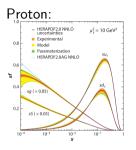
Drell-Yan measurements with π , K and \bar{p} beams

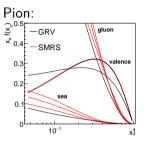
Vincent Andrieux on behalf of the COMPASS Collaboration

University of Illinois at Urbana-Champaign

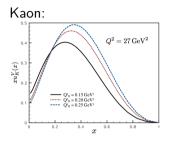
IWHSS 2017 - Cortona. April 3rd-5th

< 口 > < 合型


IWHSS 2017


- O Nuclear effects
- QCD Lam-Tung relation
- 5 Nucleon structure
- 6 Instrumentation requirements
- Conclusions and perspectives

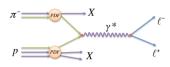
What do we know about hadron structure


- Valence: well known
- Sea: well known
- Gluons: well known

Best known particle thanks to Hera and LHC

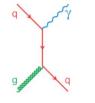
- Valence: roughly known
- Sea: coarse bound
- Gluons: barely constrained
- First moments calculated on lattice

State of the proton in 80's



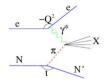
- Valence: unconstrained
- Sea: unknown
- Gluons: unknown
- No moments calculated on lattice

イロト イヨト イヨト


How to access meson structure

Drell-Yan:

- 90's: NA3, NA10, E615
- 10's: COMPASS-II
- 20's: COMPASS++


Prompt photon productions:

- 90's NA24, W70
- 20's COMPASS++

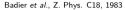
ECT workshop (Nov. 6-10, 2017): Dilepton Productions with Meson and Antiproton Beams

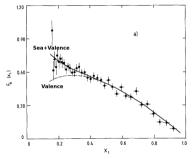
DIS with leading N:

- 90's: H1, ZEUS
- 10's: JLAB TDIS

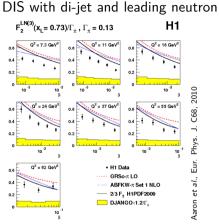
• 30's: EIC Argonne Workshop on π and K structure at an Electron-Ion Collider, June, 1-2, 2017 Nucleon structure In

Evolution of knowledge on pion structure


Group	Year	Set	Q_0^2 (GeV ²)	Factorization scheme	Model	Data	N_{f}	$\Lambda \frac{N_{f=4}}{MS}$ (MeV)
ABFKW	1989	NLO	2.00	MS	$v^{\pi} = \gamma X, DY$ $s^{\pi} = DY$ $g^{\pi} = \gamma X, MSR$	WA70, NA24 NA3 WA70, NA24	4	229
SMRS	1992	10% 15% 20%	4.00	MS	$v^{\pi} = DY$ $s^{\pi} = DY$	NA10, E615 <u>NA3</u> MSR wit WA70	4 h reaso	190 nable bound
GRV	1992	20% LO NLO	0.25 0.30	$\frac{LO}{MS}$	$g^{\pi} = \gamma X$, MSR $v^{\pi} = ABFKW$ $s^{\pi} = 0$	WA70, NA24	6	200
GRSc	1999	LO NLO	0.26 0.40	$\frac{LO}{MS}$	$g^{\pi} = MSR$ $v^{\pi} = DY, MSR$ $s^{\pi} = (v^{\pi}/v^{p})s^{p}$ $g^{\pi} = (v^{\pi}/v^{p})g^{p}$	NA10, E615 H1, ZEUS H1, ZEUS	3	204 299


- Pion structure is not fully constrained
- Momentum Sum Rule (MSR) provides important constraint
- Limited data, no new data for > 20 years

5/29

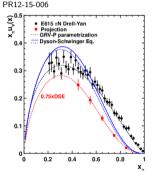

Status on pion sea

Drell-Yan NA3

- $\pi^- Pt$ 200 GeV: 4.7k events
- $\pi^+ Pt$ 200 GeV: 1.7k events
- $\bullet\,$ Very few events for π^+ beam

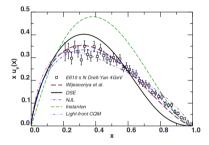
- Wide *x* coverage
- Estimates of pion flux introduce strong model dependence

IWHSS 2017


Renewed interest in meson structure

Tagged DIS at JLAB

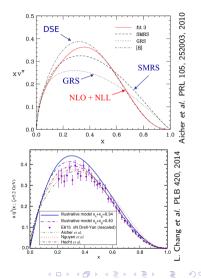
- Same approach as H1 and Zeus: Sullivan process
- Complement to Drell-Yan measurement at high x
- Caveat: Model dependent unknown pion flux \rightarrow normalization to DY at x = 0.5
- Checks of the pion-cloud model


Meson structure at EIC

• DIS on pion and kaon cloud surrounding the proton R. Holt et al. Rev. Mod. Phys. 82, 2010

Status of the pion valence quark distribution

- Several models compatible with empirical data
- Disagreement between fitted PDFs from data and DSE



Holt and Roberts, Rev. Mod. Phys. 82, 2991 (2010).

Introduction Mesons structure Nuclear effects QCD Lam-Tung relation Nucleon structure Instrumentation requirements Conclusions and perspectives

Status of the pion valence quark distribution

- Recent reanalysis at NLL
- Agreement restored between DSE and data
- Caveat: Only valence quark distributions are fitted in NLL
- Sea and gluon from GRS
- Scarce sea quark sensitive data (x < 0.4)

Pion valence-sea separation in Drell-Yan

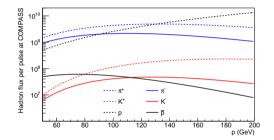
With π^+ and π^- beam with isoscalar target (D for instance):

$$\sigma(\pi^{+}d) \propto \frac{4}{9} [u^{\pi} \cdot (\bar{u}_{s}^{p} + \bar{d}_{s}^{p})] + \frac{4}{9} [\bar{u}_{s}^{\pi} \cdot (u^{p} + d^{p})] + \frac{1}{9} [\bar{d}^{\pi} \cdot (d^{p} + u^{p})] + \frac{1}{9} [d_{s}^{\pi} \cdot (\bar{d}_{s}^{p} + \bar{u}_{s}^{p})]$$

$$\sigma(\pi^{-}d) \propto \frac{4}{9} [u_{s}^{\pi} \cdot (\bar{u}_{s}^{p} + \bar{d}_{s}^{p})] + \frac{4}{9} [\bar{u}^{\pi} \cdot (u^{p} + d^{p})] + \frac{1}{9} [\bar{d}_{s}^{\pi} \cdot (d^{p} + u^{p})] + \frac{1}{9} [d^{\pi} \cdot (\bar{d}_{s}^{p} + \bar{u}_{s}^{p})]$$

- Assumption:
 - Charge conjugation and SU(2)_f for valence: $u_v^{\pi^+} = \bar{u}_v^{\pi^-} = \bar{d}_v^{\pi^+} = d_v^{\pi^+}$
 - Charge conjugation and SU(3)_f for sea:

$$u_{s}^{\pi^{+}} = \bar{u}_{s}^{\pi^{-}} = u_{s}^{\pi^{-}} = \bar{u}_{s}^{\pi^{+}} = \bar{d}_{s}^{\pi^{+}} = d_{s}^{\pi^{+}} = d_{s}^{\pi^{+}} = s_{s}^{\pi^{+}} = \bar{s}_{s}^{\pi^{-}} = \bar{s}_{s$$

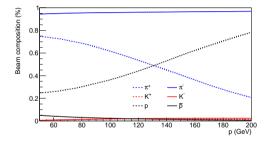

- Two linear combinations
 - Only valence sensitive: $\Sigma_v^{\pi D} = -\sigma^{\pi^+ D} + \sigma^{\pi^- D} \propto \frac{1}{3} u_v^{\pi} (u_v^p + d_v^p)$

• Sea sensitive:
$$\Sigma_s^{\pi D} = 4\sigma^{\pi^+ D} - \sigma^{\pi^- D}$$

M2 beam line at CERN

Assuming $2 \cdot 10^{13}$ ppp on production target

- Unique high intensity meson beams
- Fair sharing between π^+ and p for positive beams around 120 GeV
- Potential for antiproton and kaon studies

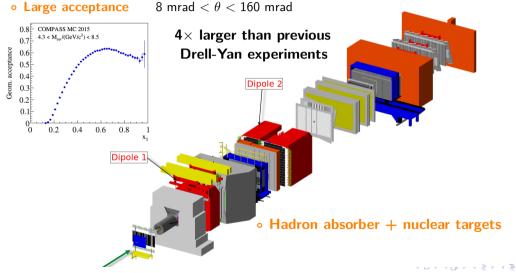

Example around 120 GeV:

- $pprox 2 imes 10^8 \ \pi^-/\pi^+/p$ per second for pprox 10s before collimators.
- $\approx 6 \times 10^7 \ K^+/K^-/\bar{p}$ per second for ≈ 10 s before collimators.

M2 beam line at CERN

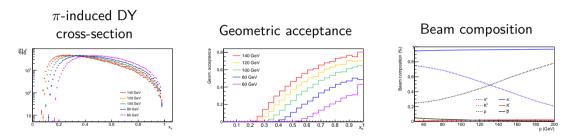
Assuming $2 \cdot 10^{13}$ ppp on production target

- Unique high intensity meson beams
- Fair sharing between π^+ and p for positive beams around 120 GeV
- Potential for antiproton and kaon studies

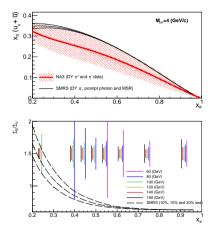


Example around 120 GeV:

- $pprox 2 imes 10^8 \ \pi^-/\pi^+/p$ per second for pprox 10s before collimators.
- $\approx 6{\times}10^7~{K^+}/{K^-}/{\bar p}$ per second for \approx 10s before collimators.
- After collimators and radio-protection limit: Beam mostly composed of π^- or p/ π^+


Mesons structure

Apparatus: use COMPASS spectrometer for initial simulation studies


Trade-off energy, intensity vs. cross-section, acceptance

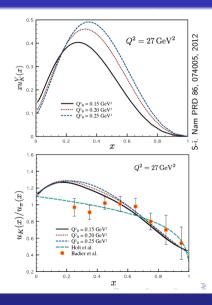
Case studies: Impact of the lower beam energy on the current acceptance

- Acceptance significantly impacted by lowering the beam energy
- Optimize the apparatus to minimize acceptance losses
- Beam Identification essential

Initial results: Sensitivity to valence/sea separation in the pion

- SMRS and NA3 extractions are compatible
- Large uncertainties from "direct sea" measurement
- Projection for current COMPASS acceptance
- 140 days of π^+ with C target with $2{\cdot}10^{13}{\rm ppp}$
- 10% statistical uncertainty in the first bin (0.01 < x < 0.35) for 190 GeV
- Integrated over x: best energy 140 GeV
- Potential gain with improved acceptance at 140 GeV and 120 GeV

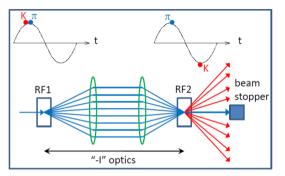
IWHSS 2017


Kaon structure status

Sole measurement from NA3 $K^-\text{-}W$: 700 events

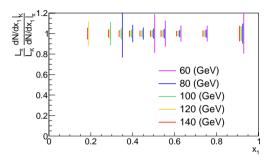
- Sensitive to $SU(3)_f$ breaking
- Mostly only model predictions Illustration for Nambu-Jona-Lasinio (Chiral effective theory)
- No predictions from lattice waiting for data!

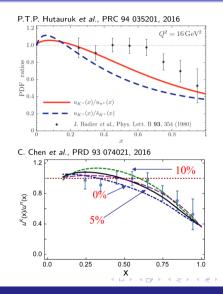
How to improve the situation?


Vincent Andrieux (UIUC)

Unique opportunities with RF separated beam

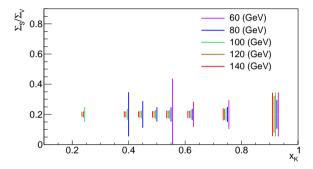
- Deflection with 2 cavities
- $\bullet \ \ {\sf Relative \ phase} = 0 \rightarrow dump$
- Deflection of wanted particle given by $\Delta\phi\approx \frac{\pi fL}{c}\frac{m_w^2-m_u^2}{p^2}$

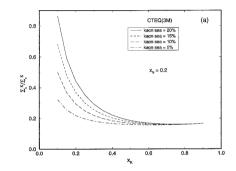

To keep good separation, L should increase as $p^2 \rightarrow$ limits the beam momentum


Preliminary beam flux expectations for $2 \cdot 10^{13}$ ppp: K^-/\bar{p} : $\approx 1 \times 10^7$ particles per second for ≈ 10 s Enhancement by a factor of 50 compared to current beam

See talk from Johannes Bernhard on Monday

Initial results: Projections for valence for Kaons

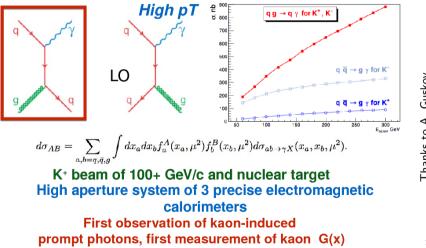

- 3% statistical uncertainty
- $\bullet~140~days$ of K^- with W target
- Obvious improvement in statistics
- Some insight on the gluon content according to Chen Chen *et al.*



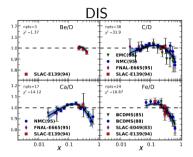
Nucleon structure

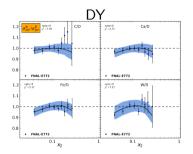
ure Instrumentation requirements Conclusions and perspe

Initial results: Projections for valence/sea separation for Kaons



- 3% statistical uncertainty
- $\bullet\,$ Additional 140 days and K^+ with C target
- Unique measurement of sea in kaons
- Also sensitivity to valence strangeness


Gluon structure of Kaons with prompt photons


At the moment there is no experimental data on G(x) of kaon!

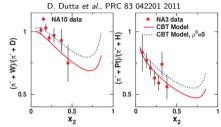
IWHSS 2017

Nuclear effect in hadron structure

- Insight on QCD in many body systems
- Difference in anti-shadowing region (0.1 < x < 0.2) Enhancement visible in DIS vs. Mild increase in DY
 - \rightarrow sea-valence effect?
 - \rightarrow flavor dependence?

(4) (E) (A) (E) (A)

Nuclear effect


Iso-vector ρ^0 mean field generated in $Z \neq N$ nuclei can modify nucleon's u and d PDFs differently

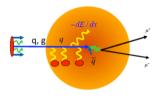
- NA10 π on W favor flavor independence
- NA3 π on Pt favor flavor dependence
- Meson induced Drell-Yan process tags flavor

Precise pions and kaons DY measurements can provide unique constraints

• $\pi^- A/\pi^- D \approx u^A/u^d$ • $\pi^+ A/\pi^- D \approx d^A/4u^d$ • $K^+ A/K^- D \approx (4\bar{u}^A + s^A)/u^d$

Requires only nuclear target, no additional beam time

Parton energy loss


Drell-Yan measurements on nuclei can provide constraints on parton energy loss

See talk from Francois Arleo on Tuesday

- Multiple scattering of incoming quark in large nuclei
- No energy loss in the final state

Two possible signatures:

• $\sigma^{A}_{DY}/\sigma^{D}_{DY} \searrow$ at large x_1 : Softer x_1^A compared to x_1^p

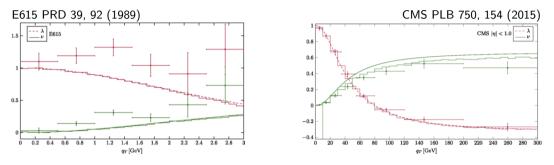
• $< p_T^2 >$ broadening: Additional k_\perp acquired from g scattering

Important input to understand collision system in heavy ion collisions Fixed target kinematic especially suited

Unpolarised Drell-Yan angular dependencies

$$\frac{dN}{d\Omega} = \frac{3}{4\pi} \frac{1}{\lambda+3} \left(1 + \lambda \cos^2(\theta) + \mu \sin(2\theta) \cos(\phi) + \frac{\nu}{2} \sin^2(\theta) \cos(2\phi) \right)$$

In naive Drell-Yan model, no k_T and no QCD processes involving gluons:


$$\lambda=1,\ \mu=0,\
u=0$$

The Lam-Tung relation, derived from the fermionic nature of quarks, predicts:

 $1 - \lambda - 2\nu = 0$

Analog of DIS Callan-Gross relation for Drell-Yan C.S. Lam and W.K. Tung, Phys. Rev. D 18, 2447 (1978)

QCD Lam-Tung relation

- Recent evidence in terms of QCD: radiative effects describe well data at large q_T
 - J.-C. Peng et al. PLB 758, 384 (2016)
 - M. Lambertsen and W. Vogelsang PRD93, 114013 (2016)
- Boer Mulders expected at low $q_T \rightarrow$ fixed target regime
- To single out Boer Mulders effects very precise data are necessary

Synergy DY vs SIDIS

	DY:					SIDIS:		
$A_{UU}^{\cos{(2\phi)}}$	$\propto h_{1,h}^{\perp q}$	\otimes	$h_{1,p}^{\perp q}$	Boer-Mulders	$A_{UU}^{\cos{(2\phi_h)}}$	$\propto h_{1,p}^{\perp q}$	\otimes	$H_{1q}^{\perp h}$
$A_{UT}^{\sin(\phi_S)}$	$\propto f^{q}_{1,h}$	\otimes	$f_{1T,p}^{\perp q}$	Sivers	$A_{UT}^{\sin{(\phi_h-\phi_S)}}$	$\propto f_{1T,p}^{\perp q}$	\otimes	D_{1q}^{h}
${\cal A}_{UT}^{{ m sin}(2\phi-\phi_S)}$	$\propto h_{1,h}^{\perp q}$	\otimes	$h_{1,p}^q$	Transversity	$A_{UT}^{\sin{(\phi_h+\phi_S)}}$	$\propto h_{1,p}^q$	\otimes	$H_{1q}^{\perp h}$
$A_{UT}^{\sin{(2\phi+\phi_S)}}$	$\propto h_{1,h}^{\perp q}$	\otimes	$h_{1T,p}^{\perp q}$	Pretzelosity	$A_{UT}^{\sin{(3\phi_h-\phi_S)}}$	$\propto h_{1T,p}^{\perp q}$	\otimes	$H_{1q}^{\perp h}$

TMD PDFs are **universal** but final state interaction (SIDIS) *vs.* initial state interaction (DY) \rightarrow **Sign flip** for naive T-odd TMD PDFs

$$\begin{array}{c} f_{1T}^{\perp q} \mid_{\text{SIDIS}} = -f_{1T}^{\perp q} \mid_{\text{DY}} \\ h_{1}^{\perp q} \mid_{\text{SIDIS}} = -h_{1}^{\perp q} \mid_{\text{DY}} \end{array}$$

Crucial test of TMD framework in QCD

See talk from Marcia Quaresma on Tuesday

24/29

Synergy DY vs SIDIS

	DY:					SIDIS:		
$A_{UU}^{\cos{(2\phi)}}$	$\propto h_{1,h}^{\perp q}$	\otimes	$h_{1,p}^{\perp q}$	Boer-Mulders	$A_{UU}^{\cos{(2\phi_h)}}$	$\propto h_{1,p}^{\perp q}$	\otimes	$H_{1q}^{\perp h}$
$A_{UT}^{\sin(\phi_S)}$	$\propto f_{1,h}^{q'}$	\otimes	$f_{1T,p}^{\perp q}$	Sivers	$A_{UT}^{\sin{(\phi_h-\phi_S)}}$	$\propto f_{1T,p}^{\perp q}$	\otimes	D_{1q}^{h}
$A_{UT}^{\sin{(2\phi-\phi_S)}}$	$\propto h_{1,h}^{\perp q}$	\otimes	$h_{1,p}^q$	Transversity	$A_{UT}^{{ m sin}(\phi_h+\phi_S)}$	$\propto h_{1,p}^q$	\otimes	$H_{1q}^{\perp h}$
$A_{UT}^{\sin{(2\phi+\phi_S)}}$	$\propto h_{1,h}^{\perp q}$	\otimes	$h_{1T,p}^{\perp q}$	Pretzelosity	$A_{UT}^{\sin{(3\phi_h-\phi_S)}}$	$\propto h_{1T,p}^{\perp q}$	\otimes	$H_{1q}^{\perp h}$

Additional insight with \bar{p} on Boer Mulders

- Transversity modulation less affected by QCD effects
- \rightarrow Extract transversity from SIDIS $A_{UT}^{sin(\phi_h+\phi_S)}$ measurements
 - Use DY measured $A^{sin(2\phi-\phi_S)}$ and SIDIS transversity knowledge
- \rightarrow Obtain Boer-Mulders, $h_{1,p}^{\perp q}$, for proton

Unpolarised DY present/future experiment landscape

M. Diehl, J. Pawlowski, G. Schnell at Physics beyond collider working group, CERN, March 2017

- J-Parc: polarized DY program "in stasis" (30 or even 50 GeV proton beam) "near-term" (2020~), 20 GeV pi- beam fixed-target program possibility for <10 GeV pion/kaon/(anti-)proton beam
- PANDA@FAIR (under construction); 2025++
 √s = 5.5 GeV; valence quarks because of anti-proton beam
- SPASCHARM @ IHEP 20xx ? 40-70 (100?) GeV proton beam on (pol.) fixed-target secondary hadron beams & tertiary polarized (anti)protons
- E906 (FNAL) proton on proton at 120 GeV dedicated to sea quarks in proton

No competitors in our kinematic domain, complementary measurements

💋 Vincent Andrieux (UIUC)

IWHSS 2017

25/29

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Polarised DY present/future experiment landscape

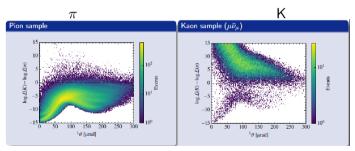
D. Kikola et al. arXiv:1702.01543

Experiment	particles	beam en- ergy (GeV)	\sqrt{s} (GeV)	x^{\uparrow}	$\mathcal{L}(\mathrm{cm}^{-2}\mathrm{s}^{-1})$	$\mathcal{P}_{\mathrm{eff}}$	\mathcal{F} (cm ⁻² s ⁻¹)
AFTER@LHCb	$p + p^{\uparrow}$	7000	115	$0.05 \div 0.95$	$1 \cdot 10^{33}$	80%	$6.4 \cdot 10^{32}$
AFTER@LHCb	$p+^{3}\text{He}^{\uparrow}$	7000	115	$0.05 \div 0.95$	$2.5\cdot10^{32}$	23%	$1.4\cdot 10^{31}$
AFTER@ALICE $_{\mu}$	$p + p^{\uparrow}$	7000	115	$0.1 \div 0.3$	$2.5\cdot 10^{31}$	80%	$1.6\cdot 10^{31}$
COMPASS (CERN)	$\pi^{\pm} + p^{\uparrow}$	190	19	0.2 ÷ 0.3	$2 \cdot 10^{33}$	18%	$6.5 \cdot 10^{31}$
PHENIX/STAR (RHIC)	$p^{\uparrow} + p^{\uparrow}$	collider	510	$0.05 \div 0.1$	$2 \cdot 10^{32}$	50%	$5.0 \cdot 10^{31}$
E1039 (FNAL)	$p + p^{\uparrow}$	120	15	$0.1 \div 0.45$	$4\cdot 10^{35}$	15%	$9.0\cdot 10^{33}$
E1027 (FNAL)	$p^{\uparrow} + p$	120	15	$0.35 \div 0.9$	$2\cdot 10^{35}$	60%	$7.2\cdot10^{34}$
NICA (JINR)	$p^{\uparrow} + p$	collider	26	$0.1 \div 0.8$	$1\cdot 10^{32}$	70%	$4.9\cdot 10^{31}$
fsPHENIX (RHIC)	$p^{\uparrow} + p^{\uparrow}$	collider	200	0.1 ÷ 0.5	$8 \cdot 10^{31}$	60%	$2.9\cdot 10^{31}$
fsPHENIX (RHIC)	$p^{\uparrow} + p^{\uparrow}$	collider	510	$0.05 \div 0.6$	$6\cdot 10^{32}$	50%	$1.5\cdot 10^{32}$
PANDA (GSI)	$\bar{p} + p^{\uparrow}$	15	5.5	$0.2 \div 0.4$	$2\cdot 10^{32}$	20%	$8.0\cdot10^{30}$

No competitors with \bar{p} or meson beams, complementary picture

Vincent Andrieux (UIUC)

IWHSS 2017


26/29

Instrumentation requirements

With RF separated beam the abundance of a given particle species will be about 50%

Excellent beam PID is essential

Illustration CEDAR performances with 190 GeV beam with $2 \cdot 10^7$ particles/spill

 π Eff.= 0.998 & Impurity = 0.018 K/ \bar{p} Eff.=0.88/0.96 & Impurity = 0.025/0.07

Comparable or even superior beam tagging should be available for 10 times higher flux

Target and Vertex detector

Target:

- Choice of target matches physics objectives
- $\bullet\,$ Studies: LH_2, LD_2/C/NH_3 + different A nuclear targets
- \rightarrow Several targets in beam line: Optimization of beam time $\underline{Vertex:}$
 - High intensity incoming hadron beam (up to $10^8/s$)
 - Resulting very high multiplicities requires high performance vertex detectors
 - Necessity for precise evaluation and room for "innovative technologies"
 - $\rightarrow\,$ Very fast timing -low mass- high position resolution detectors
 - $\rightarrow R\&D$ required

Large angle spectrometer:

- Optimize large angle spectrometer
- Increase acceptance of upstream spectrometer
 - $\rightarrow R\&D$ required

Conclusions

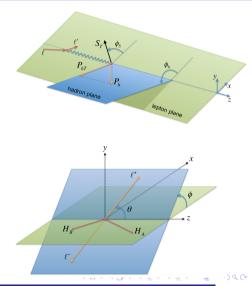
Unique and precise new measurements with a RF separated beam

- Pion and kaon structure including valence sea separation
- Precise test of Lam Tung relation
- Cold nuclear matter effects
- Requirement for RF separated, ongoing
- Evaluation apparatus design, ongoing

New collaborators are welcome

BACKUP

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○ ○

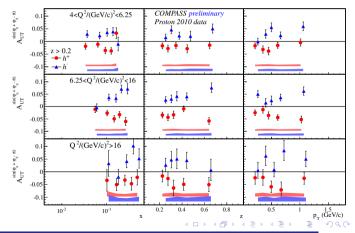

Drell-Yan and SIDIS cross-section modulations

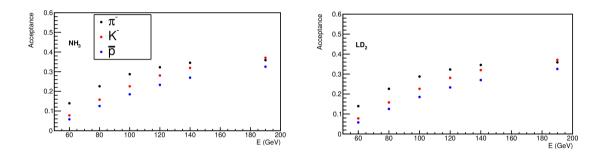
SIDIS:

$$\frac{d\sigma}{dxdydzd\phi_{S}d\phi_{h}dP_{hT}^{2}} \stackrel{\text{LO}}{=} \frac{\alpha^{2}}{xyQ^{2}} \frac{v^{2}}{2(1-\epsilon)} \left(1\frac{\gamma^{2}}{2x}\right) \sigma_{U} \left\{1 + \epsilon A_{UU}^{\cos(2\phi_{h})} \cos(2\phi_{h}) + S_{T} \left[A_{UT}^{\sin(\phi_{h}-\phi_{S})} \sin(\phi_{h}-\phi_{S}) + \epsilon A_{UT}^{\sin(\phi_{h}+\phi_{S})} \sin(\phi_{h}-\phi_{S}) + \epsilon A_{UT}^{\sin(3\phi_{h}-\phi_{S})} \sin(3\phi_{h}-\phi_{S})\right] + S_{T}P_{I} \left[\sqrt{1-\epsilon^{2}} \cos(\phi_{h}-\phi_{S})A_{LT}^{\cos\phi_{h}-\phi_{S}}\right] \right\}$$

$$DY: \frac{d\sigma}{d^{4}qd\Omega} \stackrel{\text{LO}}{=} \frac{\alpha^{2}}{Fq^{2}} \sigma_{U} \left\{ \left(1 + \cos^{2}(\theta) + \sin^{2}(\theta)A_{UU}^{\cos(2\phi)} \cos(2\phi)\right) \right\}$$

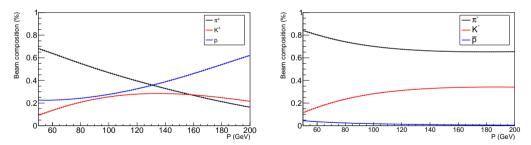
$$+S_{T}\left[(1+\cos^{2}(\theta))A_{UT}^{\sin(\phi_{S})}\sin(\phi_{S}) + \sin^{2}(\theta)\left(A_{UT}^{\sin(2\phi+\phi_{S})}\sin(2\phi+\phi_{S}) + A_{UT}^{\sin(2\phi-\phi_{S})}\sin(2\phi-\phi_{S})\right)\right]\right]$$

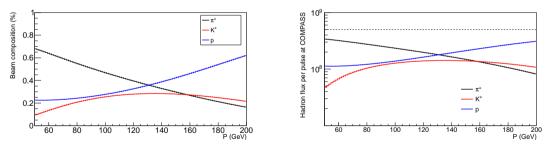



SIDIS Transversity in DY Q^2 ranges

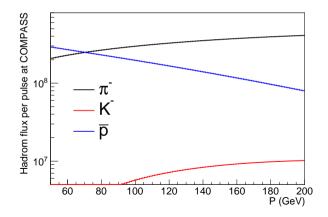
 $h^q_{1,p}:$ correlation between transversely polarised quark in a transversely polarised nucleon

$$A_{UT}^{sin(\phi_h+\phi_S)}\propto h_{1,p}^q\otimes H_{1q}^{\perp h}$$

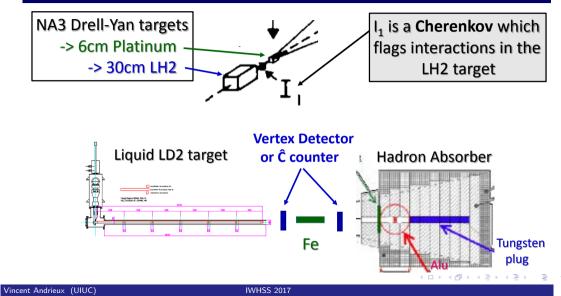

- Sizable in all Q^2 range
- Azymuthal modulation have opposite sign for $h^+ \ \& \ h^-$


Assumption for K physics case studies

Assuming for the moment: $2\cdot10^{13}$ ppp on production target Assuming for the moment: 3/63/3 % of pions/kaons/protons pass the dump


Assumption for K physics case studies

Assuming for the moment: $2 \cdot 10^{13}$ ppp on production target Assuming for the moment: 3/63/3 % of pions/kaons/protons pass the dump



Assumption for \bar{p} physics case studies

Assuming for the moment: $2 \cdot 10^{13}$ ppp on production target Assuming for the moment: 3/3/80 % of pions/kaons/protons pass the dump

Targets and Vertex Detector(s)

