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But haven’t they been studied earlier by the lattice 
community?

In some cases no, due to sign problems! 
New solutions have emerged recently!

Huffman and S.C, 2013
Li, Jiang and Yao, 2014

Wei, Wu, Li, Zhang and Xiang, 2016

So new models have become accessible 
and some old models can now be solved more efficiently!

In some cases yes,  
but usually on small lattices and not in the massless limit! 

Our goal is to be able to go to larger systems  
and with exactly massless fermions.

Also Narayanan at this conference, ….
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Limitations: 
- Wilson and staggered fermions break important symmetries. 
- In some cases suffer from sign problems. 
- HMC method allows one to go to large lattices, but needs 

extrapolations to m=0.

Previous work using the Lagrangian Lattice Field Theory
Debbio, Hands, Kogut, Kocic,Kim, Strouthos, Sinclair,…(1990’s, 2000’s)
Drut and Lahde, 2009, (Staggered fermions, Coulomb Interactions)
Typical lattice sizes used less than 2500 spatial sites, but non-zero mass!

Determination of critical exponents have remained unsatisfactory. 
Room for improvement.

Most previous work involved staggered or Wilson fermions
DWF, Hands (2016)
SLAC fermions, Wipf (2017)
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Most condensed matter theorists use this framework, 
since problems are naturally formulated as a lattice Hamiltonian.

The current state of the art algorithm:  
“auxiliary field determinantal Monte Carlo methods”.

Review Article: Assaad,….

Biggest spatial lattices studied:  
- 2600 sites  (honeycomb lattice) 
- 1600 sites (square lattice)

Otsuka, Yunoki, Sorella, (2016)

Most calculations are done with massless fermions

Algorithms scale as V3/T

Continuous time limit is considered sacred! It avoids an extra 
fermion doubling, but may not be necessary.

Previous work using Hamiltonian Lattice Field Theory
Assaad, Hirsh, Scalapino, Scalettar, Troyer,…..



Are there examples of unsolved problems,  
where progress would be useful?
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Describes Nf = 2, 4-component massless Dirac fermions

Important symmetries of the lattice model:  SU(2) x Z2

Uc

massless fermions
massive fermions,  
anti-ferromagnetic order

Can we reproduce the physics close to Uc with staggered fermions?
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Lattice model has a U(1) chiral symmetry, but has a SU(2) “flavor” 
symmetry which is not broken at the critical point.

The universality class seems different (?)
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Auxiliary Field  
Monte Carlo,  
Hubbard model  
(honeycomb lattice):

Parisen, Hohenadler, Assaad, (2015)
800 sites

⌫ = 0.84(4), ⌘ = 0.69(8)

Otsuka, Yunoki, Sorella, (2016)
2592 sites

⌫ = 1.02(1), ⌘ = 0.50(3)

SC and A.Li, 2012
Fermion Bag Approach,  
above model (403 lattices):

Today we can go to bigger lattices

⌫ = 0.82(2), ⌘ = 0.65(2)
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A simpler example

Describes Nf = 1, 4-component Dirac fermions

Important symmetries of the lattice model:  Z2

Uc

massless fermions
massive fermions,  
anti-ferromagnetic order

No lattice field theory results with staggered fermions due to sign problems.
Wipf et. al., Lattice (2017)
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This structure is not obvious 
in the Lagrangian approach
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Critical Exponents are again disputed:

Wang, Carboz and Troyer, 2014 ( 225 sites)

⌫ = 0.80(2), ⌘ = 0.30(1)

Li, Jiang and Yao, 2014 (1152 sites)

⌫ = 0.77(3), ⌘ = 0.45(2)

Hesselmann and Wessel, 2016 (Finite T, 440 sites)

⌫ = 0.74(4), ⌘ = 0.27(3)

Large scale calculations should help resolve such disputes!
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The lattice QCD community could bring its expertise to the field! 
- Use HMC algorithms to go to large lattices ?

Private Comm.: Fakher Assaad, Simon Catterall. Difficult to use HMC

Our motivation is to bring the idea of fermion bags to solve  
lattice Hamiltonian problems.

Ulybishev, Buividovich, Polikarpov,…..

HMC approach has already been used on smaller lattices away 
from the massless limit. Clearly improvements may be possible?
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fermion dynamics within each region gives a positive weight.

Advantage: You can update the small region fast! 
Disadvantage: Requires one to “think” to discover the best fermion bags.

Fermion Bags S.C, 2008

Similarities with other ideas developed in QCD: 
- Domain decomposition  
- Local factorization 

Luscher, 2003
Ce, Giusti and Schaefer, 2016

Can we extend the idea to Hamiltonian systems?

Until now we have used this idea with staggered fermions, on 
space-time lattices up to lattices 643 with m=0. V. Ayyar and S.C, 2016
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Z = Tr
⇣
e��H

⌘
=

Z
dt1dt2...dtk Tr

⇣
e��H0 Hint(t1)Hint(t2)...Hint(tk)

⌘

CT INT method, Rubtsov, Lichtenstein,…
Diagrammatic Determinantal MC, Prokof’ev, Svistunov

Fermion Bag Idea:

Hij = �� e↵(i⇠i⇠j+i⇠j⇠i )/2 = �� e↵(c
†
i cj+c†j ci )

Z =
X

[b]

Z
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bond configuration

Visualizing the Fermion Bag Idea

I We can make a diagram to represent the partition function,
with nearest neighbor bonds representing Hxy inserted
within imaginary time.

I For this diagram, all of the bonds can be connected
because they share sites in common. They form one
fermion bag.
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I For this diagram, all of the bonds can be connected
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Naive fermion bag approach is equivalent to  
Diagrammatic Determinantal MC, which is very inefficient
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Visualizing the Fermion Bag Idea (cont.)

I On the other hand, if we divide the figure into four time
portions (timeslices)...

I We have ten clusters now.
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I The B-matrices in a cluster will commute with B-matrices
belonging to any other cluster in a timeslice.

Ce, Giusti and Schaefer, 2016
Similar to the local factorization algorithm:





Fermion bag size as a function of spatial volume

Maximum Cluster Size and Equilibration

I We find that for a timeslice of .25, clusters are no bigger
than around 30 sites. This holds across lattice sizes.

I We can often then calculate weight ratios then as
determinants of 30 ⇥ 30 matrices or smaller. We have
achieved small-� equilibration for lattices as large as
100 ⇥ 100!
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clusters in each timeslice for
equilibrated configurations. Timeslice
size is .25.

Figure: Equilibration of t-V model on
a square 100 ⇥ 100 lattice. (� = 4.0)
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Fast updates possible within time slices! 
A similar update is used in auxiliary field MC,  
but here there is a bigger gain.





Equilibration on 100 x 100 lattice, β = 4

Maximum Cluster Size and Equilibration

I We find that for a timeslice of .25, clusters are no bigger
than around 30 sites. This holds across lattice sizes.

I We can often then calculate weight ratios then as
determinants of 30 ⇥ 30 matrices or smaller. We have
achieved small-� equilibration for lattices as large as
100 ⇥ 100!
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Fakher Assaad (Sign 2017): This may be impossible with auxiliary field 
MC, due to stabilization issues!
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Equilibration on 48 x 48 lattices with β = 48

Almost the biggest lattices  
ever simulated in the current context!





Scaling of the algorithm: L6 β
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Scaling of time: Pi-Fluxes near Critical Point

I This algorithm has scaling �N3 in accordance with
LCT -INT algorithms, as opposed to �3N3 for
CT -INT -algorithms. (Wang, Iazzi, Corboz, Troyer, PRB 91 (2015))

I We can see the linear scaling in time at small �-values and
extrapolate for the time of a full sweep at large �.
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Figure: Time to do one sweep for
different � values at V = 1.304.
Confirmed linear scaling with �.
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Going to L=64 (4096 sites) at small T is possible with  
about a million core hours.
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Explore ways to accelerate to do even L=100 (10,000 sites) 
at low T.
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L4
symmetric phase: (semi-metal)

R ⇠ Const.broken phase: (charge density wave)

R ⇠ 1

L1+⌘critical point:
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Stay Tuned for more results 
on large lattices!
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Conclusions

Hamiltonian methods offer a new approach to lattice field theories 
which have not yet been completely explored.

New solutions to sign problems have emerged recently,  
especially in four fermion models, which allow us to explore  
many quantum critical points in 2+1 dimensions.

Opportunities exist to explore the HMC approach to study large  
lattices. But it is important to study the massless limit.

Ideas based on fermion bags offer an alternate method. In some  
cases they seem to allow us to study large lattices that seemed  
difficult earlier.


