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Outline
• Longitudinal polarization of an electron beam at LER, 

main requirements, different possibilities 

• Two 900 spin rotators scheme with restoration of the 
vertical direction of a spin in arcs

• A scheme with 3 Siberian Snakes, spaced by 1200 arcs 
in between

• Analytical estimations, ASPIRRIN code results

• Spin tracking approach at Novosibirsk

• Conclusion



Polarization review at Annecy,2010
• U.Wienands, D.P.Barber - “Polarization update”, 

scheme with two 900 spin rotators

• Ken Moffeit - “Polarization at SuperB” (Physics 
request and a measurement)

• Cecile Rimbault – “Beam-beam depolarization. 
Spin tracking. GUINEA-PIG++  code.”

• N.Monseu – “Spin tracking. Zgoubi code.”

• Other workshops + SPIN-2010, Juelich.



Requirements to longitudinal polarization
Expected polarization 
from a gun: P 90%beam =

 High polarization degree
 demands:     3.5 minp beamτ τ>> =

Mixing a fresh beam with an old one slightly dilutes :
3min, ( )90%; 22 min, 7%.
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Continuous polarization monitoring (bunch to bunch)
using the Compton back-scattering technique.
To fight with systematics the polarization measurement 
accuracy needs to be better than:    | / | 1 5 10P P∆ ≤ ÷ ⋅ 3−

Alter a sign of  from bunch to bunch, randomly! 
Alter sometimes the spin filling pattern in a train!

P



Two 900 spin rotators scheme at LER
Spin is directed longitudinally at IP at two specific energies.
It makes a half turn in the FF-arc when E 1.4 GeV
and it makes 1.5 turns at E=4.18 GeV (that's is nominal E)
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Polarization scheme with 3 snakes (arc=1200

+2 damping wigglers in the arc’s middle )
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ASPIRRIN results for 900 option
|dndg| around ring
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ASPIRRIN, single snake option
|dndg| around ring
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ASPIRRIN, 3 snakes option

IP

|dndg| around ring
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ASPIRRIN, Pol. Time, 900 rotators
Tpol v. Energy
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Selfpolarization, 900 option

Polarization vs. Energy
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Conclusion on polarization
• A scheme with two 900 spin rotators provides up to 80% 

of the longitudinal polarization in LER at 4.2 GeV.

• Single snake scheme is feasible at E<2 GeV

• 3 snakes option looks not favorable 

• Tolerances on the quads gradient integrals and the 
solenoid field integrals are in a range of few percents



Spin tracking approach
• Idea: To extend the existing particle tracking 

codes ACCELERATICUM (P.Piminov) and 
LIFETRAC (D.Shatilov) by an option of spin 
tracking

• Use SU(2) formalism for spin rotations, as, 
seems, more convenient tool for this task 

• To do tracking as accurately as possible
• For the calculation of the rotation angles the spin 

perturbations will be accounted in linear 
approximation on orbital variables. But resulted 
rotations become not fully linear, due to axis 
direction and phi-angle of a rotation depend both 
on particle deviation from an equilibrium orbit. 



SU(2) representation of rotations
Description of a spin direction by a spinor:
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Spin motion perturbations
Early derived by Kondratenko, Derbenev, Chao.  Also see:
Ptitsyn, Mane, Shatunov,  Nucl. Instr. and Meth. A608 (2009) 225-233
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Tracking through the straight 
elements, including a beam lens
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Tracking through the dipole edge

0

0

We shall account the edge focusing (for non-sector magnet) 

and the longitudinal field component: cos( )

(1 )  
(1 ) cos( ) ( ) at the entrance and (-) at the exit

(1 )

y z

x z

y z

z x

H d H z

p
a K z

p

θ α

ϕ ν
ϕ α

ϕ ν

= ± ⋅

⎧ = + ∆

= ± + ⋅ +⎨
= − + ∆

∫

Here ,  - transverse momentum kicks,  - edge anglex zp p α

⎪

⎪
⎩

∆ ∆



Tracking through a dipole main body

0 1 2 ,

0 0 2
0 0

Rotation of the velocity and spin vectors projected onto a horizontal plane:
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Tracking through the solenoid edges

,

Motion equations for the solenoid:
1 1 1
2 2 2
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2 2 2

Canonical momentums  are continuous at the edge, 
while kinetic momentums ,  are jumping:
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Tracking through a solenoid itself
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Tracking through a solenoid, cont’d

( )0

Now let's transform back to a lab frame, 
adding the velocity rotation angle:

1

That's all!

But, not forget to make the exit edge transformation,
described above! 
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Conclusion on tracking code
• The work is at the initial stage
• First results are expected at the fall 2011
• Then comparison with other tracking codes 

would be interesting to make
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