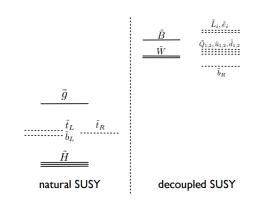
MOTIVATIONS STOPZ DECAY BRANCH STOPH DECAY BRANCH RESULTS CONCLUSIONS

Search for direct top squark pair production in events with a Higgs or Z boson, and missing transverse momentum in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector

Gabriele D'Amen on behalf of the ATLAS collaboration



Universitá di Bologna

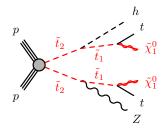
March 1st, 2018

MOTIVATIONS STOPZ DECAY BRANCH STOPH DECAY BRANCH RESULTS CONCLUSIONS

$\widetilde{t}_2 \rightarrow \widetilde{t}_1 + Z/h$ analysis Motivations

Why the stop?

- In many SUSY models, could have mass < 1 TeV
- Top quark partner \rightarrow **coupling** with *Higgs* of $\mathcal{O}(1)$
- Could hint to solutions to the Hierarchy problem
- Helicity eigenstates mix to form two mass eigenstates, \tilde{t}_1 and \tilde{t}_2

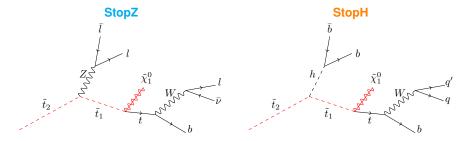

 $\widetilde{t}_2 \rightarrow \widetilde{t}_1 + Z/h$ analysis Motivations

• Dedicated searches for direct \tilde{t}_1 pair production optimized for **simplified** decays $(\tilde{t}_1 \rightarrow \tilde{\chi}_1^0 + t)$ with low sensitivities for multi-step processes.

• Targeting the complex decay chain of the heavier \tilde{t}_2 with a Z or h boson

$$\widetilde{t}_2 \rightarrow \widetilde{t}_1 + Z/h$$

in the kinematic region: $m_{{ ilde t}_1}~=~m_{{ ilde \chi}^0_1}~+~m_t$

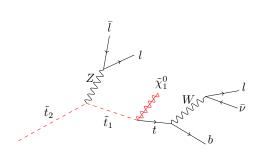


$\widetilde{t}_2 \rightarrow \widetilde{t}_1 + Z/h$ analysis Motivations

Signal models:

- $-\widetilde{t}_2$ produced in pair
- Simplified model branches: B = 100% in either $\tilde{t}_1 + Z$ or $\tilde{t}_1 + h$
- Signal Grid: multiple $(m_{\tilde{t}_2}, m_{\tilde{\chi}^0_1})$ signal mass models
- Remember! $m_{\tilde{t}_1} = m_{\tilde{\chi}_1^0} + m_t$

Dataset: 36.1 fb⁻¹ ATLAS data, $\sqrt{s} = 13$ TeV, [2015 + 2016]


MOTIVATIONS STOPZ DECAY BRANCH STOPH DECAY BRANCH RESULTS CONCLUSIONS

 $\operatorname{Stop}Z$ decay branch

StopZ decay strategy

MOTIVATIONS STOPZ DECAY BRANCH STOPH DECAY BRANCH RESULTS CONCLUSIONS

STOPZ DECAY BRANCH Signature

Signature:

0

- Large E_T^{miss} (due to ν and $\tilde{\chi}^0$)
- 3 leptons (e, μ)
 - (2 of them must be consistent with a Z leptonic decay)
 - 1 **b-tagged jet** (from the *t* decay)

SM Backgrounds:

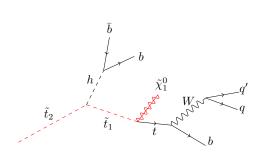
- Fakes & non-prompt lepton: data driven
- $t\bar{t} + Z$: modeled with aMc@NloPythia8
- Multibosons (mostly WZ): modeled with Sherpa 2.2.1

STOPZ DECAY BRANCH SIGNAL REGION DEFINITIONS

Optimization by maximizing discovery significance performed on 3 mass points $(m_{\tilde{t}_2}, m_{\tilde{\chi}_1^0})$ lead to 3 **Signal Region** definitions, based on the mass splitting between \tilde{t}_2 and \tilde{t}_1 :

- **SR**_C^{3ℓ1b}: small mass splitting between \tilde{t}_2 and \tilde{t}_1 , soft Z boson
- **SR**^{$3\ell 1b}_B: intermediate mass splitting</sup>$
- $SR_A^{3\ell 1b}$: high mass splitting between \tilde{t}_2 and \tilde{t}_1 , boosted Z boson

Var/region	${ m SR}^{3\ell 1b}_A$	$SR_B^{3\ell 1b}$	$SR^{3\ell 1b}_{\mathcal{C}}$
m ^{ℓℓ} [GeV]	< 15	< 15	< 15
p ^{<i>lep</i>} _T [Gev]	> 40	> 40	> 40
p ^{jet} [GeV]	> 250	> 80	> 60
p ^{bjet} [GeV]	> 40	> 40	> 40
$n_{bjets}(p_T > 30 \text{ GeV})$	\geq 1	\geq 1	\geq 1
$n_{jets}(p_T > 30 \text{ GeV})$	\geq 6	\geq 6	\geq 5
E ^{miss} [GeV]	> 100	> 180	> 140
$p_{T}^{\ell\ell}$ [GeV]	> 150	-	< 80


MOTIVATIONS STOPZ DECAY BRANCH STOPH DECAY BRANCH RESULTS CONCLUSIONS

 StopH decay branch

StopH decay strategy

MOTIVATIONS STOPZ DECAY BRANCH STOPH DECAY BRANCH RESULTS CONCLUSIONS

STOPH DECAY BRANCH Signature

Signature:

- Large \mathbf{E}_T^{miss} (ν and $\widetilde{\chi}^0$)
- 3 b-tagged jets

 (2 of them must be compatible with Higgs decay)
- 1 lepton (e, μ) (p_T > 30GeV)

SM Backgrounds:

 $t\overline{t} (> 80\%)$ V + jets $t\overline{t} + H$

STOPH DECAY BRANCH

Optimization performed on 3 mass points $(m_{\tilde{t}_2}, m_{\tilde{\chi}_1^0})$ lead to 3 **Signal Region** definitions, based on the mass splitting between \tilde{t}_2 and \tilde{t}_1 :

- $SR_C^{1\ell 4b}$: small mass splitting between \tilde{t}_2 and \tilde{t}_1 , soft Higgs
- **SR**^{1ℓ4b}_B : intermediate mass splitting
- $\mathbf{SR}_{A}^{1\ell 4b}$: high mass splitting between \tilde{t}_{2} and \tilde{t}_{1} , boosted Higgs

Requirement/region	$SR^{1\ell 4b}_A$	${ m SR}^{1\ell 4b}_B$	$SR^{1\ell 4b}_C$
n _{bjets}	\geq 4	\geq 4	<u>≥ 4</u>
n _{lep}	1–2	1 – 2	1 – 2
m _T [GeV]	_	> 150	> 125
H _T [GeV]	> 1000	-	-
E ^{miss} [GeV]	> 120	> 150	> 150
p ^{<i>bjet</i>} [GeV]	-	_	< 140
p ^{bb} [GeV]	> 300	-	_
m _{bb} [GeV]	95 – 155	_	-
$n_{jet} (p_T > 60 \text{ GeV})$	\geq 6	\geq 5	-
n _{jet} (p _T > 30 GeV)	-	-	\geq 7

Bottom quarks coming from the Higgs boson decay identified as the **most collimated pair**.

$$\mathsf{H}_{\mathcal{T}}\equiv\sum||p_{\mathcal{T}i}||$$
 ($||p_{\mathcal{T}i}||\geq$ 30 GeV)

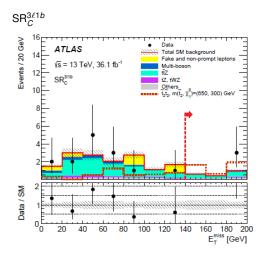
Sensitive to large expected signal hadronic activity

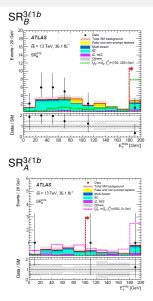
STOPH DECAY BRANCH CONTROL REGIONS

Due to the relatively big differences between the various Signal regions, **multiple Control regions** are necessary for the normalization of $t\bar{t}$ production:

- for SR^{1ℓ4b}_A, SR^{1ℓ4b}_B, SR^{1ℓ4b}_C by CRT^{1ℓ4b}_A, CRT^{1ℓ4b}_B, CRT^{1ℓ4b}_C respectively (\approx 85 % purity)
- the selection inverts the SRs E_{T}^{miss} and the relax/inverts the m_{T} selection

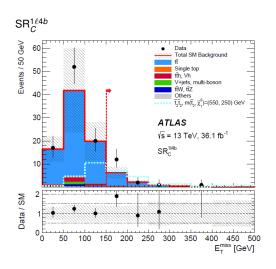
Requirement/Region	$CRT^{1\ell 4b}_A$	CRT ^{1ℓ4b}	$CRT_C^{1\ell 4b}$
n _{bjets}	<u>≥</u> 4	<u>≥</u> 4	<u>≥ 4</u>
n _{lep}	1 – 2	1 – 2	1 – 2
m _T [GeV]	-	> 100	< 125
E ^{miss} [GeV]	< 120	< 150	< 150
p ^{bjet} [GeV]	-	-	< 140
p ^{bb} / ₇ [GeV]	> 300	_	_
m _{bb} [GeV]	95 – 155	_	_
$n_{jets} (p_T > 60 \text{ GeV})$	\geq 5	\geq 5	-
n _{jets} (p _T > 30 GeV)	-	_	≥ 7

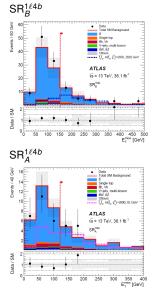

MOTIVATIONS STOPZ DECAY BRANCH STOPH DECAY BRANCH RESULTS CONCLUSIONS


$\operatorname{Results}$

Results

MOTIVATIONS STOPZ DECAY BRANCH STOPH DECAY BRANCH RESULTS CONCLUSIONS

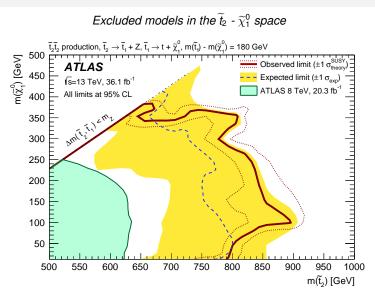

RESULTS StopZ decay branch - Kinematic distributions



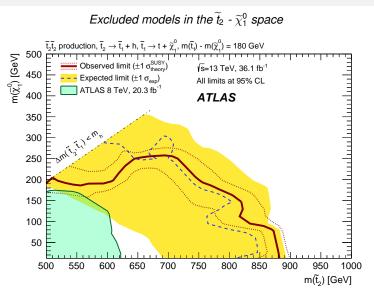
MOTIVATIONS STOPZ DECAY BRANCH STOPH DECAY BRANCH RESULTS CONCLUSIONS

RESULTS StopH decay branch - Kinematic distributions

14/21

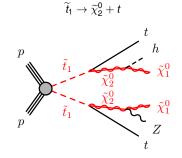

MOTIVATIONS STOPZ DECAY BRANCH STOPH DECAY BRANCH RESULTS CONCLUSIONS

RESULTS Yields


StopZ decay branch

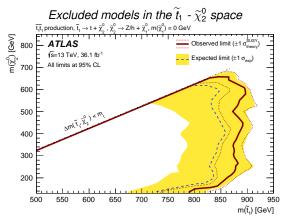
	${\sf SR}^{3\ell 1b}_{\cal A}$	${\sf SR}^{3\ell 1b}_B$	$SR^{3\ell 1b}_C$
Observed events	2	1	3
Total (post-fit) SM events	$\textbf{1.9} \pm \textbf{0.4}$	$\textbf{2.7} \pm \textbf{0.6}$	$\textbf{2.0} \pm \textbf{0.3}$
Fit output, multi-boson Fit input, multi-boson	$\begin{array}{c} 0.26\pm0.08\\ 0.35\end{array}$	$\begin{array}{c} 0.28\pm0.10\\ 0.37\end{array}$	$\begin{array}{c} 0.23\pm0.05\\ 0.30\end{array}$
StopH decay branch			
	SR ^{1ℓ4b}	SR ^{1ℓ4b}	SR ^{1ℓ4b} C
Observed events	10	28	16
Total (post-fit) SM events	$\textbf{13.6} \pm \textbf{3.0}$	29 ± 5	$\textbf{10.5} \pm \textbf{3.2}$
Fit output, $t\overline{t}$ Fit input, $t\overline{t}$	11.3 ± 2.9 7.1	$\begin{array}{c} 24\pm5\\ 14\end{array}$	$\begin{array}{c} 9.3\pm3.1\\ 6.0\end{array}$

RESULTS StopZ - Exclusion Limits


RESULTS StopH - Exclusion Limits

MOTIVATIONS STOPZ DECAY BRANCH STOPH DECAY BRANCH RESULTS CONCLUSIONS

$\widetilde{t}_1 \rightarrow \widetilde{\chi}_2^0 + t$ reinterpretation Motivations


Results are **reinterpreted** in a search for \tilde{t}_1 production:

Signal model:

 $\begin{array}{ll} - & m_{\widetilde{\chi}^0_1} = 0.5 \ \text{GeV} & (GMSB\text{-like}) \\ - & \mathcal{B}(\widetilde{t}^0_1 \to \widetilde{\chi}^0_2 + t) = 100\% \\ - & \mathcal{B}(\widetilde{\chi}^0_2 \to \widetilde{\chi}^0_1 + Z/h) = 50\% \ \text{for each decay branch} \\ - & \Delta(m_{\widetilde{\chi}^0_2}, m_{\widetilde{\chi}^0_1}) \geq 130 \ \text{GeV} & (\text{on-shell } Z \ \text{and } h \ \text{decays}) \end{array}$

RESULTS Stop1 Reinterpretation - Exclusion Limits

- No specific analysis strategy have been applied for this reinterpretation.
- The two SRs with best expected sensitivity from the Higgs decay and Z decay selections are statistically combined to derive the limits

RECAP AND CONCLUSIONS

- A search for direct \tilde{t}_2 pair production has been presented, targeting the decay $\tilde{t}_2 \rightarrow \tilde{t}_1 + Z/h$ with 100% BR
- The search aims at the kinematic region with $m_{\tilde{t}_1} = m_{\tilde{\chi}_1^0} + m_t$
- Three **Signal Regions** have been defined for each of the two decay branches, based on the mass splitting between \tilde{t}_2 and \tilde{t}_1
- Data agree with the SM background expectation within uncertainties for both stopZ and stopH decay branches and thus exclusion limits for new physics BSM are extracted, up to $\sim 850~\text{GeV}$ for $m_{\widetilde{t}_0}$ and $\sim 250~\text{GeV}$ $m_{\widetilde{\nu}_0}$
- − Exclusion limits are extracted for the $\tilde{t}_1 \rightarrow \tilde{\chi}_2^0 + t$ decay as well, covering \tilde{t}_1 masses up to 900 GeV

arXiv:1706.03986v1

MOTIVATIONS STOPZ DECAY BRANCH STOPH DECAY BRANCH RESULTS CONCLUSIONS

BACKUP

BACKUP StopZ - Background and Fakes estimation

Dominant backgrounds for the stopZ search are:

- Fakes and non-prompt lepton: estimated with data driven matrix-method
- $t\bar{t} + Z$: modeled with aMc@NloPythia8, normalised with dedicated Control Region (CRTZ^{3ℓ1b})
- Multibosons (mostly WZ): modeled with Sherpa 2.2.1, normalised with dedicated Control Region (CRVV^{3ℓ1b})

The selections of the control regions were chosen to be the as close as possible (but statistically independent) to the SR selection:

- **CRTZ**^{3ℓ1b}: targets the associated production of a $t\bar{t}$ pair and a Z boson. An upper cut on $E_T^{miss} < 100$ GeV ensures orthogonality ($\approx 60\%$ purity).
- CRVV^{3ℓ1b}: targets the production of multiple bosons (VV + VVV). A b-veto ensures orthogonality (about 80% purity)

BACKUP Model-independent limits

Signal selection	$\langle\epsilon\sigma angle_{ m obs}^{ m 95}$ [fb]	$S^{95}_{ m obs}$	$S_{ m exp}^{95}$
SR3I1bA	0.13	4.8	$4.1^{+1.8}_{-0.5}$
SR3I1bB	0.11	4.1	$5.3^{+1.6}_{-1.2}$
SR3I1bC	0.16	5.8	$4.8^{+1.1}_{-1.0}$
SR1L4bA	0.27	10.0	$11.2^{+3.0}_{-3.6}$
SR1L4bB	0.34	12.4	$12.5^{+6.4}_{-2.2}$
SR1L4bC	0.31	11.3	$10.0^{+3.2}_{-2.2}$

Signal model-independent 95% CL upper limits on the visible cross section ($\langle \epsilon \sigma \rangle_{obs}^{95}$), the visible number of signal events S_{obs}^{95} and the number of signal events given the background events S_{exp}^{95}

BACKUP StopZ - Theory uncertainties

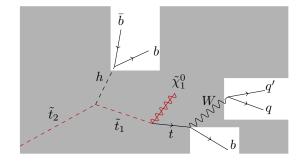
Truth level uncertainties, already included in the final interpretation.

- $t\bar{t} + Z$, W: Scale uncertainties evaluated with MadGraph+Pythia8 samples. Generator uncertainties evaluated with Sherpa samples
- diboson: Scale uncertainties evaluated with dedicated Sherpa samples
- $t\bar{t} + W$ Cross Section: theoretical uncertainties for the $t\bar{t} + W$ cross section are 13%

Var/region	SR3ℓ1bC	SR3ℓ1bA	SR3ℓ1bB	CRTZ-3ℓ1b	CRVV-3ℓ1b
$t\bar{t} + Z$	6%	7%	12%	1%	2%
$t\overline{t} + W$	20%	32%	25%	7%	24%
diboson(WZ + ZZ)	19%	48%	37%	30%	30%

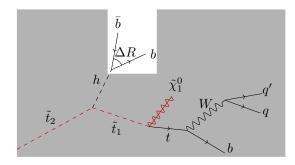
BACKUP StopH - Theory uncertainties

Truth level uncertainties, already included in the final interpretation

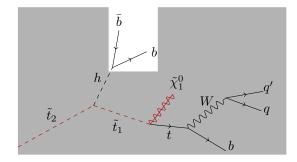

tī: Generator/Hard scatter uncertainties evaluated by comparing the predictions from POWHEG-BOX with aMc@NLO 2.1.1.
 Fragmentation/Hadronization evaluated by comparing the predictions from POWHEG with Pythia 6.428 and Herwig++ 2.7.1.
 Additional Radiation evaluated with dedicated Powheg+Pythia samples

- $t\bar{t} + HF$: Fraction uncertainties truth level reweighting of the $t\bar{t} \ge 1b$ and $t\bar{t} \ge 1c$ components of the nominal $t\bar{t}$ sample varied up by 50%

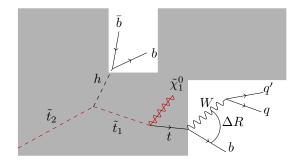
Var/region	SR1ℓ4bC	SR1ℓ4bB	SR1ℓ4bA
$t\overline{t}+\geq 1b$	7.1%	4.3%	0.5%
$t\overline{t}+\geq$ 1 c	0.1%	2.5%	2.3%


BACKUP

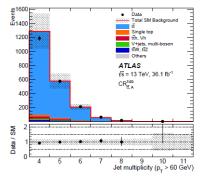
Higgs boson reconstruction - χ^2

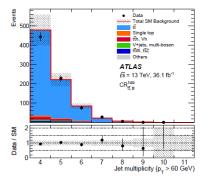

$$|M_{J_1+J_2} - M_W| < 30 \ GeV$$
(1)
$$\chi_l^2 = \frac{(m_{t_l^{cand}} - m_l)^2}{10\% m_l} + \frac{(m_{H_l^{cand}} - m_H)^2}{10\% m_H}$$
(2)

$\begin{array}{l} BACKUP\\ Higgs \text{ boson reconstruction - } dR \end{array}$

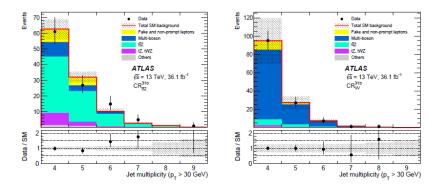

Backup

HIGGS BOSON RECONSTRUCTION - P_T^{bb}




Backup

HIGGS BOSON RECONSTRUCTION - TOP RECONSTRUCTION



BACKUP StopH - Control region kinematic distributions

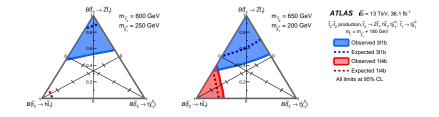
 $\begin{array}{l} BACKUP\\ \text{StopZ} \ - \ \text{Control region kinematic distributions} \end{array}$

BACKUP StopZ - Yields

	SR ^{3ℓ1b} A	SR ^{3ℓ1b} B	SR ^{3ℓ1b} C
Observed events	2	1	3
Total (post-fit) SM events	$\textbf{1.9} \pm \textbf{0.4}$	$\textbf{2.7} \pm \textbf{0.6}$	$\textbf{2.0} \pm \textbf{0.3}$
Fit output, multi-boson	0.26 ± 0.08	$\textbf{0.28} \pm \textbf{0.10}$	0.23 ± 0.05
Fit output, tt Z	1.1 ± 0.3	1.4 ± 0.5	1.2 ± 0.3
tZ, tWZ	$\textbf{0.43} \pm \textbf{0.23}$	$\textbf{0.36} \pm \textbf{0.19}$	0.19 ± 0.10
Fake or non-prompt leptons	$0.00\substack{+0.30\\-0.00}$	$\textbf{0.45} \pm \textbf{0.19}$	$0.00\substack{+0.30\\-0.00}$
Others	0.09 ± 0.02	$\textbf{0.23}\pm\textbf{0.06}$	0.36 ± 0.06
Fit input, multi-boson	0.35	0.37	0.30
Fit input, t I Z	1.2	1.5	1.4

BACKUP Stoph - Yields

	$SR^{1\ell 4b}_A$	$\mathrm{SR}^{1\ell4b}_B$	SR ^{1ℓ4b}
Observed events	10	28	16
Total (post-fit) SM events	$\textbf{13.6} \pm \textbf{3.0}$	29 ± 5	$\textbf{10.5} \pm \textbf{3.2}$
Fit output, <i>t</i> t	11.3 ± 2.9	24 ± 5	9.3 ± 3.1
Single top	0.50 ± 0.18	1.7 ± 0.4	0.24 ± 0.07
V+jets, multi-boson	$\textbf{0.20} \pm \textbf{0.15}$	$\textbf{0.23} \pm \textbf{0.10}$	0.01 ± 0.01
tīt h, Vh	$\textbf{0.89} \pm \textbf{0.16}$	1.19 ± 0.35	0.56 ± 0.13
tīt W, tīt Z	$\textbf{0.36} \pm \textbf{0.21}$	1.09 ± 0.31	$\textbf{0.10} \pm \textbf{0.10}$
Others	$\textbf{0.37} \pm \textbf{0.20}$	1.33 ± 0.69	$\textbf{0.34} \pm \textbf{0.18}$
Fit input, <i>t</i> t	7.1	14	6.0


BACKUP StopZ - Control regions

Two control regions have been designed to measure from data the normalisation of the two main backgrounds of this decay branch, tt + Z and multi-boson production (*VV*). The selections of the control regions were chosen to be the as close as possible to the SR selection:

- CRTZ^{3ℓ1b}: targets the associated production of a $t\bar{t}$ pair and a Z boson. An upper cut on $E_T^{miss} < 100$ GeV ensures orthogonality ($\approx 60\%$ purity).
- − CRVV^{3ℓ1b}: targets the production of multiple bosons (VV + VVV). A b-veto (n_b = 0)ensures orthogonality (about 80% purity)

Var/Region	CRTZ ^{3ℓ1b}	CRVV ^{3ℓ1b}
<i>m</i> ℓℓ [GeV]	76.2–106.2	76.2–106.2
Leading lepton pT [GeV]	> 40	> 40
Leading jet pT [GeV]	> 60	> 30
n _{b-jets}	\geq 1	0
$n_{jets}(pT > 30 \text{GeV})$	\geq 4	\geq 4
E ^{miss} [GeV]	< 100	_
<i>pt^{ℓℓ}</i> [GeV]	-	_

BACKUP Triangular plots

BACKUP StopZ - Analysis Strategy

Optimization by maximizing discovery significance performed on 3 mass points $(m_{\tilde{t}_2}, m_{\tilde{\chi}_1^0})$ lead to 3 **Signal Region** definitions, based on the mass splitting between \tilde{t}_2 and \tilde{t}_1 :

- njet jet multiplicity
- n_{bjet} b-jet multiplicity
- \mathbf{E}_{T}^{miss} missing transverse energy
- \mathbf{p}_T^{jet} leading jet transverse momentum
- \mathbf{p}_{T}^{bjet} leading b-jet transverse momentum
- \mathbf{p}_T^{lep} leading lepton transverse momentum
- $\mathbf{p}_T^{\ell\ell}$ transverse momentum of the $\ell\ell$ reconstructed pair

 $\Delta \bm{m}_{\ell\ell} ~~$ mass of the reconstructed $\ell\ell$ pair from the Z boson decay minus the mass of the Z boson

BACKUP StopH - Analysis Strategy

Optimization by maximizing discovery significance performed on 3 mass points $(m_{\tilde{t}_2}, m_{\tilde{\chi}_1^0})$ lead to 3 **Signal Region** definitions, based on the mass splitting between \tilde{t}_2 and \tilde{t}_1 :

- $\mathbf{m}_{\mathcal{T}}$ lepton transverse mass
- H_T sum of jets transverse momenta \geq 30 GeV
- \mathbf{E}_{T}^{miss} missing transverse energy
- \mathbf{p}_T^{bjet} leading b-jet transverse momentum
- \mathbf{p}_{T}^{bb} transverse momentum of the $b\bar{b}$ reconstructed pair
- njet jet multiplicity
- **n**_{bjet} b-tagged jet multiplicity
- \mathbf{m}_{bb} mass of the reconstructed $b\bar{b}$ pair from the Higgs boson

Bottom quarks coming from the Higgs boson decay identified as the **most collimated pair**.

$$H_T \equiv \sum ||p_{Ti}||, \text{ for jet momenta } ||p_{Ti}|| \geq 30 GeV$$

Sensitive to large expected signal hadronic activity