Search for the SM Higgs Boson in $H\rightarrow ZZ\rightarrow I^+I^-\tau^-Decay$ Channel with the CMS Experiment @ $\sqrt{s}=7$ and 8 TeV Simranjit Singh Chhibra* (Uni. & INFN Bari, Italy) On behalf of the CMS Collaboration (**LaThuile 2013**, 27 Feb. 2013) ### Outline - Motivations - \blacksquare H \rightarrow ZZ \rightarrow Il $\tau\tau$ analysis in a nutshell - $\hfill \square$ e, μ and τ identification and isolation - Background estimation - Results (5.1 fb⁻¹ @ 7 TeV + 12.2 fb⁻¹ @ 8TeV) - Conclusions ### Motivations - Discovery of SM Higgs boson would shed light on the electroweak spontaneous symmetry breaking - It complements the SM Higgs search in $H \rightarrow ZZ^* \rightarrow 4l$ ($l = e, \mu$) channel, the 'golden channel' at CMS experiment - Reasonable cross-section and branching ratios - Strong signal and backgrounds separation power because of leptons in the final states - Either discover or exclude! ### H->ZZ->||ττ Analysis in a Nutshell #### Signature: - Both Z are on mass shell: $190 < m_H < 1000 \text{ GeV}$ - Leading Z (Z1): $\mu^+\mu^-$ or e^+e^- - Sub-Leading Z (Z2): $\tau^+\tau^-$ - **S** final states: $\mu\mu\tau_h\tau_h$, $\mu\mu\tau_\mu\tau_h$, $\mu\mu\tau_e\tau_h$, $ee\tau_h\tau_h$, $ee\tau_e\tau_h$, $ee\tau_\mu\tau_h$, $\mu\mu\tau_\mu\tau_e$, $ee\tau_\mu\tau_e$ #### Backgrounds: - Irreducible: ZZ (estimated from MC) - Reducible: WZ and Z associated with additional jets (estimated from data) #### Selection strategy: - Trigger requirement - Leading Z selection - Leptons Identification and isolation - Phase space requirements - \blacksquare τ discrimination against e's and μ 's - \Box τ isolation #### Control from data: - Leptons (e, μ , τ) related efficiency - Reducible background estimation ### Event Reconstruction #### Leptons identification: - μ's: Particle-Flow Id - e's: Multivariate Analysis based Id - \blacksquare Lepton isolation (both μ 's and e's): - lacktriangle Relative combined PF isolation (ho correction with effective area) $$I_{rel}^{PF}(\rho) = \frac{\left(\sum p_T^{charged} + max(0, \sum E_T^{\gamma} + \sum E_T^{neutral} - \rho \times A_{eff})\right)}{P_T^l}$$ #### ■ Hadron Plus Strips (HPS) τ 's: lacksquare Combined isolation with Δeta correction $$I^{PF}(\Delta\beta) = \sum \left(p_T^{charged} + max(0, E_T^{\gamma} + E_T^{neutral} - f^{\Delta\beta} \times E_T^{PU}) \right)$$ - Removal of overlap with 4I (I = e, μ) analysis: - \blacksquare Rejection of the event if additional loose e, μ or τ is found ### **Event Selection** - Leading Z ($\rightarrow \mu^+\mu^-$ or e^+e^-) Selection: - \blacksquare p_T > 20 and 10 GeV for leading and sub-leading leptons respectively - Relative combined PF isolation < 0.25 - \blacksquare 60 < m_{71} < 120 GeV - Sub-leading Z ($\rightarrow \tau^+\tau^-$) Selection: - Fully hadronic ($Z \rightarrow \tau_h^+ \tau_h^-$): - $p_T > 20$ GeV for both the τ_h 's - Tight combined isolation with $\Delta\beta$ correction - $30 < m_{72} < 90 \text{ GeV}$ - Semi leptonic $(Z \rightarrow \tau_l^+ \tau_h^- \text{ or } \tau_l^- \tau_h^+)$: - $p_T > 20$ and 10 GeV for τ_h and lepton respectively - Medium combined isolation with $\Delta\beta$ correction - Relative combined PF isolation < 0.15(0.1) for μ (e) - $30 < m_{72} < 90 \text{ GeV}$ - Fully leptonic ($Z \rightarrow \tau_l^+ \tau_l^-$): - $p_T > 10$ GeV for both μ and e - Relative combined PF isolation < 0.25 for both μ and e - $0 < m_{22} < 90 \text{ GeV}$ - □ e: |η|<2.5 - μ : $|\eta| < 2.4$ - $\tau_{h:} |\eta| < 2.3$ ### Cut Flow Data to MC Comparison Good data to simulation agreement is observed at each selection step ### Reducible Bkg. Estimation (step I) - Measurement of Jet $\rightarrow \tau_h$, e, μ FR In the control region defined as: - Leading Z: as per base-line selection - Sub-leading Z: - Same charge for the two objects - No mass window - No isolation requirement for both objects - FR = No. of jets passing isolation / Total no. of jets #### Measured for: - both τ_h working points (Tight and Medium) - Tight(<0.15) and Medium(<0.25) working points for μ 's - Tight(<0.10) and Medium(<0.25) working points for e's ### Control Regions (Jet $\rightarrow \tau_h$ FR) Z+jets is the dominant contribution ### FR Measurements (Jet $\rightarrow \tau_h FR$) ### Reducible Bkg. Estimation (step II) - By applying the measured FR in the region defined as: - Leading Z: as per base-line selection - Sub-leading Z: - Opposite charge for the two objects - No isolation check for the two objects - Categorization of the region: - \square Cat0: Leading Z + two fakeable objects (O₁ and O₂) - Both O₁ and O₂ are required to be anti-isolated - Cat1: Leading Z + one real object (O_2) + one fakeable object (O_1) - O_2 is isolated and O_1 is anti-isolated - Cat2: Leading Z + one real object (O_1) + one fakeable object (O_2) - O_1 is isolated and O_2 is anti-isolated Leading Z + Final estimation: $$N_{tot}^{est} = N_0 \times F_1 \times F_2 + (N_1 - N_0 \times F_2) \times F_1 + (N_2 - N_0 \times F_1) \times F_2 = N_1 \times F_1 + N_2 \times F_2 - N_0 \times F_1 \times F_2$$ ### Final Results 5.1 fb⁻¹ @ \sqrt{s} = 7 TeV + 12.2 fb⁻¹ @ \sqrt{s} = 8 TeV | Decay | N_{ZZ}^{est} | Other | Total | m_H | Observed | |----------------------------|------------------|------------------|------------------|-----------------|----------| | channel | | backgrounds | background | $200~{ m GeV}$ | | | 2012 | | | | | | | $\mu\mu\tau_h\tau_h$ | 2.40 ± 0.04 | 4.23 ± 0.41 | 6.63 ± 0.41 | 0.66 ± 0.02 | 9 | | $ee au_h au_h$ | 2.21 ± 0.04 | 4.65 ± 0.46 | 6.86 ± 0.46 | 0.56 ± 0.02 | 10 | | $ee au_e au_h$ | 2.48 ± 0.04 | 4.00 ± 0.95 | 6.48 ± 0.95 | 0.72 ± 0.02 | 11 | | $\mu\mu\tau_e\tau_h$ | 2.42 ± 0.04 | 2.18 ± 0.62 | 4.60 ± 0.62 | 0.72 ± 0.02 | 0 | | $\mu\mu\tau_{\mu}\tau_{h}$ | 3.06 ± 0.04 | 1.15 ± 0.36 | 4.21 ± 0.36 | 0.92 ± 0.02 | 2 | | $ee au_{\mu} au_{h}$ | 2.67 ± 0.04 | 1.48 ± 0.40 | 4.15 ± 0.40 | 0.81 ± 0.02 | 4 | | $ee au_e au_\mu$ | 1.70 ± 0.04 | 1.87 ± 0.95 | 3.57 ± 0.95 | 0.57 ± 0.02 | 3 | | $\mu\mu\tau_{\mu}\tau_{e}$ | 2.06 ± 0.04 | 0.84 ± 0.78 | 2.90 ± 0.78 | 0.60 ± 0.02 | 6 | | TOTAL | 18.97 ± 0.09 | 20.39 ± 3.35 | 39.36 ± 3.35 | 5.56 ± 0.06 | 45 | •Total events in data: 45 ■Total bkg. expected: 39.4 #### Systematic Uncertainties Systematics uncertainties common to all channels | Source | Uncertainty | |------------------------------|-------------| | Luminosity measurements 2011 | 2.2% | | Luminosity measurements 2012 | 4.4% | | Trigger efficiency | 1.5% | Channel specific systematic uncertainties | Channel | μ ID/Iso | e ID/Iso | $\tau_h \text{ ID/Iso}$ | $ au_{ES}$ | |----------------------------|--------------|-----------|-------------------------|------------| | $\mu\mu\tau_h\tau_h$ | 1.01/1.01 | - | 1.1 | 1.04 | | $ee au_h au_h$ | - | 1.02/1.01 | 1.1 | 1.04 | | $ee au_e au_h$ | - | 1.04/1.02 | 1.06 | 1.03 | | $\mu\mu\tau_e\tau_h$ | 1.01/1.01 | 1.02/1.01 | 1.06 | 1.03 | | $\mu\mu\tau_{\mu}\tau_{h}$ | 1.02/1.02 | - | 1.06 | 1.03 | | $ee au_{\mu} au_{h}$ | 1.01/1.01 | 1.02/1.01 | 1.06 | 1.03 | | $ee au_e au_\mu$ | 1.01/1.01 | 1.04/1.02 | - | _ | | $\mu\mu\tau_{\mu}\tau_{e}$ | 1.02/1.02 | 1.02/1.01 | _ | - | - □ 30% Uncertainty on the reducible background estimation - Comes from fit uncertainty and data to MC mismatch in control regions #### Ilττ Invariant Mass and Exclusion Upper Limits - No access of events is observed as compare to expected bkg. - Observed limit is ~2 to 4 times the SM expectation in the range of 190 < m_H < 600 GeV</p> LaThuile-2013, Feb. 27, 2013 ### Conclusions - H→ZZ→Ilττ analysis has been performed for (5.1 fb⁻¹ @ 7 TeV + 12.2 fb⁻¹ @ 8TeV) data - No evidence found for a significant deviation from the expected backgrounds - Limit has been set @ 95 % CL for the mass range of 190 < m_H < 1000 GeV</p> - Observed limit is \sim 2 to 4 times the SM expectation for 190 < m_H < 600 GeV ### Back up ### SM Higgs @ LHC ### Data Samples and Triggers | Dataset | Primary dataset | Year | |------------------------|---------------------------|------| | Run2011A-16Jan2012-v1 | DoubleMu / DoubleElectron | 2011 | | Run2011B-16Jan2012-v1 | DoubleMu / DoubleElectron | 2011 | | Run2012A-13Jul2012-v1 | DoubleMu / DoubleElectron | 2012 | | Run2012B-13Jul2012-v1 | DoubleMu / DoubleElectron | 2012 | | Run2012C-PromptReco-v2 | DoubleMu / DoubleElectron | 2012 | | Run2012C-PromptReco-v1 | DoubleMu / DoubleElectron | 2012 | | HLT path | Run range | Year | | | |---|---------------|------|--|--| | μμ channels | | | | | | HLT_DoubleMu7 | 160431-163869 | 2011 | | | | HLT_Mu13_Mu8 | 165088-178380 | 2011 | | | | HLT_Mu17_Mu8 | 178420-180252 | 2011 | | | | HLT_Mu17_Mu8 | 190450-203002 | 2012 | | | | HLT_Mu17_TkMu8 | 190450-203002 | 2012 | | | | ee channels | | | | | | HLT_Ele17_CaloIdT_CaloIsoVL_TrkIdVL_TrkIsoVL_ | 160432-180252 | 2011 | | | | Ele8_CaloIdL_CaloIsoVL_TrkIdVL_TrkIsoVL | | | | | | HLT_Ele17_CaloIdT_CaloIsoVL_TrkIdVL_TrkIsoVL_ | 190450-197044 | 2012 | | | | Ele8_CaloIdL_CaloIsoVL_TrkIdVL_TrkIsoVL | | | | | | HLT_Ele17_CaloIdT_TrkIdVL_CaloIsoVL_TrkIsoVL_ | 190450-203002 | 2012 | | | | Ele8_CaloIdT_TrkIdVL_CaloIsoVL_TrkIsoVL | | | | | ### MC Samples | Process | MC | $\sigma_{(N)NLO}$ | | Comments and sample name | | |---|------------------------------|----------------------|---------------------------|--|--| | | generator | 7 TeV | 8 TeV | | | | Higgs boson $H \rightarrow ZZ$ | $ ightarrow 4\ell$ | 5167775.47777.1478VI | and a statemen | ETT SAJONESSAN ETTENS | | | $gg \rightarrow H$ | POWHEG | [1-20] fb | [1.2-25] fb | $m_H = 110-1000 \text{GeV}/c^2$ | | | $VV \rightarrow H$ | POWHEG | [0.2-2] fb | [0.3-25] fb | $m_H = 110-1000 \text{GeV}/c^2$ | | | ZZ continuum | Set Characture - and | 19850000000 | 152%, 12530 April 10 11 1 | ************************************** | | | $q\bar{q} \rightarrow ZZ \rightarrow 4e(4\mu, 4\tau)$ | POWHEG | 15.34 fb | 76.91 fb | ZZTo4e(4mu,4tau) | | | $q\bar{q} \rightarrow ZZ \rightarrow 2e2\mu$ | POWHEG | 30.68 fb | 176.7 fb | ZZTo2e2mu | | | $q\bar{q} \rightarrow ZZ \rightarrow 2e(2\mu)2\tau$ | POWHEG | 30.68 fb | 176.7 fb | ZZTo2e(2mu)2tau | | | $gg \rightarrow ZZ \rightarrow 2\ell 2\ell'$ | gg2ZZ | 9.74 fb | 12.03 fb | GluGluToZZTo2L2L | | | $gg \rightarrow ZZ \rightarrow 4\ell$ | gg2ZZ | 3.85 fb | 4.80 fb | GluGluToZZTo4L | | | Other di-bosons | halifolio pilos virtuos | otolance | KONTYGEN GRANGERY IN TO | | | | $WW \rightarrow 2\ell 2\nu$ | Madgraph | 4.88 pb | 5.995 pb | WWTo2L2Nu | | | $WZ \rightarrow 3\ell\nu$ | Madgraph | 0.868 pb | 1.057 pb | WZTo3LNu | | | $t\bar{t}$ and single t | nyma 2 francis (r. p. prima) | photographic and | | | | | $t\bar{t} \to \ell^+\ell^- \nu \bar{\nu} b\bar{b}$ | POWHEG | 17.32 pb | 23.64 pb | TTTo2L2Nu2B | | | t (s-channel) | POWHEG | 3.19 pb | 3.89 pb | T_TuneXX_s-channel | | | \bar{t} (s-channel) | POWHEG | 1.44 pb | 1.76 pb | Tbar_TuneXX_s-channel | | | t (t-channel) | POWHEG | 41.92 pb | 55.53 pb | T_TuneXX_t-channel | | | \bar{t} (t-channel) | POWHEG | 22.65 pb | 30.00 pb | Tbar TuneXX t-channel | | | t (tW-channel) | POWHEG | 7.87 pb | 11.77 pb | T_TuneXX_tW-channel-DR | | | \bar{t} (tW-channel) | POWHEG | 7.87 pb | 11.77 pb | Tbar_TuneXX_tW-channel-DR | | | $\mathbf{Z/W} + \mathbf{jets} (q = d, u, s)$ | , c, b) | 7 | | | | | W + jets | MadGraph | 31314 pb | 36257.2 pb | WJetsToLNu | | | Z + jets | MadGraph | 3048 pb | 3503.7 pb | DYJetsToLL | | | QCD inclusive multi-j | ets, binned $p_{_{T}}^{n}$ | nin | | | | | $b, c \rightarrow e + X$ | PYTHIA | | | QCD_Pt-XXtoYY_BCtoE | | | EM-enriched | PYTHIA | | | QCD_Pt-XXtoYY_EMEnriched | | | MU-enriched | PYTHIA | | | QCD_Pt-XXtoYY_MuPt5Enriched | | ### e reconstruction - ECAL driven seeding: - Starts from super-cluster: energy collected in φ due to bramsstrahlung (ET > 4GeV) - GSF fit to cope with change in curvature: leads to hit collection upto ECAL - Tracker driven seeding: - Starts from very first hit in tracker and estimate the brem-cluster - Do the same for all hits - It increases the efficiency at low p_T - Energy correction: - A weighted combination of E and p from ECAL and Tracker information - ECAL information obtained by technique, such as in $H \rightarrow \gamma \gamma$ ### μ reconstruction - Built tracker track (in tracker) and stand-alone track (in muon system) - Global μ (Outside-in): a tracker track find out by comparing the track parameters at a common surface. - A global track is then fit with tracker hits from tarcker track and standalone track - Tracker μ (inside-out): it starts with all the possible tracker tracks with p_T > 0.5 GeV and if we find a μ segment we declare it the tracker μ . ### HPS τ_h algorithm - □ HPS algorithm uses PF jet ($\Delta R = 0.5$) and reconstruct τ decays inside jet - ✓ Selection of highest p_T track - \checkmark Reconstruction of π^0 from electromagnetic particle clusters in ECAL strips - \checkmark Associated distances for η = 0.05 & for <math>Φ = 0.2 radians #### Important aspects: - ✓ Strips with E_T >1 GeV are considered - \checkmark A mass constraint of (strip mass matches to $π^0$ mass + hadron mass) = ρ(770) is applied - ✓ Isolation is calculated as energy sum of particles in ∆R=0.5 cone - \checkmark For PU $\Delta\beta$ correction, energy sum of particles in ΔR =0.8 cone is used | Decay Mode | Branching ratio(%) | |---|--------------------| | $\tau^- \rightarrow \mu^- \bar{\nu_\mu} \nu_\tau$ | 17.4 | | $ au^- ightarrow e^- ar{ u}_e u_ au$ | 17.9 | | $\tau^- \rightarrow h^- \nu_{\tau}$ | 11.6 | | $ au^- ightarrow h^- \pi^0 u_ au$ | 26.0 | | $ au^- ightarrow h^- \pi^0 \pi^0 u_ au$ | 10.8 | | $ au^- ightarrow h^- h^+ h^- u_ au$ | 9.8 | | $ au^- ightarrow h^- h^+ h^- \pi^0 u_ au$ | 4.8 | | other | 1.7 | Single Prong Three Prong ## HPS τ_h Isolation and discriminators against e's and μ 's #### ■ In Isolation cone of $\Delta R = 0.5$ - All charged particles and neutral particles with P_T > 0.5 GeV are considered - HPS Tight Isolation: Iso. < 0.8 GeV</p> - HPS Medium Isolation: Iso. < 1 GeV</p> - HPS Loose Isolation: Iso. < 2 GeV</p> #### \blacksquare μ discriminator: - \blacksquare μ Loose: Leading track should not have μ chamber hits - μ Medium: Leading track should not match with global/ tracker μ track - \blacksquare μ Tight: μ Medium + μ should not have large energy deposits in ECAL and HCAL - e DiscrimHiggs Hunting Workshop, July 18–20, 2012ination Based on PF e- π MVA (ξ): - \blacksquare e Loose: ξ < 0.6 - **a** e Medium: ξ < -0.1 and not 1.4442 < $|\eta|$ < 1.566 - \blacksquare e Tight: ξ < -0.1 and not 1.4442 < $\mid \eta \mid$ < 1.566 and Brem pattern cuts ### ZZ Estimation #### ■ Estimated from simulation | | 7 TeV | 8 TeV | |-------------------------------|-----------------------|-----------------------| | Decay | N_{ZZ}^{est} (2011) | $N_{ZZ}^{est} (2012)$ | | channel | | | | $\mu\mu\tau_h\tau_h$ | 0.68 ± 0.02 | 1.72 ± 0.03 | | $ee au_h au_h$ | 0.63 ± 0.02 | 1.58 ± 0.03 | | $ee au_e au_h$ | 0.71 ± 0.02 | 1.77 ± 0.03 | | $\mu\mu\tau_e au_h$ | 0.68 ± 0.02 | 1.74 ± 0.03 | | $\mu \mu au_{\mu} au_{h}$ | 0.92 ± 0.02 | 2.14 ± 0.03 | | $ee au_{\mu} au_{h}$ | 0.82 ± 0.02 | 1.85 ± 0.03 | | $ee au_e au_\mu$ | 0.53 ± 0.02 | 1.17 ± 0.03 | | $\mu \mu \tau_{\mu} \tau_{e}$ | 0.59 ± 0.02 | 1.47 ± 0.03 | | TOTAL | 5.55 ± 0.05 | 13.42 ± 0.07 |