Entanglement in loop quantum gravity

Eugenio Bianchi

Institute for Gravitation and the Cosmos
\& Physics Department, Penn State

Laboratori Nazionali di Frascati
20 Dicembre 2017

High Energy
Frontier

Large Scale
Frontier

High Energy
Frontier

High Energy
Frontier

The Entanglement Frontier

Large Scale
Frontier

- complex quantum systems
- many-body entanglement
- phases of quantum matter
- quantum computing

High Energy

High Energy

High Energy

High Energy

Plan:

I) Entanglement in simple systems
II) Building space from entanglement
III) Entanglement in the sky

Entangled state

Einstein-Podolsky-Rosen, I935 Schrödinger, 1935

Singlet state of two spins:

$$
|s\rangle=\frac{1}{\sqrt{2}}(|\uparrow\rangle|\downarrow\rangle-|\downarrow\rangle|\uparrow\rangle)
$$

How entanglement is produced:
E.g., electron-positron annihilation into two gamma rays

$$
e^{-}+e^{+} \rightarrow \gamma+\gamma
$$

Entangled state

Singlet state of two spins:

$$
|s\rangle=\frac{1}{\sqrt{2}}(|\uparrow\rangle|\downarrow\rangle-|\downarrow\rangle|\uparrow\rangle)
$$

How entanglement is produced:
E.g., electron-positron annihilation into two gamma rays

$$
e^{-}+e^{+} \rightarrow \gamma+\gamma
$$

How to build your cheap entanglement experiment at home:
you need - two Geiger counters

- a disk of radioactive Sodium 22
- a tablet running a GeigerBot app
http://blogs.scientificamerican.com/critical-opalescence/how-to-

Entangled state

Singlet state of strangeness: $\quad|f\rangle=\frac{1}{\sqrt{2}}\left(\left|K^{0}\right\rangle\left|\bar{K}^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\left|K^{0}\right\rangle\right)$

How entanglement is produced:
E.g., resonant production of neutral Kaons

$$
e^{-}+e^{+} \rightarrow \phi(1024) \rightarrow K^{0}+\bar{K}^{0}
$$

Entangled oscillators

Ground state
without the spring
$|0\rangle_{A}|0\rangle_{B}$

Entangled oscillators

Ground state

without the spring

$$
|0\rangle_{A}|0\rangle_{B}
$$

with the spring

$$
\left|\psi_{0}\right\rangle=\sum_{n=0}^{\infty} \sqrt{p_{n}}|n\rangle_{A}|n\rangle_{B}
$$

If we make measurements on A only,
Mixed state from entanglement

$$
\rho_{A}=\operatorname{Tr}_{B}\left(\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right|\right)=\sum_{n=0}^{\infty} p_{n}|n\rangle_{A}\left\langle\left. n\right|_{A}\right.
$$

Entanglement entropy

$$
S_{A}=-\operatorname{Tr}_{A}\left(\rho_{A} \log \rho_{A}\right)=-\sum_{n} p_{n} \log p_{n}
$$

The Vacuum

The Vacuum State of a Quantum Field

The vacuum state of a quantum field is highly entangled

The vacuum state of a quantum field is highly entangled

The vacuum state of a quantum field is highly entangled

The vacuum state of a quantum field is highly entangled

Entanglement as a probe of locality - e.g. 1d fermionic chain

Hilbert space: 2^{N} dimensional $\quad \mathcal{H}=\mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2}$
Geometric subsystem

$$
\rho_{A}=\operatorname{Tr}_{B}(|\psi\rangle\langle\psi|)
$$

Entanglement entropy $\quad S_{A}(|\psi\rangle)=-\operatorname{Tr}_{A}\left(\rho_{A} \log \rho_{A}\right)$

1) Factorized basis states $|\uparrow\rangle|\downarrow\rangle \cdots|\downarrow\rangle$ zero law

Entanglement as a probe of locality - e.g. 1d fermionic chain

Hilbert space: 2^{N} dimensional $\quad \mathcal{H}=\mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2}$
Geometric subsystem $\quad \rho_{A}=\operatorname{Tr}_{B}(|\psi\rangle\langle\psi|)$

Entanglement entropy $\quad S_{A}(|\psi\rangle)=-\operatorname{Tr}_{A}\left(\rho_{A} \log \rho_{A}\right)$

1) Factorized basis states $|\uparrow\rangle|\downarrow\rangle \cdots|\downarrow\rangle$ zero law
2) Ground state of a local Hamiltonian area law

[Sorkin (10th GRG) 1985]
[Srednicki, PRL 1993]

Entanglement as a probe of locality - e.g. 1d fermionic chain

Hilbert space: 2^{N} dimensional $\quad \mathcal{H}=\mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2}$
Geometric subsystem $\quad \rho_{A}=\operatorname{Tr}_{B}(|\psi\rangle\langle\psi|)$

Entanglement entropy $\quad S_{A}(|\psi\rangle)=-\operatorname{Tr}_{A}\left(\rho_{A} \log \rho_{A}\right)$

1) Factorized basis states $|\uparrow\rangle|\downarrow\rangle \cdots|\downarrow\rangle$ zero law
2) Ground state of a local Hamiltonian area law
3) Typical state in the Hilbert space volume law - maximally entangled

Entanglement as a probe of locality - e.g. 1d fermionic chain

Hilbert space: 2^{N} dimensional $\quad \mathcal{H}=\mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2}$
Geometric subsystem

$$
\rho_{A}=\operatorname{Tr}_{B}(|\psi\rangle\langle\psi|)
$$

Entanglement entropy $\quad S_{A}(|\psi\rangle)=-\operatorname{Tr}_{A}\left(\rho_{A} \log \rho_{A}\right)$

1) Factorized basis states $|\uparrow\rangle|\downarrow\rangle \cdots|\downarrow\rangle$ zero law
2) Ground state of a local Hamiltonian area law
3) Typical state in the Hilbert space volume law - maximally entangled
4) Typical excited state of a local Hamiltonian have non-maximal ent. at finite fraction

Entanglement as a probe of locality - e.g. 1d fermionic chain

Hilbert space: 2^{N} dimensional $\quad \mathcal{H}=\mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2}$
Geometric subsystem $\quad \rho_{A}=\operatorname{Tr}_{B}(|\psi\rangle\langle\psi|)$

Entanglement entropy $\quad S_{A}(|\psi\rangle)=-\operatorname{Tr}_{A}\left(\rho_{A} \log \rho_{A}\right)$

1) Factorized basis states $|\uparrow\rangle|\downarrow\rangle \cdots|\downarrow\rangle$ zero law
2) Ground state of a local Hamiltonian area law
3) Typical state in the Hilbert space volume law - maximally entangled
4) Typical excited state of a local Hamiltonian have non-maximal ent. at finite fraction

Plan:
I) Entanglement in simple systems
\longrightarrow II) Building space from entanglement
III) Entanglement in the sky

General Relativity 1915

Degrees of freedom of gravity:

- Geometry of spacetime

Quantum Mechanics ~1925

Degrees of freedom:

- Discrete spectra
- Entangled

Two fundamental descriptions of the world: an unfinished revolution

Entanglement and the architecture of a spacetime geometry

- Entanglement entropy as a probe of the architecture of spacetime

Area-law not generic, property of semiclassical states
EB and R.Myers, CQG (2012)
"On the Architecture of Spacetime Geometry"

$$
S_{A}(|0\rangle)=2 \pi \frac{\operatorname{Area}(\partial \mathrm{~A})}{L_{\text {Planck }}^{2}}+\ldots
$$

Arguments from: Black hole thermodynamics (Bekenstein, Hawking, Sorkin,...)
Holography and AdS/CFT (Maldacena,.. Van Raamsdonk,.. Ryu, Takayanagi,...)
Entanglement equilibrium (Jacobson)
Loop quantum gravity (EB)

Loop Quantum Gravity

1986-New Variables for General Relativity - Abhay Ashtekar
1987 - The Loop Representation - Carlo Rovelli and Lee Smolin
I992 - Discrete Quanta of Space - Ashtekar-Rovelli-Smolin

Quantum geometry of spacetime:
discrete, non-commutative, entangled.

Degrees of freedom of covariant loop quantum gravity (aka spin-foams)

Spacetime manifold and the notion of 2 d -foam

- $M=4 \mathrm{~d}$ manifold of trivial topology
- $\Delta=$ Topological decomposition of M

$$
\begin{aligned}
& \text { 4-cells } \Delta_{4}=4 \text {-ball } \\
& \partial \Delta_{4}=3 \text {-cells } \Delta_{3} \\
& \partial \Delta_{3}=2 \text {-cells } \Delta_{2}
\end{aligned}
$$

- Set $\left\{\Delta_{2}\right\}=2$-skeleton of $(M, \Delta)=2 d$-foam
* The manifold $\quad M^{\prime}=M-\left\{\Delta_{2}\right\}$ is non simply-connected, non-trivial π_{1}

Dynamics of covariant loop quantum gravity (aka spin-foams)

Gravity: Einstein-Cartan action + Holst term$\gamma \in \mathbb{R}=$ Barbero-Immirzi parameter

$$
S[e, \omega]=\frac{1}{16 \pi G} \int \frac{1}{2} \epsilon_{I J K L} e^{I} \wedge e^{J} \wedge F^{K L}(\omega)+\frac{1}{\gamma} e_{I} \wedge e_{J} \wedge F^{I J}(\omega)
$$Topological Field Theory: BF action $\quad B^{I J}=$ two-form field

$$
S[B, \omega]=\frac{1}{2} \int_{M_{4}}\left(\frac{1}{2} \epsilon_{I J K L} B^{K L}+\frac{1}{\gamma} B_{I J}\right) \wedge F^{I J}(\omega) \quad \Rightarrow \quad F^{I J}(\omega)=0
$$

$$
\begin{aligned}
& \text { * Gravity as a Topological Theory with constrained } B \text {-field: } \\
& \text { Constraint } B^{I J}=\frac{1}{8 \pi G} e^{I} \wedge e^{J} \text { unfreezes } F^{I J}(\omega)
\end{aligned}
$$

2d-foam allows to unfreeze a finite number of gravitational degrees of freedom:

Bosonic formulation of LQG on a graph

- Two oscillators per end-point of a link
spin from oscillators $|j, m\rangle=\frac{\left(a^{0 \dagger}\right)^{j+m}}{\sqrt{(j+m)!}} \frac{\left(a^{1 \dagger}\right)^{j-m}}{\sqrt{(j-m)!}}|0\rangle$
- Hilbert space of LQG and the bosonic Hilbert space

$$
\begin{gathered}
L^{2}\left(S U(2)^{L} / S U(2)^{N}\right) \subset \mathcal{H}_{\text {bosonic }} \\
|\psi\rangle=\sum_{n_{i}=1}^{\infty} c_{n_{1} \cdots n_{4 L}}\left|n_{1}, \ldots, n_{4 L}\right\rangle
\end{gathered}
$$

[Girelli-Livine 2005] [Freidel-Speziale 2010] [Livine-Tambornino 20II] [Wieland 20II]
[EB-Guglielmon-Hackl-Yokomizo 2016]
-The bosonic Hilbert space factorizes over nodes: easy to define and compute the entanglement entropy

- Geometric operators in a region R of the graph generate a subalgebra $\quad \mathcal{A}_{R}^{\mathrm{LQG}} \subset \mathcal{A}_{R}^{\text {bosonic }}$
$\left\{\begin{array}{lll}\text { Area vectors } & \vec{E}_{a} & a=1,2,3,4 \\ \text { Closure } & \vec{E}_{1}+\vec{E}_{2}+\vec{E}_{3}+\vec{E}_{4}=0\end{array}\right.$

- area of a face $\quad A_{a}=\left|\vec{E}_{a}\right|$
- angle between two faces

$$
\vec{E}_{a} \cdot \vec{E}_{b}=A_{a} A_{b} \cos \theta_{a b}
$$

- volume of the tetrahedron $\quad V=\frac{\sqrt{2}}{3} \sqrt{\left|\vec{E}_{1} \cdot\left(\vec{E}_{2} \times \vec{E}_{3}\right)\right|}$

Bohr-Sommerfeld quantization of the Volume

Bohr-Sommerfeld quantization of the Volume

		Table: Volume spectrum		
j_{1}	j_{2}	j_{3}	j_{4}	Loop gravity
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	0.310
$\frac{1}{2}$	$\frac{1}{2}$	1	1	0.396
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	0.464
$\frac{1}{2}$	1	1	$\frac{3}{2}$	0.498

Beyond tetrahedra: $F=6$, the space of shapes of ...

Volume spectrum with Quantum Chaos behavior
Haggard PRD' 13
ColemanSmith-Muller PRD'13

Gluing quantum polyhedra with entanglement

- Fluctuations of nearby quantum shapes are in general uncorrelated: twisted geometry
[Dittrich-Speziale 2008] [EB 2008]
[Freidel-Speziale 2010] [EB-Dona-Speziale 2010]
[Dona-Fanizza-Sarno-Speziale 20I7]
- Saturating uniformly the short-ranged relative entropy

$$
\frac{\left(\left\langle\mathcal{O}_{A} \mathcal{O}_{B}\right\rangle-\left\langle\mathcal{O}_{A}\right\rangle\left\langle\mathcal{O}_{B}\right\rangle\right)^{2}}{2\left\|\mathcal{O}_{A}\right\|^{2}\left\|\mathcal{O}_{B}\right\|^{2}} \leq I(A, B)
$$

where

$$
I(A, B) \equiv S\left(\rho_{A B} \mid \rho_{A} \otimes \rho_{B}\right)=S_{A}+S_{B}-S_{A B}
$$

correlates fluctuations of the quantum geometry

$$
\text { State with } \quad \max \sum_{\langle A, B\rangle} I(A, B)
$$

Plan:
I) Entanglement in simple systems
II) Building space from entanglement
a) Entanglement, mutual information and bosonic correlators
b) Gluing quantum polyhedra with entanglement
c) Entanglement and Lorentz invariance
III) Entanglement in the sky

Correlations at space-like separation

- In quantum field theory

Fock space $\quad \mathcal{F}=\mathbb{C} \oplus \mathcal{H} \oplus S(\mathcal{H} \otimes \mathcal{H}) \oplus \cdots$
contains
曾 states with no space-like correlations
(ii) states with specific short-ranged correlations (e.g. Minkowski vacuum) crucial ingredient for quantum origin of cosmological perturbations

- In loop quantum gravity

Hilbert space $\quad \mathcal{H}_{\Gamma}=L^{2}\left(S U(2)^{L} / S U(2)^{N}\right)$
contains
(i) states with no space-like correlations
(e.g. spin-networks)
(ii) states with long-range space-like correlations

The vacuum state of a quantum field is highly entangled

Planck Scale

The Vacuum State of a Quantum Field

No particles

$$
a(\vec{k})|0\rangle=0
$$

Vanishing expectation value

$$
\langle 0| \varphi(\vec{x})|0\rangle=0
$$

but non-vanishing fluctuations

Uncorrelated momenta

$$
\begin{aligned}
& \langle 0| \varphi(\vec{k}) \varphi\left(\vec{k}^{\prime}\right)|0\rangle=P(|\vec{k}|)(2 \pi)^{3} \delta\left(\vec{k}+\vec{k}^{\prime}\right) \\
& \text { with power spectrum } P(k)=\frac{1}{2 k}
\end{aligned}
$$

Non-vanishing correlations at space-like separation

$$
\langle 0| \varphi(\vec{x}) \varphi(\vec{y})|0\rangle=\int_{0}^{\infty} \frac{k^{3} P(k)}{2 \pi^{2}} \frac{\sin (k|\vec{x}-\vec{y}|)}{k|\vec{x}-\vec{y}|} \frac{d k}{k}=\frac{1}{(2 \pi)^{2}} \frac{1}{|\vec{x}-\vec{y}|^{2}}
$$

Fluctuations of the field averaged over a region of size

$$
\left(\Delta \varphi_{R}\right)^{2} \equiv\langle 0| \varphi_{R} \varphi_{R}|0\rangle-\left(\langle 0| \varphi_{R}|0\rangle\right)^{2} \sim \frac{1}{R^{2}}
$$

The vacuum of a quantum field after inflation

Minkowski
$P(k)=\frac{1}{2 k}$

The vacuum of a quantum field after inflation

Minkowski

$$
P(k)=\frac{1}{2 k}
$$

de Sitter

$$
P(k)=\frac{1}{2 k} e^{-2 H_{0} t}+\frac{H_{0}^{2}}{2 k^{3}}
$$

The vacuum of a quantum field after inflation

Minkowski

$$
P(k)=\frac{1}{2 k}
$$

de Sitter

$$
P(k)=\frac{1}{2 k} e^{-2 H_{0} t}+\frac{H_{0}^{2}}{2 k^{3}}
$$

Inflation (quasi-de Sitter)

$$
P_{s}(k) \approx \frac{2 \pi^{2} A_{s}}{k^{3}}\left(\frac{k}{k_{*}}\right)^{n_{s}-1}
$$

Planck 2015

$$
\begin{aligned}
& A_{s}\left(k_{*}\right)=2.47 \times 10^{-9} \\
& n_{s}\left(k_{*}\right)=0.96
\end{aligned}
$$

$$
\text { with } \quad A_{s} \sim \frac{G \hbar H_{*}^{2}}{\varepsilon_{*}}
$$

Mechanism: amplification of vacuum fluctuations by instabilities

Harmonic oscillator with time-dependent frequency

$$
H(t)=\frac{1}{2} p^{2}+\frac{1}{2}\left(k^{2}-f(t)\right) q^{2}
$$

The anisotropies of the Cosmic Microwave Background as observed by Planck

Planck Collaboration, arxiv.org/abs/ 1502.02 II4
"Planck 2015 results. XX. Constraints on inflation"

Reconstructed primordial power spectrum of curvature perturbations [Hunt \& Sarkar, JCAP 20I5]

A distinguishing feature of loop quantum gravity:

existence of states with no correlation at space-like separation

Scenario

uncorrelated initial state and its phenomenological imprints

Emergence of space-like correlations in loop quantum gravity

States with no space-like correlations: allowed in quantum gravity

BKL conjecture (Belinsky-Khalatnikov-Lifshitz 1970)
In classical General Relativity, the spatial coupling of degrees of freedom is suppressed in the approach to a space-like singularity

Quantum BKL conjecture (E.B.-Hackl-Yokomizo 2015)
In quantum gravity, correlations between spatially separated degrees of freedom are suppressed in the approach to a Planck curvature phase

$$
\left\{\begin{array}{l}
\hat{H} \Psi\left[g_{i j}(x), \varphi(x)\right]=0 \\
\lim _{a \rightarrow 0} \Psi\left[a, \phi, \delta g_{i j}(x), \delta \varphi(x)\right]=\prod_{\vec{x}} \psi\left(\phi, \delta g_{i j}(x), \delta \varphi(x)\right)
\end{array}\right.
$$

Scenario: the correlations present at the beginning of slow-roll inflation are produced in a pre-inflationary phase when the LQG-to-QFT transition takes place

Inflation and spinfoams

- Effective spinfoam action

$$
S\left[e^{I}, \omega^{I J}, r, \lambda^{I J}\right]=\int\left((1+2 \alpha r) B_{I J} \wedge F^{I J}-\frac{\alpha r^{2}}{1+\gamma^{2}} \frac{1}{4!} \epsilon_{I J K L} B^{I J} \wedge B^{K L}+B_{I J} \wedge \nabla \lambda^{I J}\right)
$$

where $\quad B_{I J}=\frac{1}{8 \pi G}\left(\frac{1}{2} \epsilon_{I J K L} e^{K} \wedge e^{L}-\frac{1}{\gamma} e_{I} \wedge e_{J}\right)$
$\gamma=$ Barbero-Immirzi parameter
$r=0$-form, effective Ricci scalar at a coarse-graining scale
$\alpha=$ coupling constant dimensions of Area

- It provides an embedding in spinfoams of the Starobinsky model (1979)

$$
S\left[g_{\mu \nu}\right]=\frac{1}{16 \pi G} \int d^{4} x \sqrt{-g}\left(R+\alpha R^{2}\right)
$$

$$
\mathcal{G}_{\mu \nu}+\alpha \mathcal{H}_{\mu \nu}=8 \pi G T_{\mu \nu}
$$

Friedman eq: $\quad H^{2}+6 \alpha\left(6 H^{2} \dot{H}-\dot{H}^{2}+2 H \ddot{H}\right)=0$
gravity-driven inflation

PLANCK 2015

at the scale $k_{*}=0.002 \mathrm{Mpc}^{-1}$

$$
\begin{aligned}
& A_{s}=(2.474 \pm 0.116) \times 10^{-9} \\
& n_{s}=0.9645 \pm 0.0062 \\
& r<0.11
\end{aligned}
$$

Primordial spectra from adiabatic vacuum in the quasi de-Sitter phase of the $R+\alpha R^{2}$ model

$$
\rightleftharpoons\left\{\begin{array}{l}
\alpha \approx 3.54 \times 10^{10} G \hbar \\
H_{*} \approx 1.05 \times 10^{-5} \frac{1}{\sqrt{G \hbar}}
\end{array}\right.
$$

Background dynamics and pre-inflationary initial conditions

Perturbations and pre-inflationary initial conditions

Scalar power spectrum with LQG-to-QFT initial conditions

Power suppression at large angular scales

Scalar power spectrum with LQG-to-QFT initial conditions

Tensor power spectrum with LQG-to-QFT initial conditions

Power suppression at large angular scales

Scenario for the emergence of primordial entanglement in loop quantum gravity

Inflation and spinfoams

- Effective spinfoam action

$$
S\left[e^{I}, \omega^{I J}, r, \lambda^{I J}\right]=\int\left((1+2 \alpha r) B_{I J} \wedge F^{I J}-\frac{\alpha r^{2}}{1+\gamma^{2}} \frac{1}{4!} \epsilon_{I J K L} B^{I J} \wedge B^{K L}+B_{I J} \wedge \nabla \lambda^{I J}\right)
$$

where $\quad B_{I J}=\frac{1}{8 \pi G}\left(\frac{1}{2} \epsilon_{I J K L} e^{K} \wedge e^{L}-\frac{1}{\gamma} e_{I} \wedge e_{J}\right)$
$\gamma=$ Barbero-Immirzi parameter
$r=0$-form, effective Ricci scalar at a coarse-graining scale
$\alpha=$ coupling constant dimensions of Area

- It provides an embedding in spinfoams of the Starobinsky model (1979)

$$
S\left[g_{\mu \nu}\right]=\frac{1}{16 \pi G} \int d^{4} x \sqrt{-g}\left(R+\alpha R^{2}\right)
$$

$$
\mathcal{G}_{\mu \nu}+\alpha \mathcal{H}_{\mu \nu}=8 \pi G T_{\mu \nu}
$$

Friedman eq: $\quad H^{2}+6 \alpha\left(6 H^{2} \dot{H}-\dot{H}^{2}+2 H \ddot{H}\right)=0$
gravity-driven inflation

Primordial spectra from adiabatic vacuum

in the quasi de-Sitter phase $36 \epsilon_{1} \alpha H^{2}=1$
PLANCK 2015
$\left(k_{*}=0.002 \mathrm{Mpc}^{-1}\right)$

- Scalar perturbations

$$
\begin{aligned}
A_{s} & \equiv \frac{k_{*}^{3} P_{s}\left(k_{*}, t_{*}\right)}{2 \pi^{2}} \approx \frac{G \hbar H_{*}^{2}}{2 \pi \epsilon_{1 *}} \\
n_{s} & \equiv 1+\left.k \frac{d}{d k} \log \left(k^{3} P_{s}\left(k, t_{*}\right)\right)\right|_{k=k_{\star}} \approx 1-2 \epsilon_{1 *}-\epsilon_{2 *}
\end{aligned}
$$

- Tensor perturbations

$$
\begin{aligned}
A_{t} & \equiv \frac{k_{*}^{3} P_{t}\left(k_{*}, t_{*}\right)}{2 \pi^{2}} \approx \frac{G \hbar H_{*}^{2}}{2 \pi} 48 \epsilon_{1 *} \\
n_{t} & \left.\equiv k \frac{d}{d k} \log \left(k^{3} P_{t}\left(k, t_{*}\right)\right)\right|_{k=k_{*}} \approx-2 \epsilon_{1 *}+\epsilon_{2 *} \\
r & \equiv \frac{A_{t}}{A_{s}} \approx 48 \epsilon_{1 *}^{2} \\
N_{*} & =\int_{t_{*}}^{t_{\text {end }}} H(t) d t=18 H_{*}^{2} \alpha-\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& A_{s}=(2.474 \pm 0.116) \times 10^{-9} \\
& n_{s}=0.9645 \pm 0.0062 \\
& r<0.11
\end{aligned}
$$

$$
\Sigma\left\{\begin{array}{l}
\alpha \approx 3.54 \times 10^{10} G \hbar \\
H_{*} \approx 1.05 \times 10^{-5} \frac{1}{\sqrt{G \hbar}} \\
r \approx 2.4 \times 10^{-3} \\
N_{*} \approx 70
\end{array}\right.
$$

Background dynamics and pre-inflationary initial conditions

Pre-inflationary initial conditions: scalar and tensor modes

In the pre-inflationary phase
both scalar and tensor perturbations satisfy

$$
\ddot{u}(k, t)+\frac{1}{t} \dot{u}(k, t)+\frac{k^{2}}{H_{c} t} u(k, t)=0
$$

adiabatic vacuum $\quad u_{0}(k, t)=\sqrt{\frac{\pi}{2}}\left(J_{0}\left(2 k \sqrt{t / H_{c}}\right)-i Y_{0}\left(2 k \sqrt{t / H_{c}}\right)\right)$
vanishing correlations in the limit $t \rightarrow 0$, Bunch-Davies like correlations produced before the quasi-de Sitter phase

Plan:
I) Entanglement in simple systems
II) Building space from entanglement
\longrightarrow a) Entanglement, mutual information and bosonic correlators
b) Gluing quantum polyhedra with entanglement
c) Entanglement and Lorentz invariance
III) Entanglement in the sky

Defining entanglement entropy in loop quantum gravity

$$
\text { Entanglement entropy } \quad S_{R}(|\psi\rangle)=-\operatorname{Tr}(\rho \log \rho)
$$

characterizes the statistical fluctuations in a sub-algebra of observables

Two extreme choices of subalgebra:
a) Determine the algebra of Dirac observables of LQG, then consider a subalgebra
b) Enlarge the Hilbert space of LQG to a bosonic Fock space, then consider a bosonic subalgebra
[EB-Hackl-Yokomizo 20I5]
\longleftarrow difficult to use
$\longleftarrow \quad \begin{aligned} & \text { useful for } \\ & \text { building space }\end{aligned}$

Other choices:

- In lattice gauge theory, trivial center sub-algebra
- Adding d.o.f. (on the boundary), electric center subalgebra
[Casini-Huerta-Rosalba 2013]
[Donnelly 2012] [Donnelly-Freidel 2016] [Anza-Chirco 2016][Han et al 2017] [Chirco-Mele-Oriti-Vitale et al 2017] [Delcalp-Dittrich-Riello 2017]
- Intertwiner subalgebra (at fixed spin)
[Livine-Feller 2017]
- ...

Bosonic formulation of LQG on a graph

- Two oscillators per end-point of a link
spin from oscillators $|j, m\rangle=\frac{\left(a^{0 \dagger}\right)^{j+m}}{\sqrt{(j+m)!}} \frac{\left(a^{1 \dagger}\right)^{j-m}}{\sqrt{(j-m)!}}|0\rangle$
- Hilbert space of LQG and the bosonic Hilbert space

$$
\begin{gathered}
L^{2}\left(S U(2)^{L} / S U(2)^{N}\right) \subset \mathcal{H}_{\text {bosonic }} \\
|\psi\rangle=\sum_{n_{i}=1}^{\infty} c_{n_{1} \cdots n_{4 L}}\left|n_{1}, \ldots, n_{4 L}\right\rangle
\end{gathered}
$$

[Girelli-Livine 2005] [Freidel-Speziale 2010] [Livine-Tambornino 20II] [Wieland 20II]
[EB-Guglielmon-Hackl-Yokomizo 2016]
-The bosonic Hilbert space factorizes over nodes: easy to define and compute the entanglement entropy

- Geometric operators in a region R of the graph generate a subalgebra $\quad \mathcal{A}_{R}^{\mathrm{LQG}} \subset \mathcal{A}_{R}^{\text {bosonic }}$

Entanglement entropy of a bosonic subalgebra A

- Spin-network state $\left|\Gamma, j_{l}, i_{n}\right\rangle$
factorized over nodes no correlations, zero entanglement entropy in A
- Coherent states $\quad P|z\rangle=P e^{z_{A}^{i} a_{i}^{A \dagger}}|0\rangle$ not factorized over nodes only because of the projector P exponential fall off of correlations
 area law from Planckian correlations only
- Squeezed states $P|\gamma\rangle=P e^{\gamma_{A B}^{i j} a_{i}^{A \dagger} a_{j}^{B \dagger}}|0\rangle$
not factorized over nodes because of the projector P and because of off-diag. terms in $\gamma_{A B}^{i j}$ long-range correlations from $\gamma_{A B}^{i j}$
efficient parametrization of a corner of the Hilbert space characterized by correlations zero-law, area-law, volume-law entanglement entropy depending on $\gamma_{A B}^{i j}$

Long-range correlations and the bosonic mutual information

- Macroscopic observables in region A and B
- Correlations bounded by relative entropy of A, B

$$
\frac{\left(\left\langle\mathcal{O}_{A} \mathcal{O}_{B}\right\rangle-\left\langle\mathcal{O}_{A}\right\rangle\left\langle\mathcal{O}_{B}\right\rangle\right)^{2}}{2\left\|\mathcal{O}_{A}\right\|^{2}\left\|\mathcal{O}_{B}\right\|^{2}} \leq I(A, B)
$$

where

$$
I(A, B) \equiv S\left(\rho_{A B} \mid \rho_{A} \otimes \rho_{B}\right)=S_{A}+S_{B}-S_{A B}
$$

The bosonic formulation is useful because it allows us to define and compute the mutual information $I(A, B)$ This quantity bounds from above the correlations of all $L Q G$-geometric observables in A and B

Plan:
I) Entanglement in simple systems
II) Building space from entanglement
a) Entanglement, mutual information and bosonic correlators
\longrightarrow b) Gluing quantum polyhedra with entanglement
c) Entanglement and Lorentz invariance
III) Entanglement in the sky

Classical geometry of a tetrahedron in \mathbb{R}^{3}
$\left\{\begin{array}{lll}\text { Area vectors } & \vec{E}_{a} & a=1,2,3,4 \\ \text { Closure } & \vec{E}_{1}+\vec{E}_{2}+\vec{E}_{3}+\vec{E}_{4}=0\end{array}\right.$

- area of a face $\quad A_{a}=\left|\vec{E}_{a}\right|$
- angle between two faces

$$
\vec{E}_{a} \cdot \vec{E}_{b}=A_{a} A_{b} \cos \theta_{a b}
$$

- volume of the tetrahedron

$$
V=\frac{\sqrt{2}}{3} \sqrt{\left|\vec{E}_{1} \cdot\left(\vec{E}_{2} \times \vec{E}_{3}\right)\right|}
$$

The phase space of a tetrahedron

$$
\vec{E}_{a}=A_{a} \vec{n}_{a} \quad a=1,2,3,4
$$

Function $\quad f: S^{2} \times S^{2} \times S^{2} \times S^{2} \rightarrow \mathbb{R}$
Poisson brackets

$$
\left\{f\left(\vec{E}_{a}\right), g\left(\vec{E}_{a}\right)\right\}=\sum_{a=1}^{4} \vec{E}_{a} \cdot\left(\frac{\partial f}{\partial \vec{E}_{a}} \times \frac{\partial g}{\partial \vec{E}_{a}}\right)
$$

Fuctions invariant under rotations

$$
\left\{\begin{array}{l}
q=\text { angle between } \vec{E}_{1} \times \vec{E}_{2} \quad \text { and } \quad \vec{E}_{3} \times \vec{E}_{4} \\
p=\left|\vec{E}_{1}+\vec{E}_{2}\right|
\end{array}\right.
$$

Canonical variables $\{q, p\}=1$
Volume as a function of q and p

$$
V=\frac{\sqrt{2}}{3} \sqrt{\left|\vec{E}_{1} \cdot\left(\vec{E}_{2} \times \vec{E}_{3}\right)\right|}=\frac{1}{3 \sqrt{2}} \sqrt{p\left(p^{2}-4 A^{2}\right)|\sin q|}
$$

Bohr-Sommerfeld quantization of the Volume

Quantization condition:

orbits of constant volume enclose an integer number
of phase-space cells of area $2 \pi \hbar$

Bohr-Sommerfeld quantization of the Volume

Quantization condition:

orbits of constant volume enclose an integer number of phase-space cells of area $2 \pi \hbar$

Bohr-Sommerfeld quantization of the Volume

	Table: Volume spectrum					
$j_{1} j_{2}$	j_{3}	j_{4}	Loop gravity			
$\frac{1}{2} \frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	0.310			

Bohr-Sommerfeld quantization of the Volume

Bohr-Sommerfeld quantization of the Volume

Spin: irreps of $S U(2)$

$$
|j, m\rangle \in \mathcal{H}_{j}
$$

Intertwiner: invariant tensor

$$
|i\rangle \in \operatorname{Inv}_{S U(2)}\left(\mathcal{H}_{j_{1}} \otimes \mathcal{H}_{j_{2}} \otimes \mathcal{H}_{j_{3}} \otimes \mathcal{H}_{j_{4}}\right)
$$

$$
|i\rangle=\sum_{m_{1} m_{2} m_{3} m_{4}} i_{m_{1} m_{2} m_{3} m_{4}}\left|j_{1}, m_{1}\right\rangle\left|j_{2}, m_{2}\right\rangle\left|j_{3}, m_{3}\right\rangle\left|j_{4}, m_{4}\right\rangle
$$

Quantum Geometry

- area normals

$$
\vec{E}_{a}=8 \pi G \hbar \gamma \vec{L}_{a}
$$

$$
a=1,2,3,4
$$

- area operator $\quad A_{a}=\left|\vec{E}_{a}\right|$

$$
\text { spectrum } \quad A_{a}|i\rangle=8 \pi G \hbar \gamma \sqrt{j_{a}\left(j_{a}+1\right)}|i\rangle
$$

- angle operator $\quad \vec{E}_{a} \cdot \vec{E}_{b}$
(Penrose metric)
-Volume operator $\quad V=\frac{\sqrt{2}}{3} \sqrt{\left|\vec{E}_{1} \cdot\left(\vec{E}_{2} \times \vec{E}_{3}\right)\right|}$

Exercise: Volume spectrum in $\quad \frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2}$

Basis of intertwiner space $\quad|0\rangle, \quad|1\rangle$
Matrix elements of $\quad Q=\vec{L}_{1} \cdot\left(\vec{L}_{2} \times \vec{L}_{3}\right)$

$$
Q_{i}{ }^{j}=\langle i| \vec{L}_{1} \cdot\left(\vec{L}_{2} \times \vec{L}_{3}\right)|j\rangle=\left(\begin{array}{cc}
0 & \mathrm{i} \frac{\sqrt{3}}{4} \\
-\mathrm{i} \frac{\sqrt{3}}{4} & 0
\end{array}\right)
$$

Eigenvectors and Eigenvalues

$$
Q\left|q_{ \pm}\right\rangle=q_{ \pm}\left|q_{ \pm}\right\rangle \quad\left|q_{ \pm}\right\rangle=\frac{|0\rangle \pm \mathrm{i}|0\rangle}{\sqrt{2}} \quad q_{ \pm}= \pm \frac{\sqrt{3}}{4}
$$

Volume spectrum

$$
\begin{aligned}
& V=(8 \pi G \hbar \gamma)^{3 / 2} \frac{\sqrt{2}}{3} \sqrt{|Q|} \\
& V\left|q_{ \pm}\right\rangle=v_{ \pm}\left|q_{ \pm}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
v_{ \pm} & =(8 \pi G \hbar \gamma)^{3 / 2} \frac{\sqrt{2}}{3} \sqrt{\frac{\sqrt{3}}{4}} \\
& \approx(8 \pi G \hbar \gamma)^{3 / 2} \times 0.310
\end{aligned}
$$

Bohr-Sommerfeld quantization of the Volume

		Table: Volume spectrum		
j_{1}	j_{2}	j_{3}	j_{4}	Loop gravity
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	0.310
$\frac{1}{2}$	$\frac{1}{2}$	1	1	0.396
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	0.464
$\frac{1}{2}$	1	1	$\frac{3}{2}$	0.498

up to rotations, there is a unique convex polyhedron in
3d Euclidean space having faces with normals $\quad \vec{E}_{a}=A_{a} \vec{n}_{a}$

$A_{a}=$ areas	$\sum_{a} A_{a} \vec{n}_{a}=0$
$\vec{n}_{a}=$ unit vectors	

$$
\mathcal{P}_{N}=\left\{\vec{E}_{a}, a=1 \ldots N \mid \sum_{a} \vec{E}_{a}=0,\left\|\vec{E}_{a}\right\|=A_{a}\right\} / S O(3)
$$

Kapovich-Millson theorem [1996]
\mathcal{P}_{N} has naturally the structure of a phase space
Poisson brackets $\quad\left\{f\left(\vec{E}_{a}\right), g\left(\vec{E}_{a}\right)\right\}=\sum_{a=1}^{N} \vec{E}_{a} \cdot\left(\frac{\partial f}{\partial \vec{E}_{a}} \times \frac{\partial g}{\partial \vec{E}_{a}}\right)$

Convex Euclidean polyhedra form a phase space

Quantization \Rightarrow Hilbert space of intertwiners = nodes of a spin-network graph

Beyond tetrahedra: $F=6$, the space of shapes of ...

Volume spectrum with Quantum Chaos behavior
Haggard PRD' 13
ColemanSmith-Muller PRD'13

Gluing quantum polyhedra with entanglement

- Fluctuations of nearby quantum shapes are in general uncorrelated: twisted geometry
[Dittrich-Speziale 2008] [EB 2008]
[Freidel-Speziale 2010] [EB-Dona-Speziale 2010]
[Dona-Fanizza-Sarno-Speziale 20I7]
- Saturating uniformly the short-ranged relative entropy

$$
\frac{\left(\left\langle\mathcal{O}_{A} \mathcal{O}_{B}\right\rangle-\left\langle\mathcal{O}_{A}\right\rangle\left\langle\mathcal{O}_{B}\right\rangle\right)^{2}}{2\left\|\mathcal{O}_{A}\right\|^{2}\left\|\mathcal{O}_{B}\right\|^{2}} \leq I(A, B)
$$

where

$$
I(A, B) \equiv S\left(\rho_{A B} \mid \rho_{A} \otimes \rho_{B}\right)=S_{A}+S_{B}-S_{A B}
$$

correlates fluctuations of the quantum geometry

$$
\text { State with } \quad \max \sum_{\langle A, B\rangle} I(A, B)
$$

Plan:
I) Entanglement in simple systems
II) Building space from entanglement
a) Entanglement, mutual information and bosonic correlators
b) Gluing quantum polyhedra with entanglement
\rightarrow c) Entanglement and Lorentz invariance
III) Entanglement in the sky

Lorentz invariance in LQG

- Discrete spectra are Lorentz covariant
- Lorentz invariant state in LQG ?

1) Minkowski geometry as expectation value
2) Lorentz-invariant 2 -point correlation functions, 3-point...

- Homogeneous and isotropic states in LQG ? similarly (1), (2)

Strategy: double-scaling encoded in the state

- use squeezed states defined in terms of I - and 2 -point correlations

- graph, e.g. cubic lattice with N nodes

Escher 1953

- choose the diagonal entries of the squeezing matrix $\gamma_{A B}^{i j}$ to fix the expectation value of the spin $\langle j\rangle$
- choose the off-diagonal entries of $\gamma_{A B}^{i j}$ to fix the correlation function $\mathcal{C}=\left\langle\mathcal{O}_{A} \mathcal{O}_{B}\right\rangle-\left\langle\mathcal{O}_{A}\right\rangle\left\langle\mathcal{O}_{B}\right\rangle$ at a lattice distance n_{0}
- the correlation function can be expressed in terms of the physical length $\ell \sim n_{0} \sqrt{\langle j\rangle}$
- take the limit of the squeezed state $|\gamma\rangle$ such that $\langle j\rangle \rightarrow 0, n_{0} \rightarrow \infty$ with $\mathcal{C}(\ell)$ fixed
- the limit can be studied at fixed physical volume $V \sim N(\sqrt{\langle j\rangle})^{3}$, with symmetries imposed on $\mathcal{C}(\ell)$

Toy model: Id chain of quantum cubes with long-range entanglement and translational invariance [EB-Dona]

