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Stationary, asymptotically Flat Black Holes in D=4 SUGRAS

Supergravity bosonic field content
nS scalar fields φr; nV vector fields AΛ

µ ; Graviton gµν

D = 3 description of D = 4 stationary solutions

Metric: ds2 = −e2U (dt + ωi dxi)2 + e−2U gij dxidxj

Solution to a D = 3 Euclidean theory obtained from time-reduction from the
D = 4 one (Breitenlohner, Gibbons, Maison)

Dualizing vectors into scalars in D = 3 we end up with a sigma model describing
n = 2 + nS + 2nV scalars φI coupled to gravity

e−1L =
R3

2
−

1
2

GIJ(φ) ∂iφ
I∂iφJ ⇒ (φI) ∈M

(3)
scal =

G
H

Field dualization : ω → a, AΛ
µ → ZM = (ZΛ,ZΛ)
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Spherical symmetry:
φI = φI(τ), solution is a
geodesic on M

(3)
scal

Geodesic uniquely defined by
initial point φI

0 = φI(τ = 0)
and initial velocity
Q ∈ Tφ0(G/H)

Isometry group G is the
global symmetry of the D = 3
theory

Action of G on a geodesic
(φ0, Q)

Fix φ0 ≡ 0, G-orbit of
geodesic is H-orbit of Q ∈ T0
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Axisymm. sol. φ = φ(τ, θ), still defined by unique point φ0 = limτ→0 φ(τ, θ)
and vector Q ∈ Tφ0 . Fix G/H by setting φ0 = 0.

Tangent space at the origin T0 ∼ K subspace of the Lie algebra g of G.

Q is a matrix in K

Velocity vector Q is the Noether-charge matrix:

Q =
1

4π

∫
S2

∗J = MADM K0 + Σr Kr + nNUT K• + pΛKΛ + qΛKΛ ∈ K

J = Ji dxi being the Noether current. Q does not contain angular momentum J !

Define new g-matrix Qψ capturing rotation:

Qψ = −
3

4π

∫
S∞2

ψ[iJj] dxi ∧ dxj = J K• + . . . ∈ K (ψ = ∂ϕ)

Q and Qψ represent independent vectors in T0. Static solution → Qψ = 0
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Global symmetry and regularity

Action of G on the solution ⇒ action of H on Q, Qψ :

Q → Q′ = h−1 Q h , Qψ → Q′ψ = h−1 Qψ h (h ∈ H)

Kerr-Newman solution (m, p, q, J ). Regularity : m2 −
p2 + q2

2
≥

J 2

m2

Q, Qψ diagonalizable matrices:

k
2

Tr(Q2) = m2 −
p2 + q2

2
, Tr(Q2

ψ) =
J 2

m2
Tr(Q2)

Regularity condition can be written in a G-invariant form:

k
2

Tr(Q2) ≥
Tr(Q2

ψ)

Tr(Q2)
” = ” holds for extremal (T = 0) solutions
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General non-extremal solution

Act on the well known Kerr solution with Ehlers+Harrison transformations

⇒ obtain general STU-model solution

Use coset-space geometry to find the new form of the scalar fields in term of the
Harrison β-parameters

⇒ φ, U, a, Z

Solve the dualization integral equation and get the form of the metric relevant
quantities and of the 4-dimensional vectors

FM =

(
FΛ
µν

GΛµν

)
= dZM ∧ (dt + ω) + e−2UCMNM(4)NP ∗3 dZP

dω = −e−4U ∗3 (da + ZTCdZ) ⇒ ω

(local integration) FM = dAM ⇒ AM

Above results were not present in literature
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Singular limits...

Limits of non-extremal axisymmetric solution studied in specific contexts

(Heterotic Sugra, Kaluza Klein theories...)

General, frame-independent, geometric prescription though singular Harrison
transformations.

Harrison generators (JM) = (JΛ, JΛ) in H are in one-to-one correspondence

with (PM) = (pΛ, qΛ).

Act on the Kerr solution (mK ,JK) by means of the Harrison transformation:

O = exp

(∑
l

log(βl) Jl

)

The resulting solution is a non extremal rotating one, coupled to scalar fields,

with charges in the normal form
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Rescale the Harrison parameters and the original angular momentum as

β` → mK
±1 β′` ; JK → mK

2 Ω

and then send mK → 0 while keeping β′` and Ω fixed.

1 Only for choices of “±′′ yielding

I4(p, q) < 0 (nonBPS solution)

there is a residual J 6= 0 =⇒ under-rotating single-center solution

2 For choices of “±′′ yielding

I4(p, q) > 0 (BPS and nonBPS solutions)

no residual rotation (Qψ = 0) =⇒ extremal static solutions
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Attractor mechanism
Static, sph.-symm. extremal solutions exhibit the attractor mechanism:

The scalars (effectively coupled to the b.h.) evolve towards
values at the horizon which are fixed in terms of pΛ, qΛ. The
near horizon geometry (and thus the entropy S) only depends on
the quantized charges.

Snon−extr.(φ0, p, q) =
Anon−extr.(φ0, p, q)

4
c→0−→ Sextr.(p, q) = π

√
|I4(p, q)|

In the extremal under-rotating limit (I4 < 0) similar behavior for J [arXiv:1310.7886]:

Jnon−extr.(φ0, p, q) −→ Jextr.(p, q) =
JK

2 m2
K

√
|I4(p, q)|

manif. G4-invariance, independent of φ0: “Attractor mechanism” at work for J .

The entropy:

Snon−extr.(φ0, p, q) −→ Sextr.(p, q) = π
√
|I4(p, q)|

√
1−J 2

K/m4
K
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Conclusions

Introduced a new tool for studying axisymmetric solution: g-valued Qψ

Defined general geometric prescription for passing from the Kerr-orbit to
(nilpotent) orbits describing extremal under-rotating and static orbits;

Obtained general explicit solution for the STU model

Work in progress:

Attractor mechanism

Black Holes in AdS geometry
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Explicit form of the solution p0qi

4-D scalars

zi = εi − i eϕi
(i = 1, 2, 3)

in terms of the 3-D scalar fields

ε1 =
2 mα cos θ (c2 s3 s4 c5 − s2 c3 c4 s5)

α2 cos2 θ (r + 2 m s22)(r + 2 m s52)
, eϕ1 =

ρ4

α2 cos2 θ (r + 2 m s22)(r + 2 m s52)
,

ε2 = ε1 (2↔ 3) , eϕ2 = eϕ1 (2↔ 3) ,

ε3 = ε1 (2↔ 4) , eϕ3 = eϕ1 (2↔ 4)

with

c` = cosh
(

log
√
β`

)
=

1 + β`

2
√
β`

,

s` = sinh
(

log
√
β`

)
=
−1 + β`

2
√
β`

, (` = 2, 3, 4, 5) ,

ρ
4

=
(
α

2 cos2
θ (r + 2m s2

2
)(r + 2m s3

2
)
)(
α

2 cos2
θ (r + 2m s4

2
)(r + 2m s5

2
)
)
− 4α2m2

(c2c3s4s5 − s2s3c4c5)
2 cos2

θ.
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4-D vectors

AM
ϕ M = 1, ..., 8 (symplectic index)

with explicit form

A1
ϕ = −

√
2 m ∆ cos θ c5 s5

∆̃
, A2

ϕ =−
√

2 mα sin2 θ (c2 s3 s4 s5(2 m− r) + r s2 c3 c4 c5)

∆̃
,

A6
ϕ = −A1

ϕ

(
5↔ 2

)
, A3

ϕ = A2
ϕ

(
2↔ 3

)
,

A7
ϕ = −A1

ϕ

(
5↔ 3

)
, A4

ϕ = A2
ϕ

(
2↔ 4

)
,

A8
ϕ = −A1

ϕ

(
5↔ 4

)
, A5

ϕ = A2
ϕ

(
2↔ 5

)
.

with

∆ = (r − m)
2 − (m2 − α2

) ,

∆̃ = ∆− α2 sin2
θ .
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Relevant physical quantities MADM, Γ
M, J , S

MADM =
1
4

m
(

c2
2 + c2

3 + c2
4 + c2

5 + s2
2 + s2

3 + s2
4 + s2

5

)
,

ΓM =
(√

2 m c5 s5, 0, 0, 0, 0,−
√

2 m c2 s2,−
√

2 m c3 s3,−
√

2 m c4 s4

)
,

J = mα (Pc − Ps)

(
extr. case−→ J (extr) ∝

√
|I(extr)

4 |
)

S = 2πm
(

m (Pc − Ps) + cex (Pc − Ps)

)
,

I4 =− 4 p0 q1 q2 q3 = 16 m4 Pc Ps .

(
with Pc = c2 c3 c4 c5 , Ps = s2 s3 s4 s5 , cex =

√
m2 − α2

)
.
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