ $\frac{1}{2}$ 2 2	0.522	0.458	12%
$\frac{1}{2}$ 1 $\frac{3}{2}$ 2	0.577	0.535	7%
$1 \ 1 \ 1 \ 2$	0.620	0.598	4%
$\frac{1}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2}$	0.620	0.598	4%
$1 \ 1 \ \frac{3}{2} \ \frac{3}{2}$	0	0	exact
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.753	0.707	6%
		• • •	
	1.828	1.795	1.8%
	3.204	3.162	1.3%
$6\ 6\ 6\ 7$	4.225	4.190	0.8%
	5.133	5.105	0.5%
	5.989	5.967	0.4%
	6.817	6.799	0.3%





Quantum Geometry in intertwiner space

Spin: irreps of SU(2)
$$|j,m\rangle \in \mathcal{H}_j$$
Intertwiner: invariant tensor $|i\rangle \in \operatorname{Inv}_{SU(2)}(\mathcal{H}_{j_1})$ $|i\rangle = \sum_{m_1m_2m_3m_4} i_{m_1m_2m_3m_4} |j_1, m_1\rangle |j_2, m_2\rangle |j_3, m_3\rangle$ Quantum Geometry
- area normals $\vec{E}_a = 8\pi G\hbar \gamma \vec{L}_a$ $a = 1,$ \cdot area operator $A_a = |\vec{E}_a|$ spectrum $A_a |i\rangle = 8\pi G\hbar \gamma \sqrt{j_a(j_a+1)} |i\rangle$ \cdot angle operator $\vec{E}_a \cdot \vec{E}_b$
 $(Penrose metric)$ \cdot Volume operator $V = \frac{\sqrt{2}}{3}\sqrt{|\vec{E}_1 \cdot (\vec{E}_2 \times \vec{E}_3)|}$

 $\otimes \mathcal{H}_{j_2} \otimes \mathcal{H}_{j_3} \otimes \mathcal{H}_{j_4})$

 $_{3}\rangle|j_{4},m_{4}
angle$

Rovelli-Smolin '95 Ashtekar-Lewandowski '95

2, 3, 4

Exercise: Volume spectrum in $\frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2}$

Basis of intertwiner space $|0\rangle$, $|1\rangle$ Matrix elements of $Q = \vec{L}_1 \cdot (\vec{L}_2 \times \vec{L}_3)$ $Q_i{}^j = \langle i | \vec{L}_1 \cdot (\vec{L}_2 \times \vec{L}_3) | j \rangle = \begin{pmatrix} 0 & i\frac{\sqrt{3}}{4} \\ -i\frac{\sqrt{3}}{4} & 0 \end{pmatrix}$

Eigenvectors and Eigenvalues

$$Q|q_{\pm}\rangle = q_{\pm}|q_{\pm}\rangle$$
 $|q_{\pm}\rangle = \frac{|0\rangle \pm i|0\rangle}{\sqrt{2}}$ $q_{\pm} = \pm \frac{\sqrt{3}}{4}$

Volume spectrum

$$V = (8\pi G\hbar \gamma)^{3/2} \ \frac{\sqrt{2}}{3} \sqrt{|Q|}$$

$$V|q_{\pm}\rangle = v_{\pm}|q_{\pm}\rangle$$

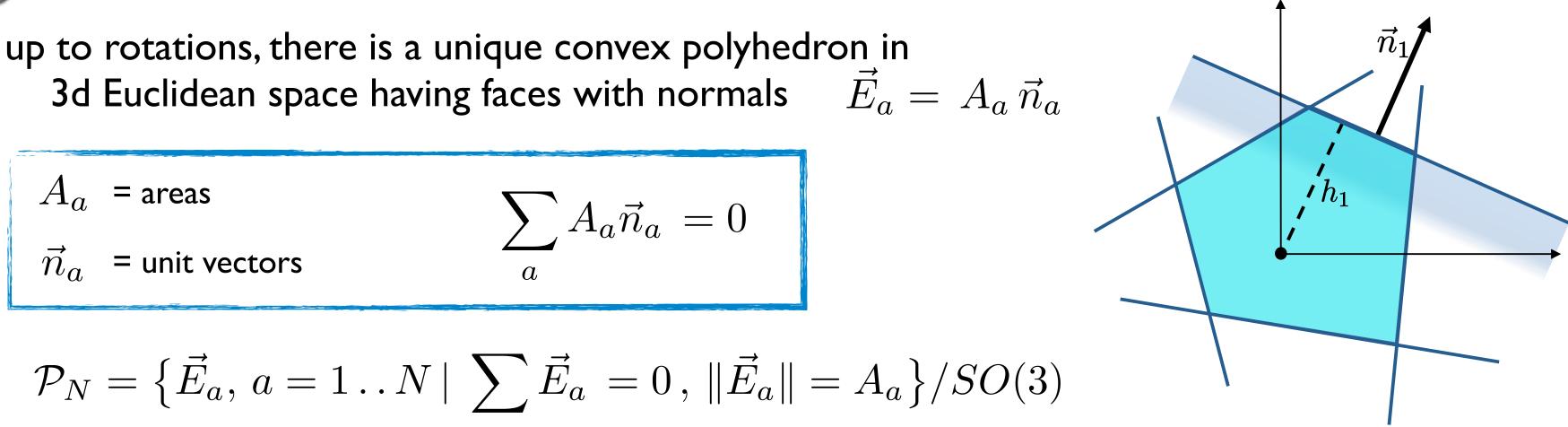
$$v_{\pm} = (8\pi G\hbar \gamma)^{3/2} \frac{\sqrt{2}}{3} \sqrt{\frac{\sqrt{3}}{4}}$$
$$\approx (8\pi G\hbar \gamma)^{3/2} \times 0.310$$

	17		
		\mathcal{A}	
/			1
L	 		

Table: Volume spectrum				
$j_1 \ j_2 \ j_3 \ j_4$	Loop gravity	Bohr-Sommerfeld	Accuracy	
$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	0.310	0.252	19%	
$\frac{1}{2}$ $\frac{1}{2}$ 1 1	0.396	0.344	13%	
$\frac{1}{2}$ $\frac{1}{2}$ $\frac{3}{2}$ $\frac{3}{2}$	0.464	0.406	12%	
$\frac{1}{2}$ 1 1 $\frac{3}{2}$	0.498	0.458	8%	
1111	0	0	exact	
	0.620	0.566	9%	
$\frac{1}{2}$ $\frac{1}{2}$ 2 2	0.522	0.458	12%	
$\frac{1}{2}$ 1 $\frac{3}{2}$ 2	0.577	0.535	7%	
$1 \ 1 \ 1 \ 2$	0.620	0.598	4%	
$\frac{1}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$	0.620	0.598	4%	
$1 \ 1 \ \frac{3}{2} \ \frac{3}{2}$	0	0	exact	
	0.753	0.707	6%	
	1.828	1.795	1.8%	
$6\ 6\ 6\ 7$	3.204	3.162	1.3%	
	4.225	4.190	0.8%	
	5.133	5.105	0.5%	
	5.989	5.967	0.4%	
	6.817	6.799	0.3%	

Beyond tetrahedra: number of faces N > 4

Minkowski theorem [1897]



$$\mathcal{P}_N = \left\{ \vec{E}_a, \, a = 1 \dots N \, | \, \sum_a \vec{E}_a \, = 0 \right\}$$

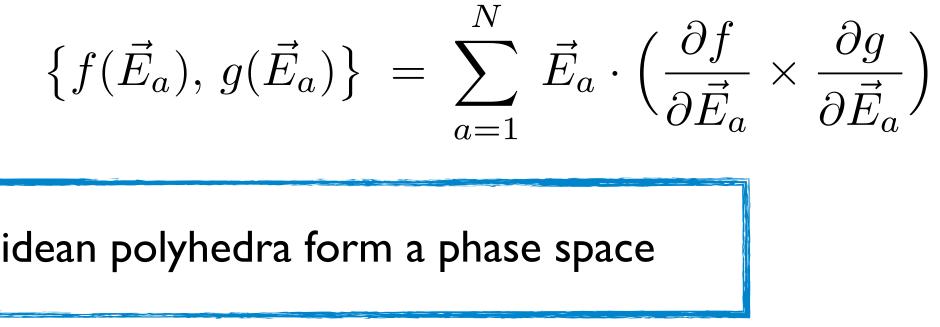
Kapovich-Millson theorem [1996]

 \mathcal{P}_N has naturally the structure of a phase space

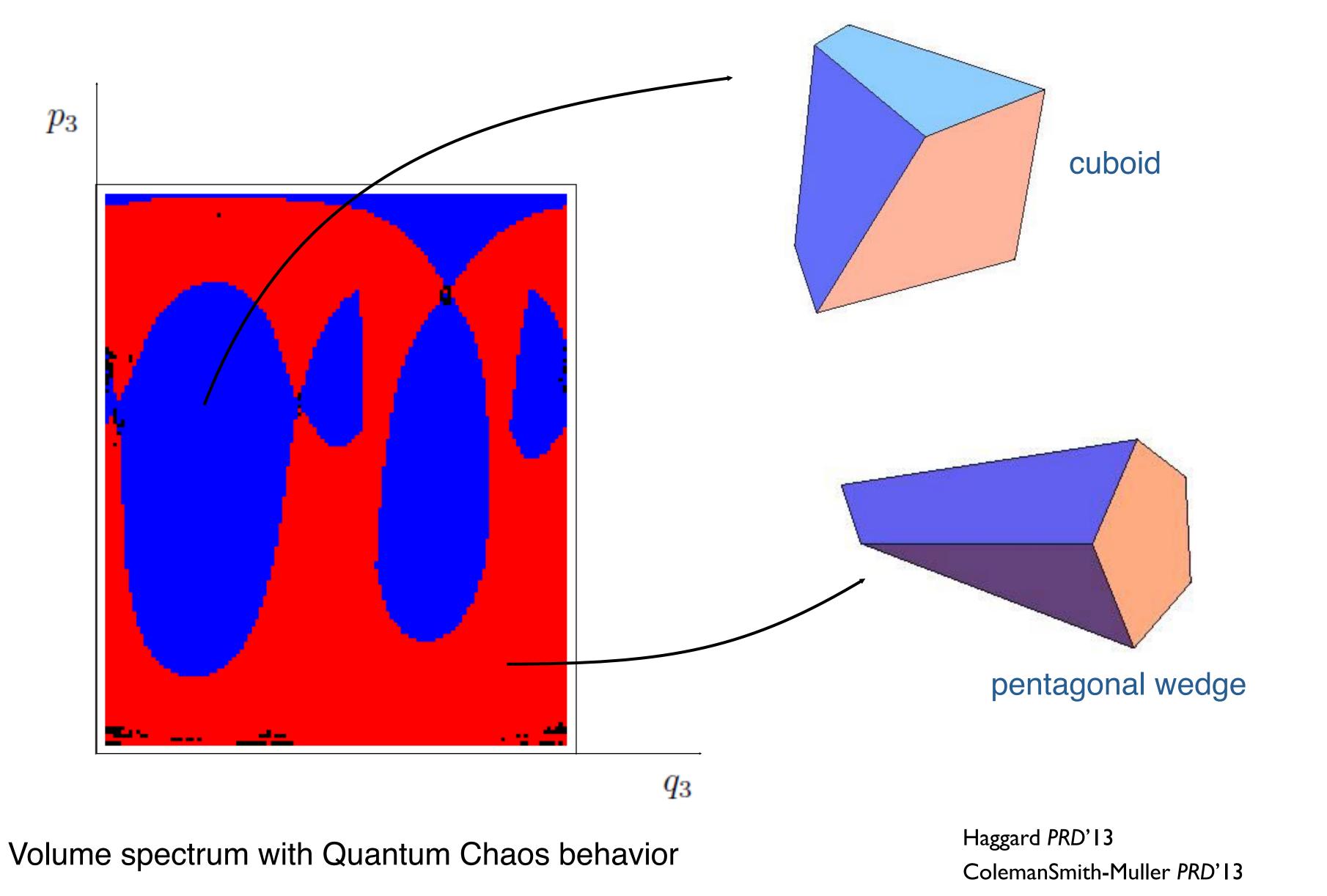
Poisson brackets

Convex Euclidean polyhedra form a phase space

Quantization \implies Hilbert space of intertwiners = nodes of a spin-network graph



Beyond tetrahedra: F = 6, the space of shapes of ...



Gluing quantum polyhedra with entanglement

- Fluctuations of nearby quantum shapes are in general uncorrelated: twisted geometry
- Saturating uniformly the short-ranged relative entropy

$$\frac{\left(\langle \mathcal{O}_A \, \mathcal{O}_B \rangle - \langle \mathcal{O}_A \rangle \langle \mathcal{O}_B \rangle\right)^2}{2 \, \|\mathcal{O}_A\|^2 \, \|\mathcal{O}_B\|^2} \le I(A, B)$$

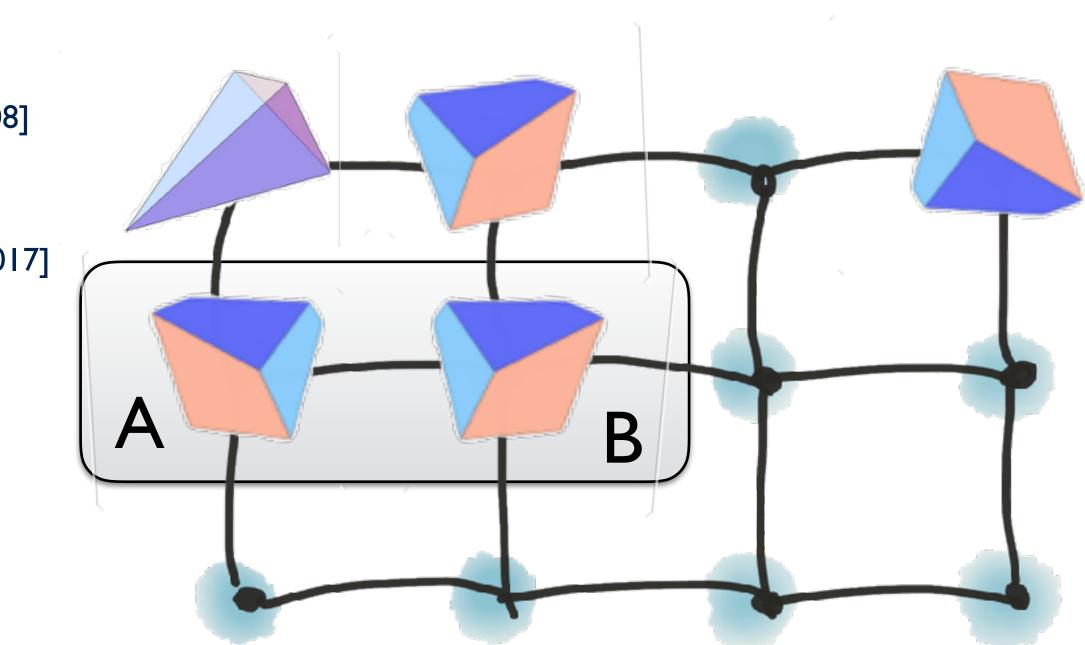
where

$$I(A,B) \equiv S(\rho_{AB}|\rho_A \otimes \rho_B) = S_A + S_B - S_{AB}$$

correlates fluctuations of the quantum geometry

State with
$$\max \sum_{\langle A,B \rangle} I(A,B)$$

[Dittrich-Speziale 2008] [EB 2008] [Freidel-Speziale 2010] [EB-Dona-Speziale 2010] [Dona-Fanizza-Sarno-Speziale 2017]



Glued geometry from entanglement

[EB-Baytas-Yokomizo, to appear]

Plan:

- I) Entanglement in simple systems
- II) Building space from entanglement
 - a) Entanglement, mutual information and bosonic correlators
 - b) Gluing quantum polyhedra with entanglement
- III) Entanglement in the sky

Lorentz invariance in LQG

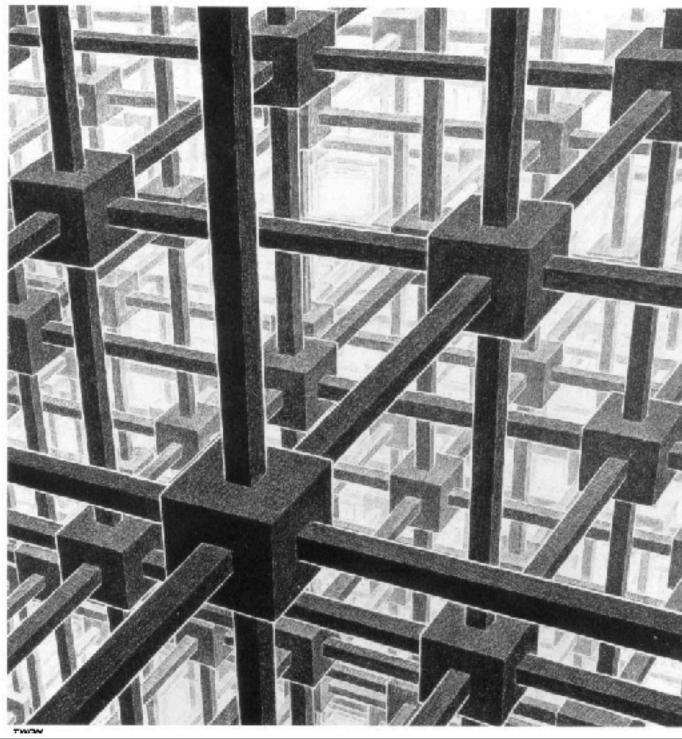
- Discrete spectra are Lorentz covariant
- Lorentz invariant state in LQG ?
 - I) Minkowski geometry as expectation value
 - 2) Lorentz-invariant 2-point correlation functions, 3-point...
- Homogeneous and isotropic states in LQG ? similarly (1), (2)

Strategy: double-scaling encoded in the state

- use squeezed states defined in terms of I- and 2-point correlations
- graph, e.g. cubic lattice with N nodes
- choose the diagonal entries of the squeezing matrix γ^{ij}_{AB} to fix the expectation value of the spin $\langle j
 angle$
- the correlation function
- take the limit of the squeezed state $|\gamma
 angle$ such that $~\langle j
 angle o 0$, $~n_0 o \infty~$ with $~{\cal C}(\ell)~$ fixed
- the limit can be studied at fixed physical volume $V \sim N \, (\sqrt{\langle j
 angle}\,)^3$, with symmetries imposed on ${\cal C}(\ell)$

Toy model: I d chain of quantum cubes with long-range entanglement and translational invariance

[Rovelli-Speziale 2002]



Escher 1953

- choose the off-diagonal entries of γ_{AB}^{ij} to fix the correlation function $\mathcal{C} = \langle \mathcal{O}_A \mathcal{O}_B \rangle - \langle \mathcal{O}_A \rangle \langle \mathcal{O}_B \rangle$ at a lattice distance n_0

can be expressed in terms of the physical length $\,\ell \sim n_0\,\sqrt{\langle j
angle}$

[EB-Dona]

