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Motivations

• The worldline formalism proved to be useful to compute
various one-loop quantities of QFT’s, such as n-point
functions, propagators, effective actions and so on

• O(N) spinning particles in flat space describe quite
efficiently higher spin fields (spin N

2 in D = 4)
• Coupling to curved space can provide useful information

about their quantum properties on (A)dS backgrounds
• Non-commutative products can be represented in the

worldline phase space −→ Maybe useful for Vasiliev
theories

• Gauge symmetries of the field theory are taken into
account by worldline symmetries

• No need of a field theory action



Motivations

• The worldline formalism proved to be useful to compute
various one-loop quantities of QFT’s, such as n-point
functions, propagators, effective actions and so on

• O(N) spinning particles in flat space describe quite
efficiently higher spin fields (spin N

2 in D = 4)

• Coupling to curved space can provide useful information
about their quantum properties on (A)dS backgrounds

• Non-commutative products can be represented in the
worldline phase space −→ Maybe useful for Vasiliev
theories

• Gauge symmetries of the field theory are taken into
account by worldline symmetries

• No need of a field theory action



Motivations

• The worldline formalism proved to be useful to compute
various one-loop quantities of QFT’s, such as n-point
functions, propagators, effective actions and so on

• O(N) spinning particles in flat space describe quite
efficiently higher spin fields (spin N

2 in D = 4)
• Coupling to curved space can provide useful information

about their quantum properties on (A)dS backgrounds

• Non-commutative products can be represented in the
worldline phase space −→ Maybe useful for Vasiliev
theories

• Gauge symmetries of the field theory are taken into
account by worldline symmetries

• No need of a field theory action



Motivations

• The worldline formalism proved to be useful to compute
various one-loop quantities of QFT’s, such as n-point
functions, propagators, effective actions and so on

• O(N) spinning particles in flat space describe quite
efficiently higher spin fields (spin N

2 in D = 4)
• Coupling to curved space can provide useful information

about their quantum properties on (A)dS backgrounds
• Non-commutative products can be represented in the

worldline phase space −→ Maybe useful for Vasiliev
theories

• Gauge symmetries of the field theory are taken into
account by worldline symmetries

• No need of a field theory action



Motivations

• The worldline formalism proved to be useful to compute
various one-loop quantities of QFT’s, such as n-point
functions, propagators, effective actions and so on

• O(N) spinning particles in flat space describe quite
efficiently higher spin fields (spin N

2 in D = 4)
• Coupling to curved space can provide useful information

about their quantum properties on (A)dS backgrounds
• Non-commutative products can be represented in the

worldline phase space −→ Maybe useful for Vasiliev
theories

• Gauge symmetries of the field theory are taken into
account by worldline symmetries

• No need of a field theory action



Motivations

• The worldline formalism proved to be useful to compute
various one-loop quantities of QFT’s, such as n-point
functions, propagators, effective actions and so on

• O(N) spinning particles in flat space describe quite
efficiently higher spin fields (spin N

2 in D = 4)
• Coupling to curved space can provide useful information

about their quantum properties on (A)dS backgrounds
• Non-commutative products can be represented in the

worldline phase space −→ Maybe useful for Vasiliev
theories

• Gauge symmetries of the field theory are taken into
account by worldline symmetries

• No need of a field theory action



Outline

• O(N) spinning particles and higher spin fields in flat space

• Coupling to (A)dS and effective action with HS loop

• Dimensional reduction and HS in odd dimensions

• Outlook and future directions



Outline

• O(N) spinning particles and higher spin fields in flat space

• Coupling to (A)dS and effective action with HS loop

• Dimensional reduction and HS in odd dimensions

• Outlook and future directions



Outline

• O(N) spinning particles and higher spin fields in flat space

• Coupling to (A)dS and effective action with HS loop

• Dimensional reduction and HS in odd dimensions

• Outlook and future directions



Outline

• O(N) spinning particles and higher spin fields in flat space

• Coupling to (A)dS and effective action with HS loop

• Dimensional reduction and HS in odd dimensions

• Outlook and future directions



O(N) spinning particle in flat space

Consider the worldline action (i = 1, ...,N)

S =

∫
dt
[
pµẋµ + i

2ψ
µ
i ψ̇µi − 1

2 p2
]

It enjoys O(N)-extended WL supersymmetry, generated by

H =
p2

2
, Qi = ψµi pµ , Jij = i

2 [ψµi , ψµj ]

The generators obey the following supersymmetry algebra{
Qi ,Qj

}
= 2 δij H[

Jij ,Qk
]

= i δjk Qi − i δik Qj[
Jij , Jkl

]
= i δjk Jil − i δik Jjl − i δjl Jik + i δil Jjk
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• The algebra is first class → It can be gauged to make
the (super)symmetries local

• One introduces WL gauge fields e(τ), χi(τ) and aij(τ) to
be coupled to the symmetry generators

• By doing so one ends up with the O(N) spinning particle
action:

S =

∫ 1

0
dt
[
pµẋµ + i

2ψ
µ
i ψ̇µi − eH − iχiQi − 1

2aijJij

]

In configuration space it reads

S =

∫ 1

0
dt
[ 1

2e
(
ẋµ − iχiψ

µ
i

)2
+ i

2ψ
µ
i

(
δij∂t − aij

)
ψµj

]
At the quantum level Dirac constraints

TA|R〉 = 0 , with TA :=
(
Jij ,Qi ,H

)
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pµẋµ + i

2ψ
µ
i ψ̇µi − eH − iχiQi − 1

2aijJij

]

In configuration space it reads

S =

∫ 1

0
dt
[ 1

2e
(
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Canonical quantization: Fronsdal equations

Consider the simple case of D = 4 and even N = 2s

• Complexify fermions to get s pairs of oscillators:{
ψµI , ψ̄

νJ
}

= δJ
I η

µν I, J = 1, ..., s

• Jij constraints→ physical states are tensors characterized
by a 2× s Young tableau

|R〉 ∼ Rµ1ν1...µsνs (x) → ︸ ︷︷ ︸
s

and traceless: TrIJ |R〉 = 0 → Rµ
ν1...µνs = 0

• The other independent constraint is a Bianchi-like equation

QI |R〉 = 0 → ∂[µRµ1ν1]...µsνs = 0
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R is an HS curvature that can be integrated in terms of an HS
potential φ

• We solve Bianchi by introducing the HS gauge potential

|R〉 = 1
s!ε

I1...IsQI1 ...QIs |φ〉 → Rµ1ν1...µsνs = ∂µ1 ...∂µsφν1...νs

a symmetric spin s tensor
• Field equations are higher derivative→ we introduce a

compensator field to recast them as(
−2H + QIQ̄I + 1

2 QIQJTrIJ
)
|φ〉 = QIQJQK |ρIJK 〉

Bastianelli, Corradini, Latini; 2008

• They are nothing but Fronsdal equations for spin s with
compensators

�φ(s) − s ∂∂ · φ(s) + s(s−1)
2 ∂2 Trφ(s) = ∂3ρ(s-3)

Francia, Sagnotti; 2003
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They are invariant under unconstrained gauge transformations

δφ(s) = ∂Λ(s-1) , δρ(s-3) ∝ Tr Λ(s-1)

Partially gauge fixing compensators to zero one gets usual
Fronsdal equations

�φ(s) − s ∂∂ · φ(s) + s(s−1)
2 ∂2 Trφ(s) = 0 ,

δφ(s) = ∂Λ(s-1) , Tr Λ(s-1) = 0 , Tr2 φ(s) = 0

• For arbitrary even D = 2k one gets Fronsdal-Labastida
equations for gauge fields with rectangular (k − 1)× s
Young tableaux

• For odd N we have Fang-Fronsdal equations for fermionic
HS fields

• In odd dimensions the model is empty
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HS on (A)dS backgrounds
• Trying to couple the O(N) spinning particle to a curved

space, the SUSY algebra is not first class, obstructed by
target space curvature

• On conformally flat spaces the algebra is first class, but
with structure functions
Bastianelli, Corradini, Latini; 2008

• On maximally symmetric spaces the algebra becomes
quadratic in constraints→ Simpler BRST quantization

Rabcd = b (ηacηbd − ηadηbc) →{
Qi ,Qj

}
= 2δijH −b

2

(
JikJjk + JjkJik − δijJklJkl

)
Qi = ψa

i eµa πµ , H = 1
2

(
πaπa − iωa

abπ
b
)
−b

4 JijJij−bA(D,N)
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HS Effective action on (A)dS
• One-loop effective action given by the worldline path

integral

Γ[g] =� =

∫
S1

DxDψiDeDχiDaij

Vol(Gauge)
e−S

Bastianelli, R.B., Corradini, Latini; 2012

• After gauge fixing WL symmetries one has the Heat Kernel
expansion

Γ[g] =

∫ ∞
0

dT
T

∫
dDx

√
|g|

(2πT )D/2 a0

〈〈
e−Sint

〉〉

a0

〈〈
e−Sint

〉〉
= a0

(
1 + v1 R T + v2 R2 T 2 + ...

)
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DxDψiDeDχiDaij

Vol(Gauge)
e−S

Bastianelli, R.B., Corradini, Latini; 2012

• After gauge fixing WL symmetries one has the Heat Kernel
expansion

Γ[g] =
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dT
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Simplest case: D = 4 and even N = 2s
The SDW coefficients are defined as

Γ[g] =

∫ ∞
0

dT
T

∫
d4x

√
|g|

(2πT )2 a0

(
1 + v1 R T + v2 R2 T 2 + ...

)

and we get

a0 = 2− δs,0 , v1 = −s2

6
, v2 = − 1

8640
+

s2

288
− s4

144

• For s = 0,1 known results for conformally improved scalar
and Maxwell fields

• For s = 2 there is a mismatch with known results
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SO(N) Christensen and Duff (’83) Worldline spin 2 (2013)

a0 = 2 a0 = 2 a0 = 2

v1 = − 2
3 v1 =? v1 = − 2

3

v2 = − 841
8640 v2 = − 571

8640 v2 = − 571
8640

i.e. ∆v2 = 1
32

• We conjecture this is a topological mismatch similar to
those found for dual differential forms

• It remains at higher spins (Giombi Klebanov, 2013)
• ζ-regulated sum over all spins vanish (agreement with GK

for Vasiliev spectrum)
• Coefficients obtained also for half-integer spins and

conformal fields in all even dimensions

Bastianelli, RB, Corradini, Latini, JHEP 1212 (2012) 113 arXiv:1210.4649
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Massive and massless HS in odd D
• O(N) spinning particle is empty in odd dimensions→

dimensional reduction from D + 1 = 2k with fixed
momentum p5 = m

• Split fermions as ψM
i = (ψµi , θi), the (D + 1)-dimensional

superalgebra is unchanged.
• For N = 2s use complex combinations of fermions

(ψµI , ψ̄
µI), (θI , θ̄

I) with manifest U(s) covariance. Relevant
constraints:

J J
I = JJ

I + θI
∂

∂θJ
− k δJ

I , KIJ = TrIJ +
∂2

∂θI∂θJ
, QI = QI + m θI

• Generic state is a sum of Lorentz tensors with θ-expansion

R(x , ψ, θ) =
s∑

n=0

1
n! RI1...In (x , ψ) θI1 ...θIn

Bastianelli, R.B., Corradini, Latini, to appear
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Constraints
• J J

I constraints impose GL(D) irreducibility. At fixed n the states
RI1...In consist of a single Lorentz tensor with Young tableau
(D = 2k − 1)

RI1...In ∼
1 s

k-1

1 ... s-n

RI1...In (x , ψ) = RI1...In
µ1

1..µ
1
k ,..,µ

Ii
1 ..µ

Ii
k−1,..,µ

s
1..µ

s
k

(x)ψ
µ1

1
1 ..ψ

µ1
k

1 ..ψ
µ

Ii
1

Ii ..ψ
µ

Ii
k−1

Ii ..ψ
µs

1
s ..ψ

µs
k

s

• KIJ constraints relate traces of higher rank tensors to lower
rank ones

TrKLRI1...In − RKLI1...In = 0

and will enforce dynamical field equations
• QI constraints provide integrability conditions and relations

between tensors of different ranks

QK RI1...In = m (−)ks+nn δ[I1K RI2...In]
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Massive case: Pauli-Fierz
• In the massive case, only independent field is

RI1...Is = εI1...Isφ

• Other fields expressed as derivatives on φ

RI1...In =
(−)(s−n)(ks+1)

ms−n(s − n)!
εI1...Is QIn+1 ...QIs φ ∼

1 s

k-1

∂ ∂ ∂

• Relevant trace constraints are the last three, others giving
further derivatives of the e.o.m.

• In terms of φ they are the triplet of Pauli-Fierz conditions
for the massive field

φµ1
1..µ

1
k−1,...,µ

s
1..µ

s
k−1
∼

1 s

k-1

TrIJφ = 0 , Q̄Iφ = 0 ,
(
�−m2

)
φ = 0
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Massless limit: Fronsdal-Labastida multiplet
• Letting m→ 0 the tensor structures of RI1...In remain the

same, as well as trace constraints

• Integrability constraints now decouple and are Bianchi
equations for s + 1 independent fields QK RI1...In = 0

• Integrate curvatures RI1...In in terms of gauge potentials
ϕI1...In

RI1...In = q ϕI1...In , q =
1
s!
εI1...IsQI1 ...QIs

• s + 1 different gauge fields with Young tableaux

ϕI1...In ∼
1 s

k-2

1 ... s-n

• In D = 3 we have a multiplet of symmetric tensors ranging
from spin zero to s → dof of (truncated) Vasiliev theory
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Massless limit: Fronsdal-Labastida multiplet

• trace constraints give e.o.m. (after a linear field redefinition
of ϕ’s) as Fronsdal-Labastida equations with compensators
for a multiplet of s + 1 mixed symmetry tensors(
−2H + QIQ̄I + 1

2 QIQJ TrIJ
)
ϕI1...In = QIQJQK ρ

IJK |I1..In

(
�− ∂I

(
∂I ·
)
− 1

2 ∂I∂J TrIJ
)
ϕI1...In = ∂I∂J∂K ρ

IJK |I1..In

• Unconstrained gauge transformations

δϕI1...In = QK ΛK |I1...In , δρIJK |I1...In = 1
2 tr[IJΛK ]|I1...In

• The model appear to be deformable to (A)dS backgrounds
(nonlinear constraint algebra), work in progress
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Example D = 5 , s = 4
• massive field→ φ ∼

• massless limit→

ϕ ∼ , ϕI ∼ , ϕIJ ∼ ,

ϕIJK ∼ , ϕIJKL ∼

• For instance δϕIJ = QK ΛK |IJ , gauge parameters

ΛK |IJ ∼ K /∈ {I, J} or K ∈ {I, J}

• Its compensators ρKLM|IJ

ρKLM|IJ ∼ or
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Outlook

• O(N) spinning particle quantized on conformally flat?

• Dimensional reduction of several dimensions→ patterns of
massless multiplets with mixed symmetry in even and odd
dimensions

• Attempt to compute exact effective actions in (A)dS →
zeta function methods, log radial reduction from flat space?

• Possible applications to Vasiliev theory in D = 3
• Construct a “Vasiliev spinning particle”→ wishful thinking
→ one loop results with HS background
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