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1)  Entanglement in simple systems

Plan:

1I)  Building space from entanglement

III)  Entanglement in the sky



Entangled state Einstein-Podolsky-Rosen, 1935
Schrödinger, 1935

Singlet state of two spins: |si = 1p
2

⇣
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How entanglement is produced:     
     E.g., electron-positron annihilation into two gamma rays
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How to build your cheap entanglement experiment at home:

        you need   - two Geiger counters
                         - a disk of radioactive Sodium 22
                         - a tablet running a GeigerBot app

See G. Musser (2013)
   http://blogs.scientificamerican.com/critical-opalescence/how-to-
build-your-own-quantum-entanglement-experiment-part-1-of-2/

http://blogs.scientificamerican.com/critical-opalescence/how-to-build-your-own-quantum-entanglement-experiment-part-1-of-2/
http://blogs.scientificamerican.com/critical-opalescence/how-to-build-your-own-quantum-entanglement-experiment-part-1-of-2/


Entangled state

Singlet state of strangeness:

How entanglement is produced:     
     E.g., resonant production of neutral Kaons

e�

e+e� + e+ ! �(1024) ! K0 + K̄0

KL KS

|fi = 1p
2

⇣
|K0i|K̄0i � |K̄0i|K0i

⌘

DAFNE @ LNF
   a Double Annular Φ Factory for Nice Experiments
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Mixed state from entanglement

Entanglement entropy

Entangled oscillators

P (nA) P (nB)

A B

|0iA |0iB

| 0i =
1X

n=0

p
pn |niA |niB

⇢A = TrB(| 0ih 0|) =
1X

n=0

pn |niA hn|A

If we make measurements on A only,

SA = �TrA(⇢A log ⇢A) = �
X

n

pn log pn



The Vacuum State of a Quantum Field
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The vacuum state of a quantum field is highly entangled
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H = C2
⌦ · · ·⌦ C2

NB

Hilbert space:        dimensional2N

Entanglement entropy

⇢A = TrB(| ih |)

SA(| i) = �TrA(⇢A log ⇢A)

Geometric subsystem
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1) Factorized basis states
        zero law

Entanglement as a probe of locality  - e.g.  1d  fermionic chain 

NA  = subsystem size
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1) Factorized basis states
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Entanglement as a probe of locality  - e.g.  1d  fermionic chain 

2) Ground state of a local Hamiltonian
        area law

[Sorkin (10th GRG) 1985]
[Srednicki, PRL 1993]
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3) Typical state in the Hilbert space
        volume law  - maximally entangled

NA  = subsystem size

[Page, PRL 1993]
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[E.B.-Hackl-Rigol-Vidmar, PRL 2017]



Entanglement as a probe of locality  - e.g.  1d  fermionic chain 

H = C2
⌦ · · ·⌦ C2

NB

Hilbert space:        dimensional2N

Entanglement entropy

⇢A = TrB(| ih |)

SA(| i) = �TrA(⇢A log ⇢A)

Geometric subsystem

1) Factorized basis states
        zero law

|"i|#i · · · |#i

NA

2) Ground state of a local Hamiltonian
        area law

3) Typical state in the Hilbert space
        volume law  - maximally entangled

4) Typical excited state of a local Hamiltonian
    have non-maximal ent. at finite fraction

[E.B.-Hackl-Rigol-Vidmar, PRL 2017]



1)  Entanglement in simple systems

Plan:

1I)  Building space from entanglement

III)  Entanglement in the sky



General Relativity  1915 Quantum Mechanics    ~1925

Two fundamental descriptions of the world:  an unfinished revolution

Degrees of freedom of gravity:
  - Geometry of spacetime

Degrees of freedom:  
  - Discrete spectra
  - Entangled



Entanglement and the architecture of a spacetime geometry

EB and R.Myers, CQG (2012)
“On the Architecture of Spacetime Geometry”

Arguments from:   Black hole thermodynamics (Bekenstein, Hawking, Sorkin,…)
                           Holography and AdS/CFT (Maldacena,..  Van Raamsdonk,..  Ryu, Takayanagi,…)
                           Entanglement equilibrium (Jacobson)
                           Loop quantum gravity (EB)

- Entanglement entropy as a probe of the architecture of spacetime
  Area-law not generic, property of semiclassical states

SA(|0i) = 2⇡
Area(@A)

L2
Planck

+ . . .



Loop Quantum Gravity 
1986  -  New Variables for General Relativity - Abhay Ashtekar

1987  -  The Loop Representation - Carlo Rovelli and Lee Smolin

1992  -  Discrete Quanta of Space - Ashtekar-Rovelli-Smolin

had expected matter to be before the dis-
covery of atoms. Some of our teachers
and mentors had pointed out that if this
assumption was wrong, the old calcula-
tions would not be reliable.

So we began searching for a way to
do calculations without assuming that
space is smooth and continuous. We in-
sisted on not making any assumptions
beyond the experimentally well tested
principles of general relativity and quan-
tum theory. In particular, we kept two
key principles of general relativity at the
heart of our calculations.

The first is known as background in-
dependence. This principle says that the
geometry of spacetime is not fixed. In-
stead the geometry is an evolving, dy-
namical quantity. To find the geometry,
one has to solve certain equations that in-
clude all the effects of matter and energy.
Incidentally, string theory, as currently
formulated, is not background indepen-
dent; the equations describing the strings

are set up in a predetermined classical
(that is, nonquantum) spacetime. 

The second principle, known by the
imposing name diffeomorphism invari-
ance, is closely related to background in-
dependence. This principle implies that,
unlike theories prior to general relativity,
one is free to choose any set of coordi-
nates to map spacetime and express the
equations. A point in spacetime is defined
only by what physically happens at it, not
by its location according to some special
set of coordinates (no coordinates are spe-
cial). Diffeomorphism invariance is very
powerful and is of fundamental impor-
tance in general relativity. 

By carefully combining these two
principles with the standard techniques of
quantum mechanics, we developed a
mathematical language that allowed us to
do a computation to determine whether
space is continuous or discrete. That cal-
culation revealed, to our delight, that
space is quantized. We had laid the foun-

dations of our theory of loop quantum
gravity. The term “loop,” by the way,
arises from how some computations in
the theory involve small loops marked
out in spacetime.

The calculations have been redone by
a number of physicists and mathemati-
cians using a range of methods. Over the
years since, the study of loop quantum
gravity has grown into a healthy field of
research, with many contributors around
the world; our combined efforts give us
confidence in the picture of spacetime I
will describe.

Ours is a quantum theory of the struc-
ture of spacetime at the smallest size
scales, so to explain how the theory works
we need to consider what it predicts for a
small region or volume. In dealing with
quantum physics, it is essential to specify
precisely what physical quantities are 
to be measured. To do so, we consider a 
region somewhere that is marked out by 
a boundary, B [see illustration below]. 

QUANTUM STATES OF VOLUME AND AREA
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A CENTRAL PREDICTION of the loop quantum
gravity theory relates to volumes and areas.
Consider a spherical shell that defines the
boundary, B, of a region of space having
some volume (above). According to classical
(nonquantum) physics, the volume could be any positive real
number. The loop quantum gravity theory says, however, that
there is a nonzero absolute minimum volume (about one cubic
Planck length, or 10–99 cubic centimeter), and it restricts the
set of larger volumes to a discrete series of numbers. Similarly,

there is a nonzero minimum area (about one square Planck
length, or 10–66 square centimeter) and a discrete series of
larger allowed areas. The discrete spectrum of allowed quantum
areas (left) and volumes (center) is broadly similar to the
discrete quantum energy levels of a hydrogen atom (right).
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Fingerprints  of an  Atom of Space



[soap foam - microphotography by Pyanek]

Quantum geometry of spacetime:              discrete,    non-commutative,   entangled.



-         =  4d manifold of trivial topology

Degrees of freedom of covariant loop quantum gravity  (aka spin-foams)

Spacetime manifold and the notion of  2d-foam

4-cells         =  4-ball

        = 3-cells

       = 2-cells

-         =  Topological decomposition of       in cells

-  Set             =  2-skeleton of                  =  2d-foam 

*  The manifold                                    is non simply-connected, non-trivial           

     non-contractible loops around   

Rovelli-Reisenberger ‘96
Barrett-Crane ‘98
Engle-Pereira-Rovelli-Livine ‘08
EB ’09
…



Dynamics of covariant loop quantum gravity  (aka spin-foams)

  Gravity:   Einstein-Cartan action + Holst term � 2 R = Barbero-Immirzi parameter

  Topological Field Theory:   BF action   BIJ = two-form field

Gravity as a Topological Theory with constrained B-field:                

Constraint                                        unfreezes 

*

Constraint imposed on                                     

- everywhere on M General Relativity

- on a 2d-foam in M Spin Foam action

2d-foam allows to unfreeze a finite number of gravitational degrees of freedom:
  - quantization straightforward
  - perspective:   General Relativity as Effective field theory description

Rovelli-Reisenberger ‘96
Barrett-Crane ‘98
Engle-Pereira-Rovelli-Livine ‘08
EB ’09
…



Bosonic formulation of LQG on a graph

- Two oscillators per end-point of a link

spin from oscillators |j,mi = (a0†)j+m

p
(j +m)!

(a1†)j�m

p
(j �m)!

|0i

[also known as the twistorial formulation]

[Girelli-Livine 2005] [Freidel-Speziale 2010] 
[Livine-Tambornino 2011] [Wieland 2011]

[EB-Guglielmon-Hackl-Yokomizo 2016]

[Schwinger 1952]

- Hilbert space of LQG and the bosonic Hilbert space

L2(SU(2)L/SU(2)N ) ⇢ Hbosonic

- The bosonic Hilbert space factorizes over nodes:  easy to define and compute the entanglement entropy

| i =
1X

ni=1

cn1···n4L |n1, . . . , n4Li

- Geometric operators in a region R of the graph generate a subalgebra ALQG
R ⇢ Abosonic

R



Classical geometry of a tetrahedron in             -   area vectors

Area vectors

Closure

- area of a face

- angle between two faces

- volume of the tetrahedron



The phase space of a tetrahedron                                          (face-areas      fixed)



Bohr-Sommerfeld quantization of the Volume [ Bianchi-Haggard, PRL ’11]
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Bohr-Sommerfeld quantization of the Volume [ Bianchi-Haggard, PRL ’11]4

in good agreement both qualitatively and quantitatively
even for small spins. To better appreciate the accuracy
of this agreement, we report some numerical data in the
Table.

The reason for a relation between the two volume
spectra can be traced back to recent developments on
(twisted) discrete geometries in loop gravity [3, 4]. In
particular, the assumption (ii) about the Poisson brack-
ets (1) is the classical version of the non-commutativity
of fluxes of the parallel transported electric field in loop
gravity, and descends from the canonical phase space of
general relativity formulated in Ashtekar’s variables, [10].

The Bohr-Sommerfeld approach taken here provides
a new method for understanding many aspects of the
rich structure of the volume spectrum in loop gravity.
This is important because a deep understanding of the
spectra of geometrical operators provides fertile ground
for developing phenomenological tests of loop gravity.

We briefly describe several results arising from the
Bohr-Sommerfeld quantization: The value of the largest
eigenvalue of the volume in H4 can be explained as the
volume of the largest tetrahedron in P4. Moreover, at
large quantum numbers, the levels of the volume are ob-
served to be equispaced. This fact can be understood
in terms of Bohr’s correspondence principle: the spacing
�V is given by 2�

T , where T is the period of the classical
orbits at large volume.

In loop gravity, the discrete spectra of geometrical ob-
servables provide a physical Planck-scale cut-o⇥ that ren-
ders the theory finite in the ultraviolet [10]. An impor-
tant question is whether there exists a volume gap, that
is a discrete gap, above zero, in the volume spectrum for
all spins. We have investigated this question in P4 and
find that, for a given choice of spins, i.e. of Al, the low-
est non-vanishing level of the Bohr-Sommerfeld volume
spectrum is given by

vmin � c
⇥
~ (A1A2A3A4)

1/4, (12)

where c is 2/3 for odd d and
⇥
2/3 for even d. This

result is obtained by expanding the Jacobi action around
the orbits of longest period. Those phase spaces P4

containing degenerate tetrahedra require special care as
there are orbits of infinite period. Nevertheless, they can
be treated using the analytic expression of S(E) in terms
of elliptic functions. These results will be discussed in
detail in a forthcoming paper.

Bohr-Sommerfeld quantization o⇥ers a completely new
perspective on the discreteness of volume in loop gravity.
We have shown that it is quantitatively accurate, and
that it provides an elementary account of various features
of the spectrum.

Using the semiclassical methods of [9], the eigenvectors
of the volume can be computed in a WKB expansion.
The same method can be applied to other geometrical

Table: Volume spectrum

j1 j2 j3 j4 Loop gravity Bohr-Sommerfeld Accuracy

1
2

1
2

1
2

1
2

0.310 0.252 19%

1
2

1
2 1 1 0.396 0.344 13%

1
2

1
2

3
2

3
2

0.464 0.406 12%

1
2 1 1 3

2
0.498 0.458 8%

1 1 1 1
0 0 exact

0.620 0.566 9%
1
2

1
2 2 2 0.522 0.458 12%

1
2 1 3

2 2 0.577 0.535 7%

1 1 1 2 0.620 0.598 4%
1
2

3
2

3
2

3
2

0.620 0.598 4%

1 1 3
2

3
2

0 0 exact

0.753 0.707 6%

· · ·

6 6 6 7

1.828 1.795 1.8%

3.204 3.162 1.3%

4.225 4.190 0.8%

5.133 5.105 0.5%

5.989 5.967 0.4%

6.817 6.799 0.3%

operators, as well as to the alternative versions of the
volume operator considered in the literature. When
N > 4, the phase space PN has dimension greater than
two. A preliminary analysis of the case N = 5 indicates
that, while the volume orbits may be chaotic, the dy-
namics can still be practically investigated numerically.
This opens up the intriguing possibility for exploring
quantum chaos in the volume spectrum of loop gravity.

We thank C. Rovelli and R. Littlejohn for useful discus-
sions. The work of E.B. is supported by a Marie Curie
IE-Fellowship. The work of H.M.H. is supported by a
University of California, Berkeley dissertation year fel-
lowship.
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[2] R. De Pietri and C. Rovelli, Phys. Rev. D54 (1996)
T. Thiemann, J. Math. Phys. 39 (1998) 3347–3371
G. Carbone, M. Carfora, and A. Marzuoli, Class.
Quant. Grav. 19 (2002) 3761–3774.
J. Brunnemann and T. Thiemann, Class. Quant. Grav.
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Volume spectrum with Quantum Chaos behavior

Beyond tetrahedra:  F = 6 , the space of shapes of ... Bianchi-Dona-Speziale PRD’10



Gluing quantum polyhedra with entanglement

- Fluctuations of nearby quantum shapes
  are in general uncorrelated:  twisted geometry   

⇣
hOA OBi � hOAihOBi

⌘2

2 kOAk
2 kOBk

2
 I(A,B)

correlates fluctuations of the quantum geometry

Glued geometry from entanglement

where

- Saturating uniformly the short-ranged relative entropy 

I(A,B) ⌘ S(⇢AB |⇢A ⌦ ⇢B) = SA + SB � SAB

BA

max
X

hA,Bi

I(A,B)State with [EB-Baytas-Yokomizo, to appear]

[Dittrich-Speziale 2008] [EB 2008]
[Freidel-Speziale 2010]
[EB-Dona-Speziale 2010]
[Dona-Fanizza-Sarno-Speziale 2017]
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Plan:
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a)  Entanglement, mutual information and bosonic correlators

b)  Gluing quantum polyhedra with entanglement

c)  Entanglement and Lorentz invariance



Correlations at space-like separation
A

B
r

- In loop quantum gravity

     Hilbert space H� = L2(SU(2)L/SU(2)N )

     contains { (i) states with no space-like correlations                              (e.g. spin-networks)

(ii) states with long-range space-like correlations                  (e.g. squeezed vacua)

- In quantum field theory

     Fock space

     contains { (i) states with no space-like correlations                

(ii) states with specific short-ranged correlations                  (e.g.  Minkowski vacuum)

F = C�H� S(H⌦H)� · · ·

crucial ingredient for quantum origin of cosmological perturbations



The vacuum state of a quantum field is highly entangled



Hot Big Bang
Inflation

Planck Scale

CMB



The Vacuum State of a Quantum Field

No particles a(~k) |0i = 0

Vanishing expectation value h0|'(~x) |0i = 0

Non-vanishing correlations at space-like separation

Fluctuations of the field averaged over a region of size R

(�'R)
2 ⌘ h0|'R 'R|0i � (h0|'R|0i)2 ⇠ 1

R2

h0|'(~x)'(~y) |0i =

Z 1

0

k3 P (k)

2⇡2

sin(k |~x� ~y|)
k |~x� ~y|

dk

k
=

1

(2⇡)2
1

|~x� ~y|2

P (k) =
1

2k
with power spectrum

h0|'(~k)'(~k0) |0i = P (|~k|) (2⇡)3�(~k + ~k0)

Uncorrelated momenta

but non-vanishing fluctuations



           The vacuum of a quantum field after inflation

P (k) =
1

2k

Minkowski



           The vacuum of a quantum field after inflation

P (k) =
1

2k
e
�2H0t +

H
2
0

2 k3
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           The vacuum of a quantum field after inflation Mukhanov-Chibisov (1981)

P (k) =
1

2k
e
�2H0t +

H
2
0

2 k3

P (k) =
1

2k

Minkowski

de Sitter

Inflation (quasi-de Sitter)

Ps(k) ⇡
2⇡2As

k3

 
k

k⇤

!ns�1

As(k⇤) = 2.47⇥ 10�9

ns(k⇤) = 0.96

Planck 2015

with
As ⇠

G~H2
⇤

"⇤



H(t) =
1

2
p
2 +

1

2

�
k
2 � f(t)

�
q
2

Mechanism:  amplification of vacuum fluctuations by instabilities

Harmonic oscillator with 
time-dependent frequency













The anisotropies of the Cosmic Microwave Background  
as observed by Planck



ns = 0.965 ± 0.005

Planck Collaboration, arxiv.org/abs/1502.02114
``Planck 2015 results. XX. Constraints on inflation''

`



ns = 0.965 ± 0.005

Reconstructed primordial power spectrum of curvature perturbations
[Hunt & Sarkar, JCAP 2015]

`

Data I

Planck

WMAP polarisation

k
(

Mpc−1
)

P
ζ
(k
)
/1
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10−4 10−3 10−2 10−1

5



existence of states with no correlation at space-like separation

A distinguishing feature of loop quantum gravity:

Scenario

uncorrelated initial state and its phenomenological imprints



Scenario:  the correlations present at the beginning of slow-roll inflation are produced 
               in a pre-inflationary phase when the LQG-to-QFT transition takes place

BKL conjecture (Belinsky-Khalatnikov-Lifshitz 1970)
In classical General Relativity, the spatial coupling of degrees of freedom is 
suppressed in the approach to a space-like singularity

Quantum BKL conjecture (E.B.-Hackl-Yokomizo 2015)

In quantum gravity, correlations between spatially 
separated degrees of freedom are suppressed in 
the approach to a Planck curvature phase

Ĥ  [gij(x),'(x)] = 0{ lim
a!0

 [a,�, �gij(x), �'(x)] =
Y

~x

 
�
�, �gij(x), �'(x)

�

Emergence of space-like correlations in loop quantum gravity
A

B
r

States with no space-like correlations:  allowed in quantum gravity



Inflation and spinfoams

S[eI ,!IJ , r ,�IJ ] =
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✏IJKLB
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◆- Effective spinfoam action

BIJ =
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�
eI ^ eJ

⌘
where

r = 0-form, effective Ricci scalar at a coarse-graining scale

� =

↵ =

Barbero-Immirzi parameter

coupling constant
dimensions of Area

- It provides an embedding in spinfoams of the Starobinsky model (1979)

S[gµ⌫ ] =
1

16⇡G

Z
d4x

p
�g

�
R+ ↵R2

�

E.B.-Fernandez-Rincon 2017

gravity-driven inflation

Gµ⌫ + ↵Hµ⌫ = 8⇡G Tµ⌫

Friedman eq: H
2 + 6↵

�
6H2

Ḣ � Ḣ
2 + 2HḦ

�
= 0



Primordial spectra from adiabatic vacuum 
in the quasi de-Sitter phase of the            model

PLANCK 2015

As = (2.474± 0.116)⇥ 10�9

ns = 0.9645± 0.0062

r < 0.11

k⇤ = 0.002 Mpc�1

{

at the scale

↵ ⇡ 3.54⇥ 1010 G~

H⇤ ⇡ 1.05⇥ 10�5 1p
G~

R+ ↵R2
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Background dynamics and pre-inflationary initial conditions

HIC SVNT LOOPS

H

Ḣ

Rµ⌫⇢�R
µ⌫⇢� =

1

L4
0

⌧ 1

(G~)2

Quasi-deSitter phase:

Pre-inflationary phase

✏1(t) = � Ḣ

H2
⌧ 1

Hubble rate
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Perturbations and pre-inflationary initial conditions

HIC SVNT LOOPS

H

Ḣ

Rµ⌫⇢�R
µ⌫⇢� =

1

L4
0

⌧ 1

(G~)2

Quasi-deSitter phase:

Pre-inflationary phase

✏1(t) = � Ḣ

H2
⌧ 1

Hubble rate
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Scalar power spectrum with LQG-to-QFT initial conditions
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Bunch-Davies state

Initially uncorrelated state

Power suppression at large angular scales
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Bunch-Davies state

Initially uncorrelated state

Power suppression at large angular scales

Data I

Planck

WMAP polarisation
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Reconstructed primordial power spectrum [Hunt & Sarkar, JCAP 2015]



������� �=���

���� ����� ����/��
�����

�����

�����

�����

��-� ����� ����� �����
At

10�9

Mpc�1

k⇤ = 0.002 Mpc�1

Tensor power spectrum with LQG-to-QFT initial conditions

r =
At(k⇤)

As(k⇤)
= 0.0038Bunch-Davies state

Initially uncorrelated state

Power suppression at large angular scales
E.B.-Fernandez 2017



Hot Big BangInflationPlanck Scale CMBpre-infl. phase

Scenario for the emergence 
of primordial entanglement 
in loop quantum gravity







Inflation and spinfoams

S[eI ,!IJ , r ,�IJ ] =

Z ✓
(1 + 2↵ r)BIJ ^ F IJ � ↵ r2
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✏IJKLB
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◆- Effective spinfoam action

BIJ =
1
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⌘
where

r = 0-form, effective Ricci scalar at a coarse-graining scale
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dimensions of Area

- It provides an embedding in spinfoams of the Starobinsky model (1979)

S[gµ⌫ ] =
1
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Z
d4x

p
�g
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R+ ↵R2
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E.B.-Fernandez-Rincon 2017

gravity-driven inflation

Gµ⌫ + ↵Hµ⌫ = 8⇡G Tµ⌫

Friedman eq: H
2 + 6↵

�
6H2

Ḣ � Ḣ
2 + 2HḦ

�
= 0



Primordial spectra from adiabatic vacuum 
in the quasi de-Sitter phase
- Scalar perturbations

PLANCK 2015          (                           ) 

As = (2.474± 0.116)⇥ 10�9

ns = 0.9645± 0.0062

r < 0.11

k⇤ = 0.002 Mpc�1

- Tensor perturbations
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Friedman eq:
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Pre-inflationary initial conditions:  scalar and tensor modes

H

Ḣ Pre-inflationary 
phase H(t) ⇡ 1

2t

In the pre-inflationary phase
both scalar and tensor perturbations satisfy
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1)  Entanglement in simple systems

Plan:

1I)  Building space from entanglement

III)  Entanglement in the sky

a)  Entanglement, mutual information and bosonic correlators

b)  Gluing quantum polyhedra with entanglement

c)  Entanglement and Lorentz invariance



Defining entanglement entropy in loop quantum gravity

Entanglement entropy

characterizes the statistical fluctuations in a sub-algebra of observables 

- In lattice gauge theory, trivial center sub-algebra

AR ⇢ A
SR(| i) = �Tr(⇢ log ⇢) [Ohya-Petz book 1993]

[Casini-Huerta-Rosalba 2013 ]

Two extreme choices of subalgebra:

a) Determine the algebra of Dirac observables of LQG, 
    then consider a subalgebra

b) Enlarge the Hilbert space of LQG to a bosonic Fock space, 
    then consider a bosonic subalgebra

difficult to use

useful for 
building space

Other choices:

- Adding d.o.f. (on the boundary), electric center subalgebra [Donnelly 2012] [Donnelly-Freidel 2016] [Anza-Chirco 2016][Han et al 2017]
[Chirco-Mele-Oriti-Vitale et al 2017] [Delcalp-Dittrich-Riello 2017]

- Intertwiner subalgebra (at fixed spin) [Livine-Feller 2017 ]

[EB-Hackl-Yokomizo 2015]

- …



Bosonic formulation of LQG on a graph

- Two oscillators per end-point of a link

spin from oscillators |j,mi = (a0†)j+m

p
(j +m)!

(a1†)j�m

p
(j �m)!

|0i

[also known as the twistorial formulation]

[Girelli-Livine 2005] [Freidel-Speziale 2010] 
[Livine-Tambornino 2011] [Wieland 2011]

[EB-Guglielmon-Hackl-Yokomizo 2016]

[Schwinger 1952]

- Hilbert space of LQG and the bosonic Hilbert space

L2(SU(2)L/SU(2)N ) ⇢ Hbosonic

- The bosonic Hilbert space factorizes over nodes:  easy to define and compute the entanglement entropy

| i =
1X

ni=1

cn1···n4L |n1, . . . , n4Li

- Geometric operators in a region R of the graph generate a subalgebra ALQG
R ⇢ Abosonic

R



Entanglement entropy of a bosonic subalgebra A

A

B

- Spin-network state |�, jl, ini

     factorized over nodes

- Coherent states                                    P |zi = P e zi
A aA

i
†
|0i

     not factorized over nodes only because of the projector P
     exponential fall off of correlations

     no correlations,  zero entanglement entropy in A

- Squeezed states                                    

     not factorized over nodes because of the projector P and because of off-diag. terms in 
     long-range correlations from 

P |�i = P e �ij
AB aA

i
†aB

j
†
|0i

�ij
AB

     area law from Planckian correlations only

�ij
AB

     efficient parametrization of a corner of the Hilbert space characterized by correlations

     zero-law,  area-law,  volume-law entanglement entropy  depending on �
ij
AB



Long-range correlations and the bosonic mutual information

- Macroscopic observables in region A and B

A

BC

- Correlations bounded by relative entropy of A, B

⇣
hOA OBi � hOAihOBi

⌘2

2 kOAk
2 kOBk

2
 I(A,B)

where

The bosonic formulation is useful because it allows us to define and compute the mutual information  

I(A,B) ⌘ S(⇢AB |⇢A ⌦ ⇢B) = SA + SB � SAB

I(A,B)

This quantity bounds from above the correlations of all LQG-geometric observables in A and B



1)  Entanglement in simple systems

Plan:

1I)  Building space from entanglement

III)  Entanglement in the sky

a)  Entanglement, mutual information and bosonic correlators

b)  Gluing quantum polyhedra with entanglement

c)  Entanglement and Lorentz invariance



Classical geometry of a tetrahedron in             -   area vectors

Area vectors

Closure

- area of a face

- angle between two faces

- volume of the tetrahedron



The phase space of a tetrahedron                                          (face-areas      fixed)

Function 

Poisson brackets 

Fuctions invariant under rotations 

=  angle between and

Canonical variables

Volume as a function of q and p (equal areas)



The phase space of a tetrahedron                                          (face-areas      fixed)



Bohr-Sommerfeld quantization of the Volume [ Bianchi-Haggard, PRL ’11]

Quantization condition:
   orbits of constant volume enclose an integer number 
   of phase-space cells of area 



Bohr-Sommerfeld quantization of the Volume [ Bianchi-Haggard, PRL ’11]

Quantization condition:
   orbits of constant volume enclose an integer number 
   of phase-space cells of area 

0

S(E)

−Emax

2π d

(n +
1
2
)2π

0 E
EmaxEn



Bohr-Sommerfeld quantization of the Volume [ Bianchi-Haggard, PRL ’11]4

in good agreement both qualitatively and quantitatively
even for small spins. To better appreciate the accuracy
of this agreement, we report some numerical data in the
Table.

The reason for a relation between the two volume
spectra can be traced back to recent developments on
(twisted) discrete geometries in loop gravity [3, 4]. In
particular, the assumption (ii) about the Poisson brack-
ets (1) is the classical version of the non-commutativity
of fluxes of the parallel transported electric field in loop
gravity, and descends from the canonical phase space of
general relativity formulated in Ashtekar’s variables, [10].

The Bohr-Sommerfeld approach taken here provides
a new method for understanding many aspects of the
rich structure of the volume spectrum in loop gravity.
This is important because a deep understanding of the
spectra of geometrical operators provides fertile ground
for developing phenomenological tests of loop gravity.

We briefly describe several results arising from the
Bohr-Sommerfeld quantization: The value of the largest
eigenvalue of the volume in H4 can be explained as the
volume of the largest tetrahedron in P4. Moreover, at
large quantum numbers, the levels of the volume are ob-
served to be equispaced. This fact can be understood
in terms of Bohr’s correspondence principle: the spacing
�V is given by 2�

T , where T is the period of the classical
orbits at large volume.

In loop gravity, the discrete spectra of geometrical ob-
servables provide a physical Planck-scale cut-o⇥ that ren-
ders the theory finite in the ultraviolet [10]. An impor-
tant question is whether there exists a volume gap, that
is a discrete gap, above zero, in the volume spectrum for
all spins. We have investigated this question in P4 and
find that, for a given choice of spins, i.e. of Al, the low-
est non-vanishing level of the Bohr-Sommerfeld volume
spectrum is given by

vmin � c
⇥
~ (A1A2A3A4)

1/4, (12)

where c is 2/3 for odd d and
⇥
2/3 for even d. This

result is obtained by expanding the Jacobi action around
the orbits of longest period. Those phase spaces P4

containing degenerate tetrahedra require special care as
there are orbits of infinite period. Nevertheless, they can
be treated using the analytic expression of S(E) in terms
of elliptic functions. These results will be discussed in
detail in a forthcoming paper.

Bohr-Sommerfeld quantization o⇥ers a completely new
perspective on the discreteness of volume in loop gravity.
We have shown that it is quantitatively accurate, and
that it provides an elementary account of various features
of the spectrum.

Using the semiclassical methods of [9], the eigenvectors
of the volume can be computed in a WKB expansion.
The same method can be applied to other geometrical

Table: Volume spectrum

j1 j2 j3 j4 Loop gravity Bohr-Sommerfeld Accuracy

1
2

1
2

1
2

1
2

0.310 0.252 19%

1
2

1
2 1 1 0.396 0.344 13%

1
2

1
2

3
2

3
2

0.464 0.406 12%

1
2 1 1 3

2
0.498 0.458 8%

1 1 1 1
0 0 exact

0.620 0.566 9%
1
2

1
2 2 2 0.522 0.458 12%

1
2 1 3

2 2 0.577 0.535 7%

1 1 1 2 0.620 0.598 4%
1
2

3
2

3
2

3
2

0.620 0.598 4%

1 1 3
2

3
2

0 0 exact

0.753 0.707 6%

· · ·

6 6 6 7

1.828 1.795 1.8%

3.204 3.162 1.3%

4.225 4.190 0.8%

5.133 5.105 0.5%

5.989 5.967 0.4%

6.817 6.799 0.3%

operators, as well as to the alternative versions of the
volume operator considered in the literature. When
N > 4, the phase space PN has dimension greater than
two. A preliminary analysis of the case N = 5 indicates
that, while the volume orbits may be chaotic, the dy-
namics can still be practically investigated numerically.
This opens up the intriguing possibility for exploring
quantum chaos in the volume spectrum of loop gravity.

We thank C. Rovelli and R. Littlejohn for useful discus-
sions. The work of E.B. is supported by a Marie Curie
IE-Fellowship. The work of H.M.H. is supported by a
University of California, Berkeley dissertation year fel-
lowship.
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Quantum Geometry in intertwiner space [ Barbieri, NPB ’97]

Spin:  irreps of SU(2)

Intertwiner:  invariant tensor

Quantum Geometry

- area normals

- area operator

spectrum

- angle operator 
     (Penrose metric)

- Volume operator 

Rovelli-Smolin ’95

Ashtekar-Lewandowski ’95



Exercise:   Volume spectrum in 

Basis of intertwiner space          , 

Matrix elements of 

Eigenvectors and Eigenvalues

Volume spectrum



Bohr-Sommerfeld quantization of the Volume [ Bianchi-Haggard, PRL ’11]4

in good agreement both qualitatively and quantitatively
even for small spins. To better appreciate the accuracy
of this agreement, we report some numerical data in the
Table.

The reason for a relation between the two volume
spectra can be traced back to recent developments on
(twisted) discrete geometries in loop gravity [3, 4]. In
particular, the assumption (ii) about the Poisson brack-
ets (1) is the classical version of the non-commutativity
of fluxes of the parallel transported electric field in loop
gravity, and descends from the canonical phase space of
general relativity formulated in Ashtekar’s variables, [10].

The Bohr-Sommerfeld approach taken here provides
a new method for understanding many aspects of the
rich structure of the volume spectrum in loop gravity.
This is important because a deep understanding of the
spectra of geometrical operators provides fertile ground
for developing phenomenological tests of loop gravity.

We briefly describe several results arising from the
Bohr-Sommerfeld quantization: The value of the largest
eigenvalue of the volume in H4 can be explained as the
volume of the largest tetrahedron in P4. Moreover, at
large quantum numbers, the levels of the volume are ob-
served to be equispaced. This fact can be understood
in terms of Bohr’s correspondence principle: the spacing
�V is given by 2�

T , where T is the period of the classical
orbits at large volume.

In loop gravity, the discrete spectra of geometrical ob-
servables provide a physical Planck-scale cut-o⇥ that ren-
ders the theory finite in the ultraviolet [10]. An impor-
tant question is whether there exists a volume gap, that
is a discrete gap, above zero, in the volume spectrum for
all spins. We have investigated this question in P4 and
find that, for a given choice of spins, i.e. of Al, the low-
est non-vanishing level of the Bohr-Sommerfeld volume
spectrum is given by

vmin � c
⇥
~ (A1A2A3A4)

1/4, (12)

where c is 2/3 for odd d and
⇥
2/3 for even d. This

result is obtained by expanding the Jacobi action around
the orbits of longest period. Those phase spaces P4

containing degenerate tetrahedra require special care as
there are orbits of infinite period. Nevertheless, they can
be treated using the analytic expression of S(E) in terms
of elliptic functions. These results will be discussed in
detail in a forthcoming paper.

Bohr-Sommerfeld quantization o⇥ers a completely new
perspective on the discreteness of volume in loop gravity.
We have shown that it is quantitatively accurate, and
that it provides an elementary account of various features
of the spectrum.

Using the semiclassical methods of [9], the eigenvectors
of the volume can be computed in a WKB expansion.
The same method can be applied to other geometrical

Table: Volume spectrum
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operators, as well as to the alternative versions of the
volume operator considered in the literature. When
N > 4, the phase space PN has dimension greater than
two. A preliminary analysis of the case N = 5 indicates
that, while the volume orbits may be chaotic, the dy-
namics can still be practically investigated numerically.
This opens up the intriguing possibility for exploring
quantum chaos in the volume spectrum of loop gravity.
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Beyond tetrahedra: number of faces N >4 Bianchi-Dona-Speziale PRD’10

  Minkowski theorem [1897]

up to rotations, there is a unique convex polyhedron in 
3d Euclidean space having faces with normals

  Kapovich-Millson theorem [1996]

            has naturally the structure of a phase space

    Poisson brackets  

Discreteness of the Volume of Space from Bohr-Sommerfeld Quantization
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A major challenge for any theory of quantum gravity is to quantize general relativity while retaining

some part of its geometrical character. We present new evidence for the idea that this can be achieved by

directly quantizing space itself. We compute the Bohr-Sommerfeld volume spectrum of a tetrahedron and

show that it reproduces the quantization of a grain of space found in loop gravity.
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At the Planck scale, a quantum behavior of the geometry
of space is expected. Loop gravity provides a specific
realization of this expectation: It predicts a granularity of
space with each grain having a quantum behavior [1]. In
particular, the volume of a grain of space is quantized and
has a discrete spectrum with a rich structure [2].

In this Letter, we present a new independent road to the
granularity of space and the computation of the spectrum
of the volume. The derivation is based solely on semiclas-
sical arguments applied to the simplest model for a grain of
space, a Euclidean tetrahedron, and is closely related to
Regge’s discretization of gravity and to more recent ideas
about general relativity and quantum geometry [3,4]. The
spectrum is computed by applying Bohr-Sommerfeld
quantization to the volume of a tetrahedron seen as an
observable on phase space. The result is accurate for large
quantum numbers.

Our central question is whether this Bohr-Sommerfeld
volume spectrum and the eigenvalues of the volume op-
erator obtained by quantizing general relativity with loop
methods are related. The remarkable quantitative agree-
ment of the two volume spectra presented here supports
this idea. The result is of interest as it lends further credi-
bility to the intricate derivation of the volume spectrum in
loop gravity, showing that it matches with the elementary
semiclassical approach presented here.

We begin by reviewing how convex polyhedra can be
treated as dynamical systems. Then we discuss the Bohr-
Sommerfeld quantization of the volume of a tetrahedron
and conclude comparing our results to those found in loop
gravity.

Two elegant mathematical results are key in what fol-
lows: Consider a convex polyhedron in three-dimensional
Euclidean space. The first result is a theorem of
Minkowski’s that states that the areas Al and the unit nor-
mals ~n l to the faces of the polyhedron fully characterize its

shape [5,6].Wedefine thevectors ~Al ¼ Al ~n l and callPN the
space of shapes of polyhedrawithN faces of given areasAl:

PN ¼
!
~Al; l ¼ 1; . . . ; N j

X

l

~Al ¼ 0; k ~Al k¼ Al

"#
SOð3Þ:

The second is a result of Kapovich and Millson’s that states
that the set PN has naturally the structure of a phase space

[7]. The Poisson brackets between two functions fð~AlÞ and
gð~AlÞ on PN are

ff; gg ¼
X

l

~Al $
$
@f

@ ~Al

% @g

@ ~Al

%
: (1)

These brackets arise (via symplectic reduction) from the
rotationally invariant Poisson brackets between functions

fð~AlÞ onðS2ÞN . Thus we have that convex polyhedra withN
faces of given areas form a 2ðN & 3Þ-dimensional phase
space [4].
Canonical variables on this phase space can be chosen as

follows: Consider the set of vectors ~pk ¼
Pkþ1

l¼1
~Al, where

k ¼ 1; . . . ; N & 3; we define the coordinate qk as the angle

between the vectors ~pk % ~Akþ1 and ~pk % ~Akþ2 and the
momentum variable pk ¼k ~pk k as the norm of the vector
~pk. From (1), it follows that these are canonically conju-
gate variables: fqk; pk0 g ¼ !kk0 .
In the simplest nontrivial case N ¼ 4, the phase space is

two-dimensional, has the topology of a sphere S2, and
describes the shape of a tetrahedron with faces of given
area (Fig. 1). The coordinate qmeasures the angle between
two opposite edges of the tetrahedron. The conjugate

momentum p ¼k ~A1 þ ~A2 k measures the dihedral angle
between two faces of the tetrahedron. It varies in the
interval ½pmin; pmax), with pmin ¼ maxðjA1 & A2j; jA3 &
A4jÞ and pmax ¼ minðA1 þ A2; A3 þ A4Þ [8].
The volume V of the tetrahedron is a function on this

phase space, P 4, and is given by

V ¼
ffiffiffi
2

p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jHðq; pÞj

q
; (2)

whereHðq; pÞ ¼ ~A1 $ ð~A2 % ~A3Þ is the triple product of the
normals to its faces.
We derive the spectrum of the volume under the follow-

ing two physical assumptions: (i) The first is that, in a
quantum theory of gravity, the full dynamics induces on a
grain of space—a tetrahedron—the natural rotationally
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Convex Euclidean polyhedra form a phase space

Quantization         Hilbert space of intertwiners = nodes of a spin-network graph

= areas

= unit vectors
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Gluing quantum polyhedra with entanglement

- Fluctuations of nearby quantum shapes
  are in general uncorrelated:  twisted geometry   

⇣
hOA OBi � hOAihOBi

⌘2

2 kOAk
2 kOBk

2
 I(A,B)

correlates fluctuations of the quantum geometry

Glued geometry from entanglement

where

- Saturating uniformly the short-ranged relative entropy 

I(A,B) ⌘ S(⇢AB |⇢A ⌦ ⇢B) = SA + SB � SAB

BA

max
X

hA,Bi

I(A,B)State with [EB-Baytas-Yokomizo, to appear]

[Dittrich-Speziale 2008] [EB 2008]
[Freidel-Speziale 2010]
[EB-Dona-Speziale 2010]
[Dona-Fanizza-Sarno-Speziale 2017]



1)  Entanglement in simple systems

Plan:

1I)  Building space from entanglement

III)  Entanglement in the sky

a)  Entanglement, mutual information and bosonic correlators

b)  Gluing quantum polyhedra with entanglement

c)  Entanglement and Lorentz invariance



Lorentz invariance in LQG
- Discrete spectra are Lorentz covariant [Rovelli-Speziale 2002]

- Lorentz invariant state in LQG ?

1) Minkowski geometry as expectation value

2) Lorentz-invariant 2-point correlation functions, 3-point…

- Homogeneous and isotropic states in LQG ?  similarly (1), (2)

Strategy:  double-scaling encoded in the state

- use squeezed states defined in terms of 1- and 2-point correlations 

- choose the diagonal entries of the squeezing matrix           to fix the expectation value of the spin �ij
AB hji

- choose the off-diagonal entries of           to fix the correlation function                                                at a lattice distance

- graph, e.g. cubic lattice with N nodes

�ij
AB

- take the limit of the squeezed state      such that                 ,                     with             fixed

n0

` ⇠ n0

p
hji

V ⇠ N (
p

hji )3

Escher 1953

C = hOA OBi � hOAihOBi

- the correlation function          can be expressed in terms of the physical length 

C(`)|�i hji ! 0 n0 ! 1

- the limit can be studied at fixed physical volume                               ,  with symmetries imposed on C(`)

Toy model:  1d chain of quantum cubes with long-range entanglement and translational invariance [EB-Dona]


