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I. Hartree theory

Energy: the Hartree functional is given by
en(6) = [ [IVo@)P + v(@)|o(@)|?] da
+ - [wia - )Ie@PRI6) 2 drdy
and acts on L2(R%) (we will consider d = 1,2, 3).

We assume v is confining and w € L®(R%) of positive type.

Evolution: the time-dependent Hartree equation is given by

O = [~ A + v(x)] bt + (w * |Pt]%) P

Invariant measures: it is interesting to construct the
probability measure, formally given by

% o~ [En(®)+xl8]5] do



Free invariant measure: let h = —-A 4+ v(x) + x and

S0(9) = (9,hd) = [ [[V6(@) +v@)lo (@) + rlp(2)?] da

Since v confining, h has pure point spectrum, i.e.

h = Z Anlun) (un|

neN

We will assume v to be s.t.
Tra~l =Y, en Ayt < o for d =1

Trh=2 =Y ,enA,2 < o0 for d = 2,3

Remark 1: the bound Trh~! < oo in d = 2,3 cannot hold,
because of lack of decay in momentum.

Remark 2: for d = 1,2, harmonic oscillator is just not confining
enough.



To make sense of ug ~ exp(—&p(o))dep, we expand

p(x) = 3 2 up(x)

Since

E0(@) = (¢, h¢) = Y |wnl?
neN
we define probability measure ug on set CN = {{wn}pen : wn € C},
as the product of Gaussian measures, each having the density

1
—e
T

o |2
|w”|dwndw2

Expected L2 norm: observe that

2
2 |Wn| _
Epg 19112 = Eug =) —_Trh
neN ‘T neN An

is finite for d = 1, but is infinite in d = 2, 3.




Expected H° norm: for s € R, we have

Euonﬁb”%is = E;q (¢, h°¢p) = Tr pits

The assumption Trh™2 < co implies that Eq [|¢[|%,_; < oc.

We conclude
po(H 1 (RH) =1, while  po(L*(R%)) =0
for d = 2, 3.

Example: if h= —A + x on T¢, we find
he'PT = (p? + k)eP*  for all p € 2774

Hence
1

(p? + k)13

2
Epo léllzrs = > < o0

pe2nZd
iffs <1—d/2.



Hartree invariant measure: try to define uy as absolutely
continuous probability measure w.r.t. pg with density Z—1e=W(¢),

where

W(e) = = [w(e - p)é(@)2Ié(y)dedy
2

In other words, try to define ugy such that

_ JI(@) eV D dpug(9)
Engf(¢) = [e=W(P) dug(o)

For d =1, ¢ is typically L2, and

lwlloo

4
DIl < o0

W(¢) <

Hence pg well-defined.

For d = 2,3, on the other hand, typical ¢ is not L2 and W = co.
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Wick ordering: for K > 0 we introduce cutoff fields

drc(z) = ()
K EKM

We define

prc(x) = Euglo (@)= Y At un(a))?
n<KkK

and the cutoff renormalized interaction
1
Wi =3 [w(@—y) [l6x@)? = p(@)] [lex W) = prc ()] dady

Lemma: Wy is Cauchy sequence in LP(CN, dug) for all p < oo.
We denote by WT its limit (independent of p).

For d = 2,3, we define u%; through

[ £(¢) eV (Pdug ()
[ e W (@) dug ()

Hf(#) =

One can check MI“{ is invariant with respect to the Hartree flow.
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II. Quantum systems in mean field regime
N particle systems: described on Hilbert space L2(R4V).

Mean-field Hamilton operator: has the form

N 1 N
Hy = Z [—ij + v(xj)] + N Z w(z; — ;)

Coupling constant N—1 characterizes mean field regime.

Ground state: exhibits condensation, ¥ ~ ¢V

Energy of condensate given by

(2N, Hy 6Ny = NEW(9)

Hence: ground state condensates in minimizer of £y and

E
lim =Y = min En(p)
N—oo N pel2(RY):||p|l2=1



Dynamics: governed by the many-body Schrodinger equation

WO N = HNYN

Convergence to Hartree: if initial data ¢y o~ ¢®, then

~ HON
¢N,t — §bt

where ¢; solves the time-dependent Hartree equation

Ot = [~ A + v] ¢t + (w * |pt]%) b
with initial data ¢;—g = ¢.

Rigorous works: Hepp, Ginibre-Velo, Spohn, Erdds-Yau, Bardos-
Golse-Mauser, Frohlich-Knowles-Schwarz, Rodnianski-S., Knowles-
Pickl, Frohlich-Knowles-Pizzo, Grillakis-Machedon-Margetis, T.Chen-
Pavlovic, X.Chen-Holmer, Ammari-Nier, Lewin-Nam-S., ...



Question: what corresponds to Hartree invariant measures in
many-body setting?

T hermal equilibrium: at temperature B_l, it is described by
Gibbs state
1 BHN

0 = Z—ﬁe_

Remark 1: if 5 > 0 fixed, og still exhibits condensation. At
one-particle level this leads to trivial measure (5%.

To recover invariant measure, need to take g = 1/N.

Remark 2: number of particles at many-body level corresponds
to L2-norm at Hartree level.

To recover invariant measure, need to allow fluctuations of
number of particles.
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III. Fock space and grand canonical ensemble

Fock space: we define

F= @ r*®RH®" = P L;®™)
m>0 m>0

Creation and annihilation operators: for f € L2(R%), let

(@* (W)™ (z1,. .., 2m) = FlHWm=D (g h e am)
=1

1
v =
(WY (21, ... zm) = Vm + 1/d:cmw<m+1>(x,xl, o zm)

They satisfy canonical commutation relations

a(f),a*(g)] = (f,9), [la(f),a(g)] = [a"(f),a"(g)] =0
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We define operator valued distributions a(x),a*(x) such that

() = [ f@)a* @) de, and a(f) = [ [(@) a(a)da

Number of particles operator: is given by

N = /a*(x)a(ac) dx

Hamilton operator: is defined through
1

Hy = [ a*@) [0+ v(@)] a(@) + 5= [ wlz —y)a*(@)a* Walya()

Notice that [H,N] = 0 and

By o)) > e - )

HNIF, = D
' 1<J

m
=1

12



Grand canonical ensemble: at inverse temperature 3 = N1
and chemical potential x, equilibrium is described by

1 1 1
ON = 55— G_W(HN+"’N>, with  Zy = Tr o~ N (HN+rN)

4N

Rescaled operators: it is useful to define

1 coy 1oL
ay() = Ja@),  ai@) = ')

T hen

lan(2), an(y)] = %5(56—@, lan(2), an(y)] = [an(z), an(y)] =0

are almost commuting

Expressed in terms of the rescaled fields, we find
on = 73t exp | = [ k(@) (=B + 0(@) + Kan (@) da
1
+§ / w(z —y) any(x) any(y) ay(y) ay(x) dedy
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IV. Non-interacting Gibbs states and Wick ordering

Non-interacting Gibbs state: we diagonalize
/aff\;(w) [—ij + v(z;) + K}} an(x)dr = Z)\ja}kv(uj)aN(uj)
J
which leads to

0©) = Zgo) o 2 Njak (uan (u))
N

Expectation of rescaled number of particles

£ (o N o—Aiay (ui)an (u;)
0) «, N _ Trajy(u)an(u;) e "N
By an(ui)ay (ui) = Tre— Moy (ui)an (u;)

1 ,enne” Vi1
=3 S ey e Ci/Nn T O NeMN/N _1q

Hence
(0) _ O(1), ford=1
EN Za}k\](uz)a]\f(uz) Z GAZ/N - { — 00 for d = 2.3
7: EN Y Y
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Interaction: expectation of

Wy = - [z~ yak @ak oy @ay (x)drdy

is finite but, for d = 2, 3, it diverges, as N — .

Wick ordering: replace Wy with the Wick ordered interaction

Wy = %/w(x—y) lan(z)an(xz) — pn(2)] [ay(y)an(y) — pn(y)] dzdy
with

uj(x)|?
NN

1
on(@) =EQ o (@)ay(@) == %
NjeNe

We write the resulting grand canonical state

1T e~ HN — ire_(HN,O'FWXr)
ZN ZN

oN =
with
Hy o= /af;\f(a?) [— Az +v(x) + k] any(x) dx
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V. Comparison with invariant measure for Hartree

Correlation functions: for k£ € N, define correlation function
71(\][{) as non-negative operators on L2(RF4) with kernel

k
fyz(v)(:cl,..-,wk;ylw--ayk)
= Elyay(z1)...ay(zr)an(yg) - an(y1)
= Tray(z1) ...ay(zr)an (k) - an(y1) oy

Joint moments: define yg“) of invariant measure through

(k) .
Vi (@1, T YTs - Yk)
= Ey ¢(z1) ... p(zp)o(yr) - - - o (y1)

_ Jo(z1) .. p@R)d(yk) - - - d(y1) eV (D) dpug (o)
[ =W (@)dpug(¢)
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Conjecture: we expect that, for all fixed k € N,

im |~ _ (k)H — 0
N—><>0H7N H HS

Conjecture has been proven by Lewin-Nam-Rougerie ford =1
(no Wick ordering).

We are mostly interested in the case d = 2, 3.

For technical reasons, we show conjecture for slightly modified
many-body Gibbs states.
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Modification: for fixed n > 0, we consider the quantum state

e 1 o~ N0 o~ [(1-2mHy 0+W] ,—nHN,0
y 1] ZN,’I’]

We denote by (k) the correlation functions associated to p'y . .
Tn,N N,

Remark: g"j\,n still density matrix of a mixed quantum state.

Theorem [Frohlich-Knowles-S.-Sohinger]: let d = 2, 3,

h=-A+4+v(x)+k
with Trh=2 < oo, w € L®(R%) positive definite. Then, for all

fixed n > 0 and k£ € N, we have

im [y — WH =0
N—>o<>H/yN”'7 TH HS

Remark: for d = 1, we recover the result by Lewin-Nam-
Rougerie; in this case we can choose n = 0.
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Counterterm problem: given rescaled many-body Hamilto-
nian with chemical potential

Hy = /a}k\[(m) [— Az +v(z) + k] any(x) dx

+ %/w(w —y)ay(x)an(z)ay(y)an(y) dzdy

we rewrite it as
Hy = [ aiy(@) [~ 80+ v(@) + (w+ px) @) + K] an (@) dz = (w + py, o)

+ %/w(w —y) [an(z)an(z) — pn(z)] [ay(W)an(y) — pn(2)] dzdy

Subtracting constant and shifting chemical potential, we obtain
Hy = [ aky(@) [As + (@) + (w+ (ox — 53 (@) + £l an(@)de
1
+ 5 [w(e =) [ay(@)an(@) = py(@)] [ Wan @) - px(y)] dody

with py = E(_OAJFR ay(z)ay(z) independent of x.
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The theorem can be applied to ]ﬁIN if we find confining potential

b=v+(wrlpy—pn) St py(@) =B o0 ak(@)ay(a)

Theorem [Frohlich-Knowles-S.-Sohinger]: Let v > 0 such
that v(z 4+ v) < Cv(x)v(y) and
Tr(—A 4+ v+ k)2 < oco.

Then for every N € N there exists vy solving the counterterm
problem. Furthermore there is a limiting potential v such that

im [(—a+wy+r)t-(-A+0+ /~»u)—1||HS =0

N—o00

Hence, after a change of the chemical potential, modified many-
body quantum Gibbs state associated with Hjy is such that

k k
dim ot =i

where wg“) are moments of inv. measure with h = —-A + v+ k.
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VI. Some ideas from the proof

Duhamel expansion: start from
1-2
e~ (1—2mHy — —(1-2nHyo 4 /O "t e~ (12— Hio yy1 o —tHy
Iterating, we find
e—(1—2nHy — —(1-2n)Hp o

o2 tm—1 _(1—2n—t1)H —tH
+ Z/O dtl.../o dty e~ (A=2n—tD N0yt o~tmENg
m=1

1-2n th—1
+ /O dty ... /O "ty e~ (120 DEN O Yt T e tebly

Hence
e~ MHN 0,—(1-2n)Hy —nHno — ,—Hn,o

n tm—1
dtl---/nm dt e~ TN Wr Wk e tmHNo

1—’)7 t -1
+ / dty ... / " gty e~ (tDHNO T T o —tnEN g —nHN
n
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Evolved fields operator: remark
€tHO7NCL}kv(f)€_tHO7N — Z<u]’ f> et)\ja,}"\,(u])aN(u])a?V(uj)e—t)\]a}kv(u])aN(u])

J
=3 (uj, f) NN ajy(uy) = afy (e N )
J

Fully expanded terms: need to compute free expectations!

Wick theorem: we have
EQ) af(f1) ... a2 (fom)
1 ﬁ 7
= Y EQ) [t (idant ()| - B [ (i )alr ()

Non-vanishing expectations: are only

1 1
B [aly@an(®)] = 7y — (@i 9)

1 1 1
]Eg\(f)}& lan(z)an(y)] = N oh/N 1(513;9) ‘|‘N5(9C —y)
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Diagrammatic expansion: pairings encoded in diagrams

Wick ordering implies no pairing between fields with same =x.

Bound: using diagrammatic representation and assumption
Trh 2 < 00,

we conclude that contribution of each pairing is bounded by a
constant, uniformly in V.

Convergence: as N — oo, contribution of each pairing tends to
corresponding term in expansion of Hartree inv. measure.
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Error term: use Cauchy-Schwarz to get rid of interacting term.
All interactions WZ"{[ are controlled through the free state.

Here we need modification, to avoid that interacting exponen-
tial carries full time.

Final obstacle: number of pairing ~ (2n)! Time integral ~ 1/n!
The series does not converge!

What saves us is Borel resummation.
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Theorem [Sokal]: Let A(z) and (An(z2))nyen be analytic on
pall

Cr={z€C:(Rez— R)?+Im?z < R?}

for some R > 0. For n € N suppose

n—1 n—1

A(z) = ) amz™ + Rn(2), An(z) = ) ap Nz + Ry n(2)
m=0 m=0

with

lam| + S]L\I[D |am,N| < C™ml, |Rm (2)] + S]l<fp |Rm,N(z)| < C™z|"ml!

for all m e N, z € Cp.
Suppose moreover that, for all m € N: iMoo |am’N—am| = 0.

Then An(z) — A(z) for all z € Cp.
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