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Some issues in classical Electrodynamics for point-like

particles I

I Self-interaction not included in Lorentz force dpµ

ds = eFµνuν
It does not conserve the energy!

I Fµν(x) and jµ(x) = e
´
uµδ4(x − y(s))ds are distributions but

the energy-momentum tensor of the EM �eld

Tµν
em = FµρF ν

ρ +
1

4
F ρσFρσ

is not: Tem∼ 1
L4

, not integrable for L ∼ 0.
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Some issues in classical Electrodynamics for point-like

particles II

Solution: start from T
µν
em , regularize it and subtract divergences

=⇒ postulate T µν
em

⇓

Conservation of T µν
em + T

µν
particle =⇒ Lorentz-Dirac force with

radiation reaction (and some other minor issue)

dpµ

ds
= eFµνuν +

e2

6π

(
d2u

ds2

µ

+

(
du

ds

)2

uµ

)

With Maxwell's equations we obtain a consistent theory (at the

classical level) in agreement with ~→ 0 limit of QED!

Can we do the same for massless charges? (and learn some lesson?)
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Some notation

For massive particles moving at speed V < 1 capital letters

I Y µ(λ) world-line parametrized by λ

I Uµ(λ) = dY µ

dλ (λ) four-velocity

I W µ(λ) = dUµ

dλ (λ) four-acceleration

I Jµ = e
´
uµδ4(x − y(s))dλ four-current

and �eld with italic letters Fµν ...

For massless particles lower case letters for

yµ(λ), uµ(λ), wµ(λ), jµ and calligraphic font for the �elds Fµν ...
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Liénard-Wichert �elds
De�ne retarded time λr (x) and

Lµ = xµ − Y µ(λr (x)) , L2 = 0 L0 ≥ 0

light−like causal

Coulomb �eld

Cµν =
e

4π

(UµLν − UνLµ)U2

(UL)3

Radiation �eld

Rµν =
e

4π

Lµ ((UL)W ν − (WL)Uν)

(UL)3
− (µ↔ ν)

Naively set V = 1. On

Γµ(λ, b) = yµ(λ) + buµ(λ), b > 0

lµ = Γµ − yµ ∝ uµ =⇒ ul ∝ u2 = 0 =⇒ Cµν ,Rµν |Γ → +∞

Notice: Γ has a border: l0 > 0 =⇒ b > 0.
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String of singularity

Corresponding string at time t (using t as parameter)

~γ(b) = ~y(t − b) + b
d~y

dt
(t − b)



Green function method fails

The method (V = 1):

∂µFµν = jν , ∂[αFβγ] = 0, =⇒ �Aµ = jµ, ∂µAµ = 0

�G (x) = δ4(x) =⇒ G (x) =
1

2π
H(x0)δ(x2) −→ Aµ = G ∗ jµ

G ∈ S ′, but jµ /∈ S =⇒ Aµ ?
∈ S ′

For rectilinear uniform motion at V = 1 one gets

Aµ
RU =

e

4π

uµ

ux
H(ux) /∈ S ′!
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Rectilinear uniform motion

A
µ
RU ∈ S

′ given by JµRU , but Lim
V→1

A
µ
RU /∈ S ′

Absorb divergences with gauge transformations:

Ã
µ
RU = A

µ
RU + ∂µΛ, Aµ

RU = Lim
V→1

Ã
µ
RU ∈ S

′

Fµν
RU = ∂µAν

RU − ∂νA
µ
RU = Lim

V→1
F
µν
RU

and it solves the Maxwell equation for jµRU

∂µFµν
RU = ∂µLim

V→1
F
µν
RU = Lim

V→1
∂µF

µν
RU = Lim

V→1
J
µ
RU = j

µ
RU
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The shockwave

Resulting �eld: the shockwave (vµ = dyµ

dy0
)

Fµν
RU = CµνRU =

e

2π

vµxν − vνxµ

x2
δ(vx)



The four potential

Green function method provides

Aµ =
e

4π

uµ

ul

Apply to test function ϕ and use integration coordinates

I centered on the particle =⇒ ~x → ~x + ~y

I shift time so that t is the retarded time =⇒ t → t + r

(r = |~x |)

Aµ(ϕ) =
e

4π

ˆ
uµ

r
ϕ(t + r ,~x + ~y(t))d4x

Not integrable in region t ∼ −r → −∞ and ~x ∼ −~y(t)→∞.
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Bounded motion

~y(t)
t→−∞9 ∞ =⇒ Aµ ∈ S ′ =⇒ Fµν given by derivatives

computed in S ′

Easier to use a regularisation!

Y 0(λ) =
y0(λ)

V
, ~Y (λ) = ~y(λ) =⇒ Lim

V→1
Jµ = jµ

Cµν = Lim
V→1

Cµν = 0

Rµν = Lim
V→1

Rµν = P(Rµν) +
1

2
Qµν

Qµν = e

ˆ +∞

0
b (uµwν − uνwµ) db

ˆ
δ4(x − Γ(λ, b))dλ

Poincaré dual of Γµ =⇒ ∂µQµν = jν =⇒ ∂µP(Rµν) = 1
2 j

µ
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Currents

{
∂[µCνρ] = 0

∂µC
µν = Jν + K ν

,

{
∂[µRνρ] = 0

∂µR
µν = −K ν

Lim
V→1

Kµ(ϕ) = e

ˆ
[uµ(λ)ϕ(Γ(λ, b))]b=+∞

b=0 dλ = −jµ(ϕ)

⇓
∂µCµν = 0

∂µRµν = jν
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Unbounded motion I

~y
t→−∞−→ t~v∞

⇓

~γ(b) = ~y(t − b) + b
d~y

dt
(t − b)

b→+∞ ↪→ b~v∞

Aµ /∈ S ′

Same gauge transformation used for Aµ
RU in the direction of ~v∞:

Ãµ = Aµ + ∂µΛ −→ Aµ = Lim
V→1

Ãµ ∈ S ′

Same strategy as before

Rµν = Lim
V→1

Rµν = P(Rµν) +
1

2
Qµν
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Unbounded motion II

This time

∂µRµν = −Lim
V→1

Kµ = e

ˆ
[uµ(λ)ϕ(Γ(λ, b))]b=0

b=+∞ dλ = jν − jνRU

where jRU current of rectilinear motion along ~v∞

∂µCµν = jνRU

No need of a limit, we know the solution!

Unbounded motion generate:

1. A radiation �eld

2. A shockwave

3. A string of singularities that ends on the shockwave
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Conclusions

I The Maxwell equations are still solvable for massless particles

in the space of distributions

I The resulting �eld can be singular on manifolds of di�erent

dimension, depending on the boundedness of the trajectory

I These results allow to proceed further and check whether the

classical Electrodynamics of massless charged particles is

consistent or not.
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