Fermion Bag Approach to Hamiltonian Lattice Field Theories

Shailesh Chandrasekharan
(Duke University)

work done in collaboration with Emilie Huffman

XQCD 2017, Pisa Italy

Motivation

Motivation

Physics of massless Dirac fermions in $2+1$ dimensions is becoming exciting in condensed matter physics.

Motivation

Physics of massless Dirac fermions in 2+1 dimensions is becoming exciting in condensed matter physics.

Many strongly correlated materials seem to contain such fermions at low energies. Graphene, Topological Insulators, Reviews by: Moore, Vishwanath, ...

Motivation

Physics of massless Dirac fermions in 2+1 dimensions is becoming exciting in condensed matter physics.

Many strongly correlated materials seem to contain such fermions at low energies. Graphene, Topological Insulators, Reviews by: Moore, Vishwanath, ...

The physics is described by lattice model Hamiltonians, especially with four-fermion interactions.

Motivation

Physics of massless Dirac fermions in 2+1 dimensions is becoming exciting in condensed matter physics.

Many strongly correlated materials seem to contain such fermions at low energies. Graphene, Topological Insulators, Reviews by: Moore, Vishwanath, ...

The physics is described by lattice model Hamiltonians, especially with four-fermion interactions.

They can contain rich phase diagrams, with many interesting "quantum critical points."

Many recent papers on the subject: Herbut, Gies,....
New Exotic Critical Points: V. Ayyar and S.C, 2014

Motivation

Physics of massless Dirac fermions in 2+1 dimensions is becoming exciting in condensed matter physics.

Many strongly correlated materials seem to contain such fermions at low energies. Graphene, Topological Insulators, Reviews by: Moore, Vishwanath, ...

The physics is described by lattice model Hamiltonians, especially with four-fermion interactions.

They can contain rich phase diagrams, with many interesting "quantum critical points."

Many recent papers on the subject: Herbut, Gies,....
New Exotic Critical Points: V. Ayyar and S.C, 2014
Develop non-perturbative approaches to study them!

But haven't they been studied earlier by the lattice community?

But haven't they been studied earlier by the lattice community?

In some cases yes, but usually on small lattices and not in the massless limit!

Our goal is to be able to go to larger systems and with exactly massless fermions.

Also Narayanan at this conference,

But haven't they been studied earlier by the lattice community?

In some cases yes, but usually on small lattices and not in the massless limit!

Our goal is to be able to go to larger systems and with exactly massless fermions.

Also Narayanan at this conference,

In some cases no, due to sign problems!
New solutions have emerged recently!
Huffman and S.C, 2013
Li, Jiang and Yao, 2014
Wei, Wu, Li, Zhang and Xiang, 2016

But haven't they been studied earlier by the lattice community?

In some cases yes, but usually on small lattices and not in the massless limit!

Our goal is to be able to go to larger systems and with exactly massless fermions.

Also Narayanan at this conference,

In some cases no, due to sign problems!
New solutions have emerged recently!
Huffman and S.C, 2013
Li, Jiang and Yao, 2014
Wei, Wu, Li, Zhang and Xiang, 2016

So new models have become accessible and some old models can now be solved more efficiently!

Previous work using the Lagrangian Lattice Field Theory
Debbio, Hands, Kogut, Kocic,Kim, Strouthos, Sinclair,...(1990's, 2000's)
Drut and Lahde, 2009, (Staggered fermions, Coulomb Interactions)
Typical lattice sizes used less than 2500 spatial sites, but non-zero mass!

Previous work using the Lagrangian Lattice Field Theory Debbio, Hands, Kogut, Kocic,Kim, Strouthos, Sinclair,...(1990’s, 2000’s) Drut and Lahde, 2009, (Staggered fermions, Coulomb Interactions) Typical lattice sizes used less than 2500 spatial sites, but non-zero mass!

Most previous work involved staggered or Wilson fermions DWF, Hands (2016)

SLAC fermions, Wipf (2017)

Previous work using the Lagrangian Lattice Field Theory
Debbio, Hands, Kogut, Kocic,Kim, Strouthos, Sinclair,...(1990's, 2000's)
Drut and Lahde, 2009, (Staggered fermions, Coulomb Interactions)
Typical lattice sizes used less than 2500 spatial sites, but non-zero mass!
Most previous work involved staggered or Wilson fermions
DWF, Hands (2016)
SLAC fermions, Wipf (2017)
Limitations:

- Wilson and staggered fermions break important symmetries.
- In some cases suffer from sign problems.
- HMC method allows one to go to large lattices, but needs extrapolations to $\mathrm{m}=0$.

Previous work using the Lagrangian Lattice Field Theory
Debbio, Hands, Kogut, Kocic,Kim, Strouthos, Sinclair,...(1990's, 2000's)
Drut and Lahde, 2009, (Staggered fermions, Coulomb Interactions)
Typical lattice sizes used less than 2500 spatial sites, but non-zero mass!
Most previous work involved staggered or Wilson fermions
DWF, Hands (2016)
SLAC fermions, Wipf (2017)
Limitations:

- Wilson and staggered fermions break important symmetries.
- In some cases suffer from sign problems.
- HMC method allows one to go to large lattices, but needs extrapolations to $\mathrm{m}=0$.

Determination of critical exponents have remained unsatisfactory. Room for improvement.

Previous work using Hamiltonian Lattice Field Theory
 Assaad, Hirsh, Scalapino, Scalettar, Troyer,.....

Previous work using Hamiltonian Lattice Field Theory Assaad, Hirsh, Scalapino, Scalettar, Troyer,.....

Most condensed matter theorists use this framework, since problems are naturally formulated as a lattice Hamiltonian.

Previous work using Hamiltonian Lattice Field Theory Assaad, Hirsh, Scalapino, Scalettar, Troyer,.....

Most condensed matter theorists use this framework, since problems are naturally formulated as a lattice Hamiltonian.

The current state of the art algorithm:
"auxiliary field determinantal Monte Carlo methods".
Review Article: Assaad,....

Previous work using Hamiltonian Lattice Field Theory Assaad, Hirsh, Scalapino, Scalettar, Troyer,.....

Most condensed matter theorists use this framework, since problems are naturally formulated as a lattice Hamiltonian.

The current state of the art algorithm:
"auxiliary field determinantal Monte Carlo methods".

Review Article: Assaad,....

Most calculations are done with massless fermions
Continuous time limit is considered sacred! It avoids an extra fermion doubling, but may not be necessary.
Algorithms scale as V/3/T

Previous work using Hamiltonian Lattice Field Theory
Assaad, Hirsh, Scalapino, Scalettar, Troyer,.....
Most condensed matter theorists use this framework, since problems are naturally formulated as a lattice Hamiltonian.

The current state of the art algorithm:
"auxiliary field determinantal Monte Carlo methods".

> Review Article: Assaad,....

Most calculations are done with massless fermions
Continuous time limit is considered sacred! It avoids an extra fermion doubling, but may not be necessary.
Algorithms scale as V/3/T
Biggest spatial lattices studied: Otsuka, Yunoki, Sorella, (2016)

- 2600 sites (honeycomb lattice)
- 1600 sites (square lattice)

Are there examples of unsolved problems, where progress would be useful?

Classic Example

Classic Example

"Repulsive Hubbard (t-U) Model" for graphene

$$
H=-t \sum_{\langle i j\rangle, \sigma} c_{i, \sigma}^{\dagger} c_{i, \sigma}+U \sum_{i}\left(n_{i, \uparrow}-\frac{1}{2}\right)\left(n_{i, \downarrow}-\frac{1}{2}\right)
$$

Classic Example

"Repulsive Hubbard (t-U) Model" for graphene

$$
H=-t \sum_{\langle i j\rangle, \sigma} c_{i, \sigma}^{\dagger} c_{i, \sigma}+U \sum_{i}\left(n_{i, \uparrow}-\frac{1}{2}\right)\left(n_{i, \downarrow}-\frac{1}{2}\right)
$$

Describes $N_{f}=2$, 4-component massless Dirac fermions

Classic Example

"Repulsive Hubbard (t-U) Model" for graphene

$$
H=-t \sum_{\langle i j\rangle, \sigma} c_{i, \sigma}^{\dagger} c_{i, \sigma}+U \sum_{i}\left(n_{i, \uparrow}-\frac{1}{2}\right)\left(n_{i, \downarrow}-\frac{1}{2}\right)
$$

Describes $N_{f}=2$, 4-component massless Dirac fermions

Important symmetries of the lattice model: $\mathrm{SU}(2) \times \mathrm{Z} 2$

Classic Example

"Repulsive Hubbard (t-U) Model" for graphene

$$
H=-t \sum_{\langle i j\rangle, \sigma} c_{i, \sigma}^{\dagger} c_{i, \sigma}+U \sum_{i}\left(n_{i, \uparrow}-\frac{1}{2}\right)\left(n_{i, \downarrow}-\frac{1}{2}\right)
$$

Describes $N_{f}=2$, 4-component massless Dirac fermions

Important symmetries of the lattice model: $\mathrm{SU}(2) \times \mathrm{Z} 2$

Classic Example

"Repulsive Hubbard (t-U) Model" for graphene

$$
H=-t \sum_{\langle i j\rangle, \sigma} c_{i, \sigma}^{\dagger} c_{i, \sigma}+U \sum_{i}\left(n_{i, \uparrow}-\frac{1}{2}\right)\left(n_{i, \downarrow}-\frac{1}{2}\right)
$$

Describes $N_{f}=2$, 4-component massless Dirac fermions

Important symmetries of the lattice model: $\mathrm{SU}(2) \times \mathrm{Z} 2$

Can we reproduce the physics close to U_{c} with staggered fermions?

Staggered fermion approach:
Hands et. al, 2009 ($\mathrm{N}_{\mathrm{f}}=2,4$ component massless Dirac fermions)

$$
S=\frac{1}{2} \sum_{x, y, i=1,2} \psi_{x, i} M_{x, y} \psi_{y, i}-U \sum_{\langle x y\rangle} \psi_{x, 1} \psi_{x, 2} \psi_{y, 1} \psi_{x, 2}
$$

Staggered fermion approach:
Hands et. al, 2009 ($\mathrm{N}_{\mathrm{f}}=2,4$ component massless Dirac fermions)

$$
S=\frac{1}{2} \sum_{x, y, i=1,2} \psi_{x, i} M_{x, y} \psi_{y, i}-U \sum_{\langle x y\rangle} \psi_{x, 1} \psi_{x, 2} \psi_{y, 1} \psi_{x, 2}
$$

 symmetry which is not broken at the critical point.

Staggered fermion approach:

$$
S=\frac{1}{2} \sum_{x, y, i=1,2} \psi_{x, i} M_{x, y} \psi_{y, i}-U \sum_{\langle x y\rangle} \psi_{x, 1} \psi_{x, 2} \psi_{y, 1} \psi_{x, 2}
$$

Lattice model has a $\mathrm{U}(1)$ chiral symmetry, but has a $\mathrm{SU}(2)$ "flavor" symmetry which is not broken at the critical point.

The universality class seems different (?)

Staggered fermion approach:

$$
S=\frac{1}{2} \sum_{x, y, i=1,2} \psi_{x, i} M_{x, y} \psi_{y, i}-U \sum_{\langle x y\rangle} \psi_{x, 1} \psi_{x, 2} \psi_{y, 1} \psi_{x, 2}
$$

Lattice model has a $\mathrm{U}(1)$ chiral symmetry, but has a $\mathrm{SU}(2)$ "flavor" symmetry which is not broken at the critical point.

The universality class seems different (?)

Fermion Bag Approach, above model (40^{3} lattices):

$$
\nu=0.82(2), \eta=0.65(2)
$$

SC and A.Li, 2012

Today we can go to bigger lattices

Staggered fermion approach:
($\mathrm{N}_{\mathrm{f}}=2,4$ component massless Dirac fermions)

$$
S=\frac{1}{2} \sum_{x, y, i=1,2} \psi_{x, i} M_{x, y} \psi_{y, i}-U \sum_{\langle x y\rangle} \psi_{x, 1} \psi_{x, 2} \psi_{y, 1} \psi_{x, 2}
$$

Lattice model has a $\mathrm{U}(1)$ chiral symmetry, but has a $\mathrm{SU}(2)$ "flavor" symmetry which is not broken at the critical point.

The universality class seems different (?)
Fermion Bag Approach, $\nu=0.82(2), \eta=0.65(2)$ above model (40^{3} lattices):
Today we can go to bigger lattices
Auxiliary Field $\quad \nu=0.84(4), \eta=0.69(8)$

Monte Carlo,
Hubbard model
(honeycomb lattice):

Staggered fermion approach:
($\mathrm{N}_{\mathrm{f}}=2$, 4 component massless Dirac fermions)

$$
S=\frac{1}{2} \sum_{x, y, i=1,2} \psi_{x, i} M_{x, y} \psi_{y, i}-U \sum_{\langle x y\rangle} \psi_{x, 1} \psi_{x, 2} \psi_{y, 1} \psi_{x, 2}
$$

Lattice model has a $\mathrm{U}(1)$ chiral symmetry, but has a $\mathrm{SU}(2)$ "flavor" symmetry which is not broken at the critical point.

The universality class seems different (?)
Fermion Bag Approach, $\nu=0.82(2), \eta=0.65(2)$ above model (40^{3} lattices): SC and A.Li, 2012
Today we can go to bigger lattices
Auxiliary Field $\quad \nu=0.84(4), \eta=0.69(8)$
Monte Carlo,
Hubbard model
Parisen, Hohenadler, Assaad, (2015) 800 sites
(honeycomb lattice): $\nu=1.02(1), \eta=0.50$ (3)
Otsuka, Yunoki, Sorella, (2016)
2592 sites

A simpler example

A simpler example

"Repulsive (t-V) Model" for graphene

$$
H=-t \sum_{\langle i j\rangle} c_{i}^{\dagger} c_{i}+V \sum_{\langle i j\rangle}\left(n_{i}-\frac{1}{2}\right)\left(n_{j}-\frac{1}{2}\right)
$$

A simpler example

"Repulsive (t-V) Model" for graphene

$$
H=-t \sum_{\langle i j\rangle} c_{i}^{\dagger} c_{i}+V \sum_{\langle i j\rangle}\left(n_{i}-\frac{1}{2}\right)\left(n_{j}-\frac{1}{2}\right)
$$

Describes $N_{f}=1,4$-component Dirac fermions

A simpler example

"Repulsive (t-V) Model" for graphene

$$
H=-t \sum_{\langle i j\rangle} c_{i}^{\dagger} c_{i}+V \sum_{\langle i j\rangle}\left(n_{i}-\frac{1}{2}\right)\left(n_{j}-\frac{1}{2}\right)
$$

Describes $N_{f}=1,4$-component Dirac fermions

Important symmetries of the lattice model: Z2

A simpler example

"Repulsive (t-V) Model" for graphene

$$
H=-t \sum_{\langle i j\rangle} c_{i}^{\dagger} c_{i}+V \sum_{\langle i j\rangle}\left(n_{i}-\frac{1}{2}\right)\left(n_{j}-\frac{1}{2}\right)
$$

Describes $N_{f}=1,4$-component Dirac fermions

Important symmetries of the lattice model: Z2

A simpler example

"Repulsive (t-V) Model" for graphene

$$
H=-t \sum_{\langle i j\rangle} c_{i}^{\dagger} c_{i}+V \sum_{\langle i j\rangle}\left(n_{i}-\frac{1}{2}\right)\left(n_{j}-\frac{1}{2}\right)
$$

Describes $N_{f}=1,4$-component Dirac fermions

Important symmetries of the lattice model: Z2

No lattice field theory results with staggered fermions due to sign problems. Wipf et. al., Lattice (2017)

Sign problem can be solved in the Hamiltonian approach Huffman and S.C, 2013

Sign problem can be solved in the Hamiltonian approach Huffman and S.C, 2013

Solution natural in the Majorana Representations
Li, Jiang and Yao, 2014
Wei, Wu, Li, Zhang and Xiang, 2016

Sign problem can be solved in the Hamiltonian approach Huffman and S.C, 2013

Solution natural in the Majorana Representations
Li, Jiang and Yao, 2014
Wei, Wu, Li, Zhang and Xiang, 2016
Majorana fermions $\quad \xi_{i}=\left(c_{i}+c_{i}^{\dagger}\right), \quad \bar{\xi}_{i}=i\left(c_{i}^{\dagger}-c_{i}\right)$

$$
H=\sum_{\langle i j\rangle}\left\{-\frac{i t}{2}\left(\bar{\xi}_{i} \xi_{j}+\bar{\xi}_{j} \xi_{i}\right)+V \bar{\xi}_{i} \xi_{j} \bar{\xi}_{j} \xi_{i}\right\}
$$

$$
\operatorname{Tr}(\exp (-\beta H))=\sum_{[\phi]}(\operatorname{Pf}(G[\phi]))^{2}
$$

Sign problem can be solved in the Hamiltonian approach

Huffman and S.C, 2013

Solution natural in the Majorana Representations
Li, Jiang and Yao, 2014
Wei, Wu, Li, Zhang and Xiang, 2016
Majorana fermions $\quad \xi_{i}=\left(c_{i}+c_{i}^{\dagger}\right), \quad \bar{\xi}_{i}=i\left(c_{i}^{\dagger}-c_{i}\right)$

$$
\begin{aligned}
& H=\sum_{\langle i j\rangle}\left\{-\frac{i t}{2}\left(\bar{\xi}_{i} \xi_{j}+\bar{\xi}_{j} \xi_{i}\right)+V \bar{\xi}_{i} \xi_{j} \bar{\xi}_{j} \xi_{i}\right\} \\
& \quad \operatorname{Tr}(\exp (-\beta H))=\sum_{[\phi]}(\operatorname{Pf}(G[\phi]))^{2}
\end{aligned}
$$

This structure is not obvious in the Lagrangian approach

Critical Exponents are again disputed:

Critical Exponents are again disputed:

Wang, Carboz and Troyer, 2014 (225 sites)

$$
\nu=0.80(2), \eta=0.30(1)
$$

Critical Exponents are again disputed:

Wang, Carboz and Troyer, 2014 (225 sites)

$$
\nu=0.80(2), \eta=0.30(1)
$$

Li, Jiang and Yao, 2014 (1152 sites)

$$
\nu=0.77(3), \eta=0.45(2)
$$

Critical Exponents are again disputed:

Wang, Carboz and Troyer, 2014 (225 sites)

$$
\nu=0.80(2), \eta=0.30(1)
$$

Li, Jiang and Yao, 2014 (1152 sites)

$$
\nu=0.77(3), \eta=0.45(2)
$$

Hesselmann and Wessel, 2016 (Finite T, 440 sites)

$$
\nu=0.74(4), \eta=0.27(3)
$$

Critical Exponents are again disputed:

Wang, Carboz and Troyer, 2014 (225 sites)

$$
\nu=0.80(2), \eta=0.30(1)
$$

Li, Jiang and Yao, 2014 (1152 sites)

$$
\nu=0.77(3), \eta=0.45(2)
$$

Hesselmann and Wessel, 2016 (Finite T, 440 sites)

$$
\nu=0.74(4), \eta=0.27(3)
$$

Large scale calculations should help resolve such disputes!

The lattice QCD community could bring its expertise to the field! - Use HMC algorithms to go to large lattices ?

Private Comm.: Fakher Assaad, Simon Catterall. Difficult to use HMC

The lattice QCD community could bring its expertise to the field!

- Use HMC algorithms to go to large lattices ?

Private Comm.: Fakher Assaad, Simon Catterall. Difficult to use HMC

HMC approach has already been used on smaller lattices away from the massless limit. Clearly improvements may be possible?

Ulybishev, Buividovich, Polikarpov,.....

The lattice QCD community could bring its expertise to the field!

- Use HMC algorithms to go to large lattices ?

Private Comm.: Fakher Assaad, Simon Catterall. Difficult to use HMC

HMC approach has already been used on smaller lattices away from the massless limit. Clearly improvements may be possible?

Ulybishev, Buividovich, Polikarpov,.....

Our motivation is to bring the idea of fermion bags to solve lattice Hamiltonian problems.

Fermion Bags
 S.C, 2008

Fermion Bags S.C, 2008

Idea: Divide the system into smaller regions (bags), so that the fermion dynamics within each region gives a positive weight.

Fermion Bags

Idea: Divide the system into smaller regions (bags), so that the fermion dynamics within each region gives a positive weight.

Advantage: You can update the small region fast!
Disadvantage: Requires one to "think" to discover the best fermion bags.

Fermion Bags

Idea: Divide the system into smaller regions (bags), so that the fermion dynamics within each region gives a positive weight.

Advantage: You can update the small region fast!
Disadvantage: Requires one to "think" to discover the best fermion bags.
Similarities with other ideas developed in QCD:

- Domain decomposition Luscher, 2003
- Local factorization Ce, Giusti and Schaefer, 2016

Fermion Bags

Idea: Divide the system into smaller regions (bags), so that the fermion dynamics within each region gives a positive weight.

Advantage: You can update the small region fast!
Disadvantage: Requires one to "think" to discover the best fermion bags.
Similarities with other ideas developed in QCD:

- Domain decomposition Luscher, 2003
- Local factorization Ce, Giusti and Schaefer, 2016

Until now we have used this idea with staggered fermions, on space-time lattices up to lattices 64^{3} with $\mathrm{m}=0$. v. Ayyar and S.c, 2016

Fermion Bags

Idea: Divide the system into smaller regions (bags), so that the fermion dynamics within each region gives a positive weight.

Advantage: You can update the small region fast!
Disadvantage: Requires one to "think" to discover the best fermion bags.
Similarities with other ideas developed in QCD:

- Domain decomposition Luscher, 2003
- Local factorization Ce, Giusti and Schaefer, 2016

Until now we have used this idea with staggered fermions, on space-time lattices up to lattices 64^{3} with $\mathrm{m}=0$. v. Ayyar and S.C, 2016

Can we extend the idea to Hamiltonian systems?

Continuous Time (CT) Approach

Continuous Time (CT) Approach

In Hamiltonian fermion systems the partition function can be expanded in powers of the interaction in continuous time

$$
Z=\operatorname{Tr}\left(\mathrm{e}^{-\beta H}\right)=\int d t_{1} d t_{2} \ldots d t_{k} \operatorname{Tr}\left(\mathrm{e}^{-\beta H_{0}} H_{\text {int }}\left(t_{1}\right) H_{\text {int }}\left(t_{2}\right) \ldots H_{\text {int }}\left(t_{k}\right)\right)
$$

CT INT method, Rubtsov, Lichtenstein,...
Diagrammatic Determinantal MC, Prokof'ev, Svistunov

Continuous Time (CT) Approach

In Hamiltonian fermion systems the partition function
can be expanded in powers of the interaction in continuous time

$$
Z=\operatorname{Tr}\left(\mathrm{e}^{-\beta H}\right)=\int d t_{1} d t_{2} \ldots d t_{k} \operatorname{Tr}\left(\mathrm{e}^{-\beta H_{0}} H_{\text {int }}\left(t_{1}\right) H_{\text {int }}\left(t_{2}\right) \ldots H_{\text {int }}\left(t_{k}\right)\right)
$$

CT INT method, Rubtsov, Lichtenstein,...
Diagrammatic Determinantal MC, Prokof'ev, Svistunov

Fermion Bag Idea: $\quad H_{0}=0 \quad H_{\text {int }}=\sum_{\langle i j\rangle} H_{i j}$

$$
\begin{gathered}
H_{i j}=-\delta \mathrm{e}^{\alpha\left(\overline{\xi_{i}} \bar{\xi}_{j}+i \bar{\xi}_{j} \xi_{i}\right) / 2}=-\delta \mathrm{e}^{\alpha\left(c_{i}^{\dagger} c_{j}+c_{j}^{\dagger} c_{i}\right)} \\
Z=\sum_{[b]} \int d t_{1} d t_{2} \ldots d t_{k} \operatorname{Tr}\left(H_{i 11 j_{1}}\left(t_{1}\right) H_{i, 2, j_{2}}\left(t_{2}\right) \ldots H_{i k j_{k}}\left(t_{k}\right)\right)
\end{gathered}
$$

Illustration of the "bond" configuration

Illustration of the "bond" configuration

bond contıguration

Illustration of the "bond" configuration

time

bona contıguratıon

Naive fermion bag configuration

Illustration of the "bond" configuration

Naive fermion bag configuration

Naive fermion bag approach is equivalent to Diagrammatic Determinantal MC, which is very inefficient

Idea: Fermion Bags split up at high T

Idea: Fermion Bags split up at high T

Idea: Fermion Bags split up at high T

Similar to the local factorization algorithm:
Ce, Giusti and Schaefer, 2016

Fermion bag size as a function of spatial volume

Fermion bag size as a function of spatial volume

Fast updates possible within time slices! A similar update is used in auxiliary field MC, but here there is a bigger gain.

Equilibration on 100×100 lattice, $\beta=4$

Equilibration on 100×100 lattice, $\beta=4$

Fakher Assaad (Sign 2017): This may be impossible with auxiliary field MC, due to stabilization issues!

Equilibration on 48×48 lattices with $\beta=48$

Equilibration on 48×48 lattices with $\beta=48$

Almost the biggest lattices
ever simulated in the current context!

Scaling of the algorithm: $L^{6} \beta$

Scaling of the algorithm: $L^{6} \beta$

Going to $\mathrm{L}=64$ (4096 sites) at small T is possible with about a million core hours.

Scaling of the algorithm: $L^{6} \beta$

Going to $\mathrm{L}=64$ (4096 sites) at small T is possible with about a million core hours.

Explore ways to accelerate to do even $L=100$ (10,000 sites) at low T.

Results $\beta=L$

Results $\beta=L$

density-density correlation ratio

$$
R=\left\langle\left(n_{0}-\frac{1}{2}\right)\left(n_{L / 2}-\frac{1}{2}\right)\right\rangle
$$

Results $\beta=L$

density-density correlation ratio

$$
R=\left\langle\left(n_{0}-\frac{1}{2}\right)\left(n_{L / 2}-\frac{1}{2}\right)\right\rangle
$$

symmetric phase: (semi-metal) $\quad R \sim \frac{1}{L^{4}}$
broken phase: (charge density wave) $\quad R \sim$ Const.
critical point: $\quad R \sim \frac{1}{L^{1+\eta}}$

Correlation Ratio: $\quad R \approx A / L^{1+\eta}$ at $V=V_{c}$

Correlation Ratio: $R \approx A / L^{1+\eta}$ at $V=V_{c}$

Correlation Ratio: $R \approx A / L^{1+\eta}$ at $V=V_{c}$

Li, Jiang and Yao, 2014 (484 sites)
$\nu=0.77(3), \eta=0.45(2)$

Correlation Ratio: $R \approx A / L^{1+\eta}$ at $V=V_{c}$

Li, Jiang and Yao, 2014 (484 sites)
$\nu=0.77(3), \eta=0.45(2)$

Wang, Carboz and Troyer, 2014 (225 sites)

$$
\nu=0.80(2), \eta=0.30(1)
$$

Correlation Ratio: $R \approx A / L^{1+\eta}$ at $V=V_{c}$

Biggest
lattices ever

Li, Jiang and Yao, 2014 (484 sites)
$\nu=0.77(3), \eta=0.45(2)$

Wang, Carboz and Troyer, 2014 (225 sites)

$$
\nu=0.80(2), \eta=0.30(1)
$$

Stay Tuned for more results

 on large lattices!
Conclusions

Conclusions

Hamiltonian methods offer a new approach to lattice field theories which have not yet been completely explored.

Conclusions

Hamiltonian methods offer a new approach to lattice field theories which have not yet been completely explored.

New solutions to sign problems have emerged recently, especially in four fermion models, which allow us to explore many quantum critical points in 2+1 dimensions.

Conclusions

Hamiltonian methods offer a new approach to lattice field theories which have not yet been completely explored.

New solutions to sign problems have emerged recently, especially in four fermion models, which allow us to explore many quantum critical points in 2+1 dimensions.

Opportunities exist to explore the HMC approach to study large lattices. But it is important to study the massless limit.

Conclusions

Hamiltonian methods offer a new approach to lattice field theories which have not yet been completely explored.

New solutions to sign problems have emerged recently, especially in four fermion models, which allow us to explore many quantum critical points in $2+1$ dimensions.

Opportunities exist to explore the HMC approach to study large lattices. But it is important to study the massless limit.

Ideas based on fermion bags offer an alternate method. In some cases they seem to allow us to study large lattices that seemed difficult earlier.

