

Search for the SM Higgs Boson in $H\rightarrow ZZ\rightarrow I^+I^-\tau^-Decay$ Channel with the CMS Experiment @ $\sqrt{s}=7$ and 8 TeV

Simranjit Singh Chhibra* (Uni. & INFN Bari, Italy)

On behalf of the CMS Collaboration (**LaThuile 2013**, 27 Feb. 2013)

Outline

- Motivations
- \blacksquare H \rightarrow ZZ \rightarrow Il $\tau\tau$ analysis in a nutshell
- $\hfill \square$ e, μ and τ identification and isolation
- Background estimation
- Results (5.1 fb⁻¹ @ 7 TeV + 12.2 fb⁻¹ @ 8TeV)
- Conclusions

Motivations

- Discovery of SM Higgs boson would shed light on the electroweak spontaneous symmetry breaking
- It complements the SM Higgs search in $H \rightarrow ZZ^* \rightarrow 4l$ ($l = e, \mu$) channel, the 'golden channel' at CMS experiment
- Reasonable cross-section and branching ratios
- Strong signal and backgrounds separation power because of leptons in the final states
- Either discover or exclude!

H->ZZ->||ττ Analysis in a Nutshell

Signature:

- Both Z are on mass shell: $190 < m_H < 1000 \text{ GeV}$
- Leading Z (Z1): $\mu^+\mu^-$ or e^+e^-
- Sub-Leading Z (Z2): $\tau^+\tau^-$
- **S** final states: $\mu\mu\tau_h\tau_h$, $\mu\mu\tau_\mu\tau_h$, $\mu\mu\tau_e\tau_h$, $ee\tau_h\tau_h$, $ee\tau_e\tau_h$, $ee\tau_\mu\tau_h$, $\mu\mu\tau_\mu\tau_e$, $ee\tau_\mu\tau_e$

Backgrounds:

- Irreducible: ZZ (estimated from MC)
- Reducible: WZ and Z associated with additional jets (estimated from data)

Selection strategy:

- Trigger requirement
- Leading Z selection
- Leptons Identification and isolation
- Phase space requirements
- \blacksquare τ discrimination against e's and μ 's
- \Box τ isolation

Control from data:

- Leptons (e, μ , τ) related efficiency
- Reducible background estimation

Event Reconstruction

Leptons identification:

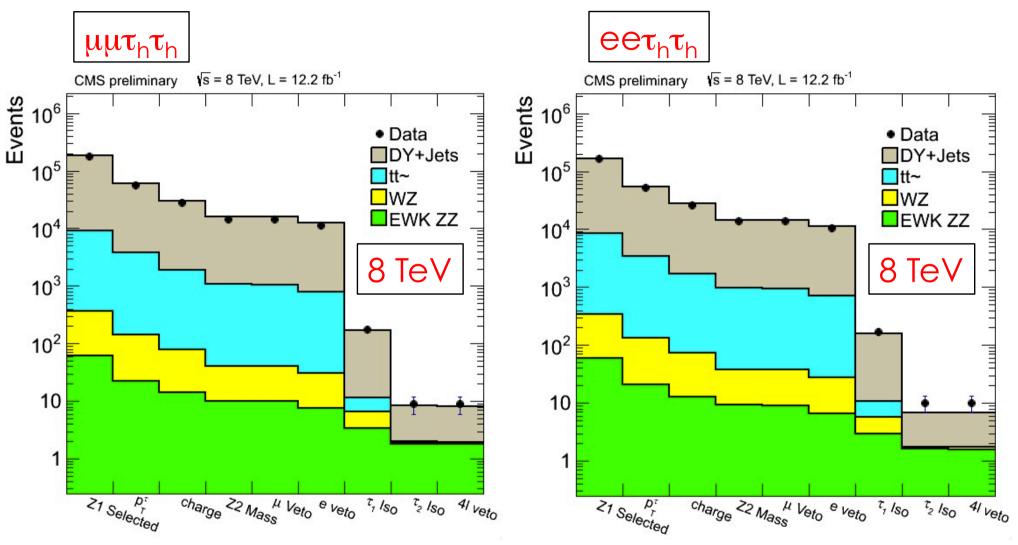
- μ's: Particle-Flow Id
- e's: Multivariate Analysis based Id
- \blacksquare Lepton isolation (both μ 's and e's):
 - lacktriangle Relative combined PF isolation (ho correction with effective area)

$$I_{rel}^{PF}(\rho) = \frac{\left(\sum p_T^{charged} + max(0, \sum E_T^{\gamma} + \sum E_T^{neutral} - \rho \times A_{eff})\right)}{P_T^l}$$

■ Hadron Plus Strips (HPS) τ 's:

lacksquare Combined isolation with Δeta correction

$$I^{PF}(\Delta\beta) = \sum \left(p_T^{charged} + max(0, E_T^{\gamma} + E_T^{neutral} - f^{\Delta\beta} \times E_T^{PU}) \right)$$


- Removal of overlap with 4I (I = e, μ) analysis:
 - \blacksquare Rejection of the event if additional loose e, μ or τ is found

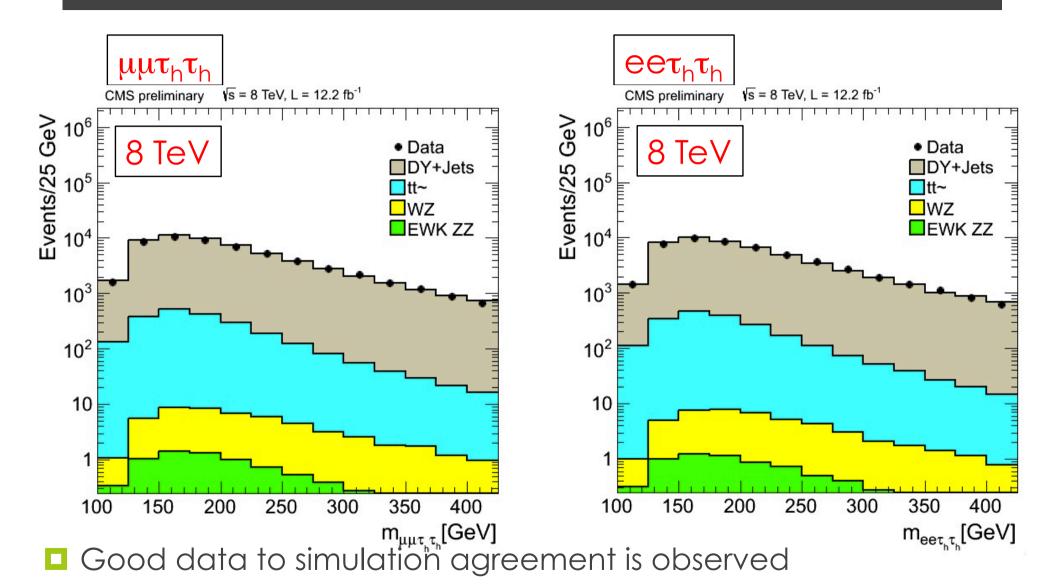
Event Selection

- Leading Z ($\rightarrow \mu^+\mu^-$ or e^+e^-) Selection:
 - \blacksquare p_T > 20 and 10 GeV for leading and sub-leading leptons respectively
 - Relative combined PF isolation < 0.25
 - \blacksquare 60 < m_{71} < 120 GeV
- Sub-leading Z ($\rightarrow \tau^+\tau^-$) Selection:
 - Fully hadronic ($Z \rightarrow \tau_h^+ \tau_h^-$):
 - $p_T > 20$ GeV for both the τ_h 's
 - Tight combined isolation with $\Delta\beta$ correction
 - $30 < m_{72} < 90 \text{ GeV}$
 - Semi leptonic $(Z \rightarrow \tau_l^+ \tau_h^- \text{ or } \tau_l^- \tau_h^+)$:
 - $p_T > 20$ and 10 GeV for τ_h and lepton respectively
 - Medium combined isolation with $\Delta\beta$ correction
 - Relative combined PF isolation < 0.15(0.1) for μ (e)
 - $30 < m_{72} < 90 \text{ GeV}$
 - Fully leptonic ($Z \rightarrow \tau_l^+ \tau_l^-$):
 - $p_T > 10$ GeV for both μ and e
 - Relative combined PF isolation < 0.25 for both μ and e
 - $0 < m_{22} < 90 \text{ GeV}$

- □ e: |η|<2.5
- μ : $|\eta| < 2.4$
- $\tau_{h:} |\eta| < 2.3$

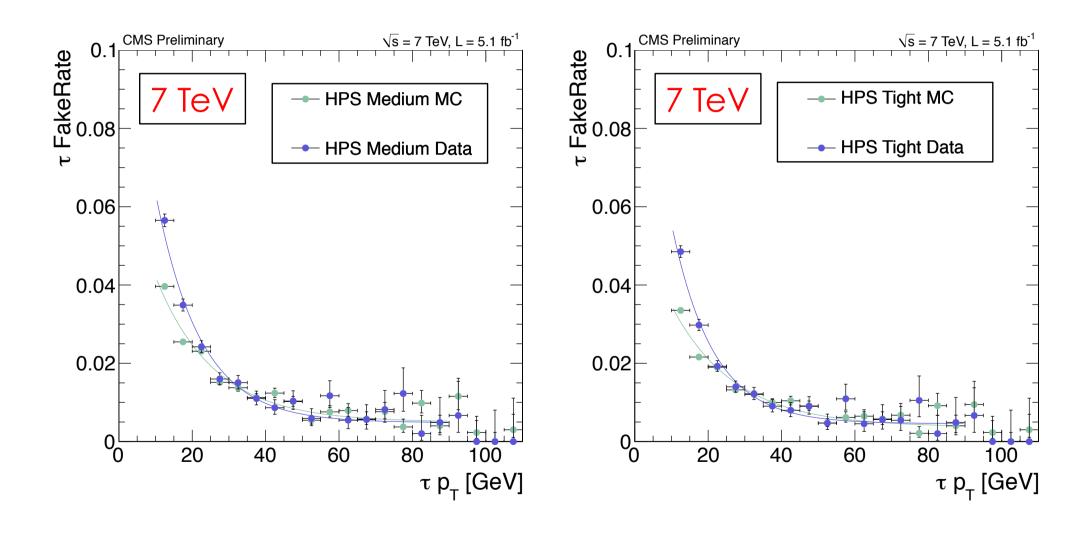
Cut Flow Data to MC Comparison

Good data to simulation agreement is observed at each selection step


Reducible Bkg. Estimation (step I)

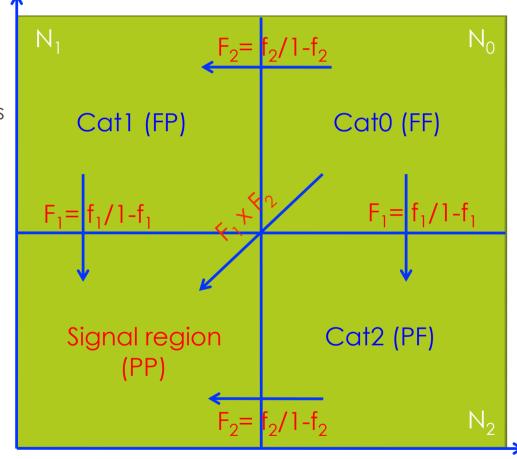
- Measurement of Jet $\rightarrow \tau_h$, e, μ FR In the control region defined as:
 - Leading Z: as per base-line selection
 - Sub-leading Z:
 - Same charge for the two objects
 - No mass window
 - No isolation requirement for both objects
 - FR = No. of jets passing isolation / Total no. of jets

Measured for:


- both τ_h working points (Tight and Medium)
- Tight(<0.15) and Medium(<0.25) working points for μ 's
- Tight(<0.10) and Medium(<0.25) working points for e's

Control Regions (Jet $\rightarrow \tau_h$ FR)

Z+jets is the dominant contribution


FR Measurements (Jet $\rightarrow \tau_h FR$)

Reducible Bkg. Estimation (step II)

- By applying the measured FR in the region defined as:
 - Leading Z: as per base-line selection
 - Sub-leading Z:
 - Opposite charge for the two objects
 - No isolation check for the two objects
- Categorization of the region:
 - \square Cat0: Leading Z + two fakeable objects (O₁ and O₂)
 - Both O₁ and O₂ are required to be anti-isolated
 - Cat1: Leading Z + one real object (O_2) + one fakeable object (O_1)
 - O_2 is isolated and O_1 is anti-isolated
 - Cat2: Leading Z + one real object (O_1) + one fakeable object (O_2)
 - O_1 is isolated and O_2 is anti-isolated

Leading Z +

Final estimation:

$$N_{tot}^{est} = N_0 \times F_1 \times F_2 + (N_1 - N_0 \times F_2) \times F_1 + (N_2 - N_0 \times F_1) \times F_2 = N_1 \times F_1 + N_2 \times F_2 - N_0 \times F_1 \times F_2$$

Final Results

5.1 fb⁻¹ @ \sqrt{s} = 7 TeV + 12.2 fb⁻¹ @ \sqrt{s} = 8 TeV

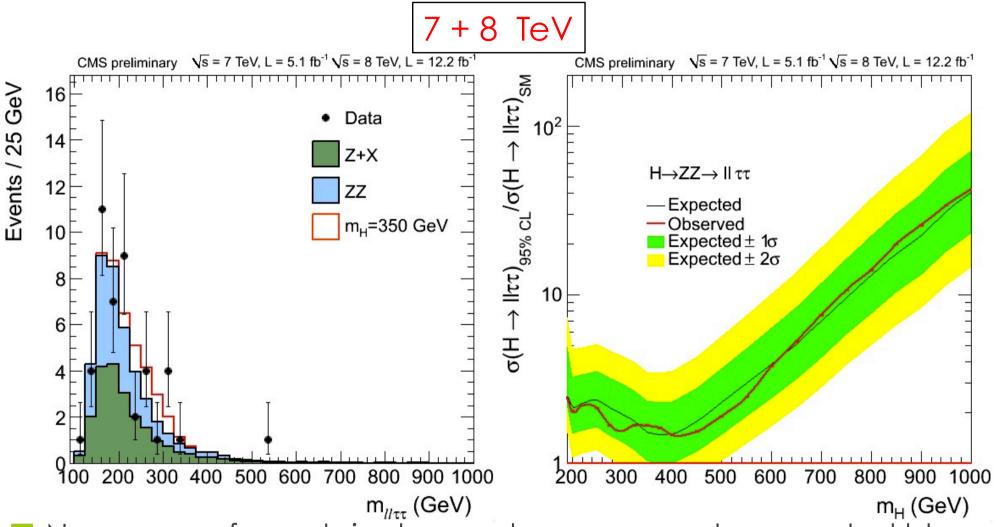
Decay	N_{ZZ}^{est}	Other	Total	m_H	Observed
channel		backgrounds	background	$200~{ m GeV}$	
2012					
$\mu\mu\tau_h\tau_h$	2.40 ± 0.04	4.23 ± 0.41	6.63 ± 0.41	0.66 ± 0.02	9
$ee au_h au_h$	2.21 ± 0.04	4.65 ± 0.46	6.86 ± 0.46	0.56 ± 0.02	10
$ee au_e au_h$	2.48 ± 0.04	4.00 ± 0.95	6.48 ± 0.95	0.72 ± 0.02	11
$\mu\mu\tau_e\tau_h$	2.42 ± 0.04	2.18 ± 0.62	4.60 ± 0.62	0.72 ± 0.02	0
$\mu\mu\tau_{\mu}\tau_{h}$	3.06 ± 0.04	1.15 ± 0.36	4.21 ± 0.36	0.92 ± 0.02	2
$ee au_{\mu} au_{h}$	2.67 ± 0.04	1.48 ± 0.40	4.15 ± 0.40	0.81 ± 0.02	4
$ee au_e au_\mu$	1.70 ± 0.04	1.87 ± 0.95	3.57 ± 0.95	0.57 ± 0.02	3
$\mu\mu\tau_{\mu}\tau_{e}$	2.06 ± 0.04	0.84 ± 0.78	2.90 ± 0.78	0.60 ± 0.02	6
TOTAL	18.97 ± 0.09	20.39 ± 3.35	39.36 ± 3.35	5.56 ± 0.06	45

•Total events in data: 45

■Total bkg. expected: 39.4

Systematic Uncertainties

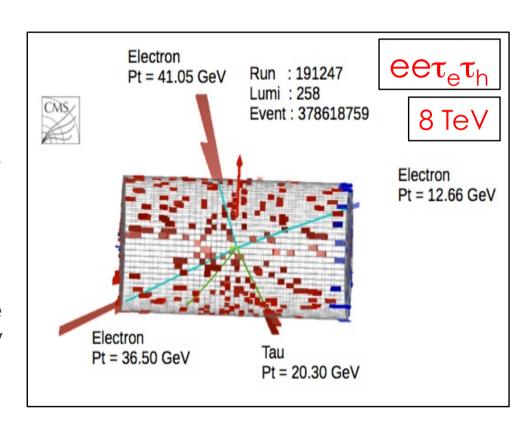
Systematics uncertainties common to all channels

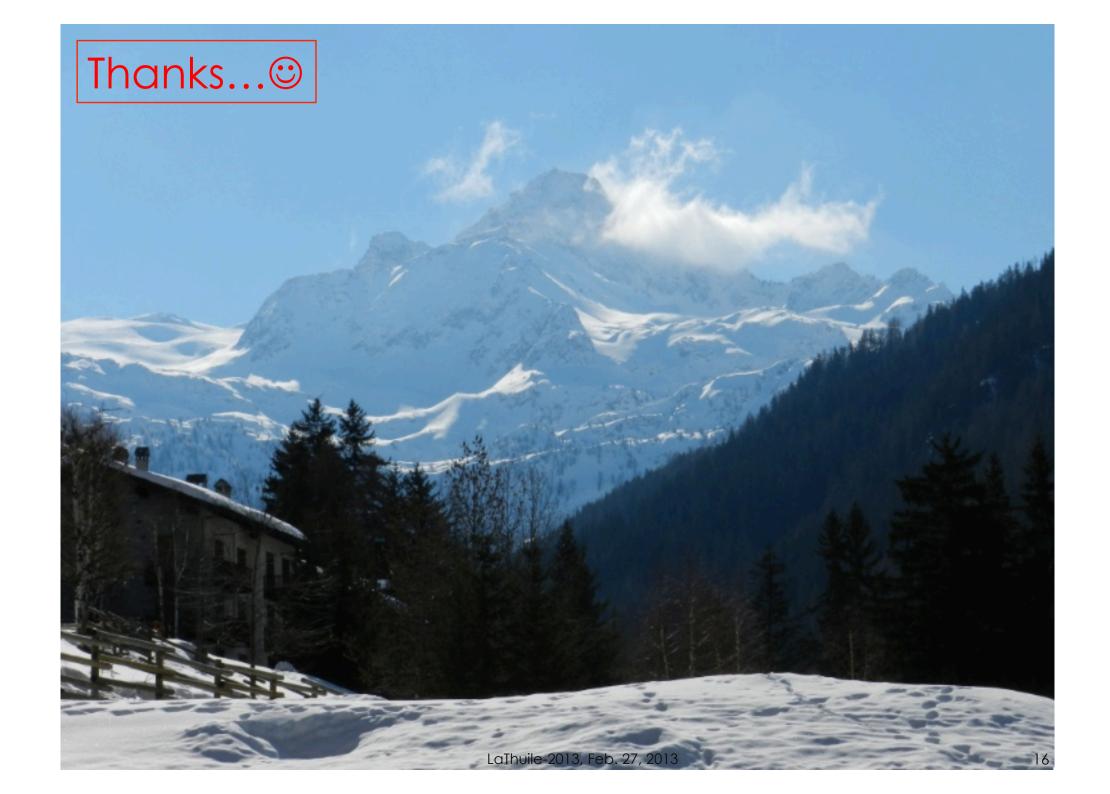

Source	Uncertainty
Luminosity measurements 2011	2.2%
Luminosity measurements 2012	4.4%
Trigger efficiency	1.5%

Channel specific systematic uncertainties

Channel	μ ID/Iso	e ID/Iso	$\tau_h \text{ ID/Iso}$	$ au_{ES}$
$\mu\mu\tau_h\tau_h$	1.01/1.01	-	1.1	1.04
$ee au_h au_h$	-	1.02/1.01	1.1	1.04
$ee au_e au_h$	-	1.04/1.02	1.06	1.03
$\mu\mu\tau_e\tau_h$	1.01/1.01	1.02/1.01	1.06	1.03
$\mu\mu\tau_{\mu}\tau_{h}$	1.02/1.02	-	1.06	1.03
$ee au_{\mu} au_{h}$	1.01/1.01	1.02/1.01	1.06	1.03
$ee au_e au_\mu$	1.01/1.01	1.04/1.02	-	_
$\mu\mu\tau_{\mu}\tau_{e}$	1.02/1.02	1.02/1.01	_	-

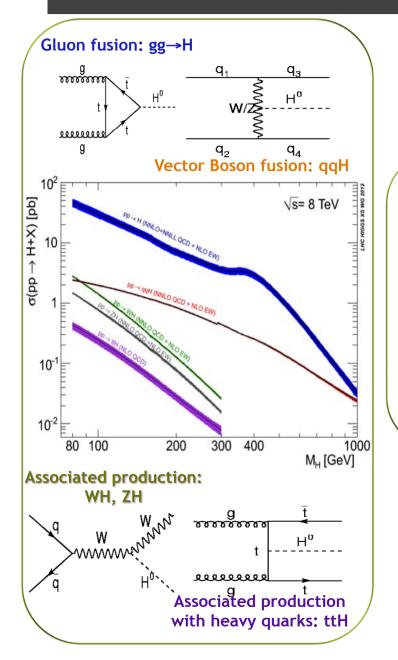
- □ 30% Uncertainty on the reducible background estimation
 - Comes from fit uncertainty and data to MC mismatch in control regions

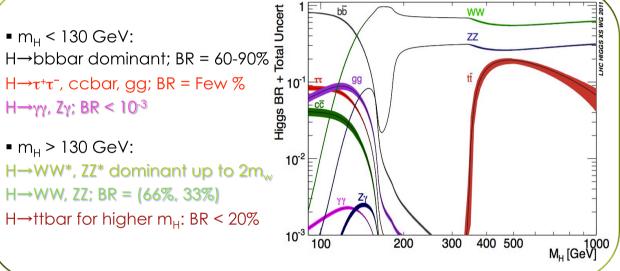

Ilττ Invariant Mass and Exclusion Upper Limits



- No access of events is observed as compare to expected bkg.
- Observed limit is ~2 to 4 times the SM expectation in the range of 190 < m_H < 600 GeV</p>
 LaThuile-2013, Feb. 27, 2013

Conclusions


- H→ZZ→Ilττ analysis has been performed for (5.1 fb⁻¹ @ 7 TeV + 12.2 fb⁻¹ @ 8TeV) data
- No evidence found for a significant deviation from the expected backgrounds
- Limit has been set @ 95 % CL for the mass range of 190 < m_H < 1000 GeV</p>
 - Observed limit is \sim 2 to 4 times the SM expectation for 190 < m_H < 600 GeV

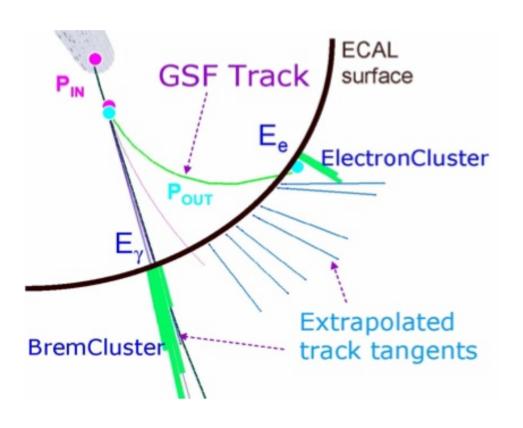


Back up

SM Higgs @ LHC

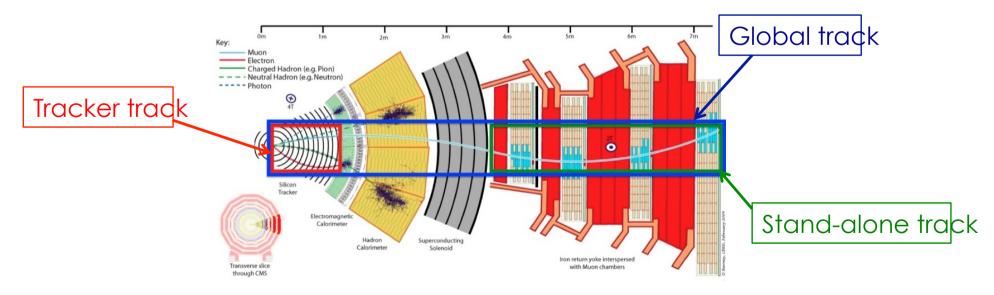
Data Samples and Triggers

Dataset	Primary dataset	Year
Run2011A-16Jan2012-v1	DoubleMu / DoubleElectron	2011
Run2011B-16Jan2012-v1	DoubleMu / DoubleElectron	2011
Run2012A-13Jul2012-v1	DoubleMu / DoubleElectron	2012
Run2012B-13Jul2012-v1	DoubleMu / DoubleElectron	2012
Run2012C-PromptReco-v2	DoubleMu / DoubleElectron	2012
Run2012C-PromptReco-v1	DoubleMu / DoubleElectron	2012


HLT path	Run range	Year		
μμ channels				
HLT_DoubleMu7	160431-163869	2011		
HLT_Mu13_Mu8	165088-178380	2011		
HLT_Mu17_Mu8	178420-180252	2011		
HLT_Mu17_Mu8	190450-203002	2012		
HLT_Mu17_TkMu8	190450-203002	2012		
ee channels				
HLT_Ele17_CaloIdT_CaloIsoVL_TrkIdVL_TrkIsoVL_	160432-180252	2011		
Ele8_CaloIdL_CaloIsoVL_TrkIdVL_TrkIsoVL				
HLT_Ele17_CaloIdT_CaloIsoVL_TrkIdVL_TrkIsoVL_	190450-197044	2012		
Ele8_CaloIdL_CaloIsoVL_TrkIdVL_TrkIsoVL				
HLT_Ele17_CaloIdT_TrkIdVL_CaloIsoVL_TrkIsoVL_	190450-203002	2012		
Ele8_CaloIdT_TrkIdVL_CaloIsoVL_TrkIsoVL				

MC Samples

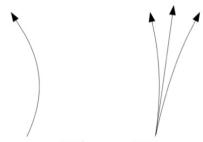
Process	MC	$\sigma_{(N)NLO}$		Comments and sample name	
	generator	7 TeV	8 TeV		
Higgs boson $H \rightarrow ZZ$	$ ightarrow 4\ell$	5167775.47777.1478VI	and a statemen	ETT SAJONESSAN ETTENS	
$gg \rightarrow H$	POWHEG	[1-20] fb	[1.2-25] fb	$m_H = 110-1000 \text{GeV}/c^2$	
$VV \rightarrow H$	POWHEG	[0.2-2] fb	[0.3-25] fb	$m_H = 110-1000 \text{GeV}/c^2$	
ZZ continuum	Set Characture - and	19850000000	152%, 12530 April 10 11 1	**************************************	
$q\bar{q} \rightarrow ZZ \rightarrow 4e(4\mu, 4\tau)$	POWHEG	15.34 fb	76.91 fb	ZZTo4e(4mu,4tau)	
$q\bar{q} \rightarrow ZZ \rightarrow 2e2\mu$	POWHEG	30.68 fb	176.7 fb	ZZTo2e2mu	
$q\bar{q} \rightarrow ZZ \rightarrow 2e(2\mu)2\tau$	POWHEG	30.68 fb	176.7 fb	ZZTo2e(2mu)2tau	
$gg \rightarrow ZZ \rightarrow 2\ell 2\ell'$	gg2ZZ	9.74 fb	12.03 fb	GluGluToZZTo2L2L	
$gg \rightarrow ZZ \rightarrow 4\ell$	gg2ZZ	3.85 fb	4.80 fb	GluGluToZZTo4L	
Other di-bosons	halifolio pilos virtuos	otolance	KONTYGEN GRANGERY IN TO		
$WW \rightarrow 2\ell 2\nu$	Madgraph	4.88 pb	5.995 pb	WWTo2L2Nu	
$WZ \rightarrow 3\ell\nu$	Madgraph	0.868 pb	1.057 pb	WZTo3LNu	
$t\bar{t}$ and single t	nyma 2 francis (r. p. prima)	photographic and			
$t\bar{t} \to \ell^+\ell^- \nu \bar{\nu} b\bar{b}$	POWHEG	17.32 pb	23.64 pb	TTTo2L2Nu2B	
t (s-channel)	POWHEG	3.19 pb	3.89 pb	T_TuneXX_s-channel	
\bar{t} (s-channel)	POWHEG	1.44 pb	1.76 pb	Tbar_TuneXX_s-channel	
t (t-channel)	POWHEG	41.92 pb	55.53 pb	T_TuneXX_t-channel	
\bar{t} (t-channel)	POWHEG	22.65 pb	30.00 pb	Tbar TuneXX t-channel	
t (tW-channel)	POWHEG	7.87 pb	11.77 pb	T_TuneXX_tW-channel-DR	
\bar{t} (tW-channel)	POWHEG	7.87 pb	11.77 pb	Tbar_TuneXX_tW-channel-DR	
$\mathbf{Z/W} + \mathbf{jets} (q = d, u, s)$, c, b)	7			
W + jets	MadGraph	31314 pb	36257.2 pb	WJetsToLNu	
Z + jets	MadGraph	3048 pb	3503.7 pb	DYJetsToLL	
QCD inclusive multi-j	ets, binned $p_{_{T}}^{n}$	nin			
$b, c \rightarrow e + X$	PYTHIA			QCD_Pt-XXtoYY_BCtoE	
EM-enriched	PYTHIA			QCD_Pt-XXtoYY_EMEnriched	
MU-enriched	PYTHIA			QCD_Pt-XXtoYY_MuPt5Enriched	


e reconstruction

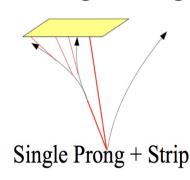
- ECAL driven seeding:
 - Starts from super-cluster: energy collected in φ due to bramsstrahlung (ET > 4GeV)
 - GSF fit to cope with change in curvature: leads to hit collection upto ECAL
- Tracker driven seeding:
 - Starts from very first hit in tracker and estimate the brem-cluster
 - Do the same for all hits
 - It increases the efficiency at low p_T
- Energy correction:
- A weighted combination of E and p from ECAL and Tracker information
- ECAL information obtained by technique, such as in $H \rightarrow \gamma \gamma$

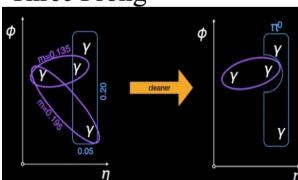
μ reconstruction

- Built tracker track (in tracker) and stand-alone track (in muon system)
- Global μ (Outside-in): a tracker track find out by comparing the track parameters at a common surface.
 - A global track is then fit with tracker hits from tarcker track and standalone track
- Tracker μ (inside-out): it starts with all the possible tracker tracks with p_T > 0.5 GeV and if we find a μ segment we declare it the tracker μ .


HPS τ_h algorithm

- □ HPS algorithm uses PF jet ($\Delta R = 0.5$) and reconstruct τ decays inside jet
 - ✓ Selection of highest p_T track
 - \checkmark Reconstruction of π^0 from electromagnetic particle clusters in ECAL strips
 - \checkmark Associated distances for η = 0.05 & for <math>Φ = 0.2 radians


Important aspects:


- ✓ Strips with E_T >1 GeV are considered
- \checkmark A mass constraint of (strip mass matches to $π^0$ mass + hadron mass) = ρ(770) is applied
- ✓ Isolation is calculated as energy sum of particles in ∆R=0.5 cone
- \checkmark For PU $\Delta\beta$ correction, energy sum of particles in ΔR =0.8 cone is used

Decay Mode	Branching ratio(%)
$\tau^- \rightarrow \mu^- \bar{\nu_\mu} \nu_\tau$	17.4
$ au^- ightarrow e^- ar{ u}_e u_ au$	17.9
$\tau^- \rightarrow h^- \nu_{\tau}$	11.6
$ au^- ightarrow h^- \pi^0 u_ au$	26.0
$ au^- ightarrow h^- \pi^0 \pi^0 u_ au$	10.8
$ au^- ightarrow h^- h^+ h^- u_ au$	9.8
$ au^- ightarrow h^- h^+ h^- \pi^0 u_ au$	4.8
other	1.7

Single Prong Three Prong

HPS τ_h Isolation and discriminators against e's and μ 's

■ In Isolation cone of $\Delta R = 0.5$

- All charged particles and neutral particles with P_T > 0.5 GeV are considered
 - HPS Tight Isolation: Iso. < 0.8 GeV</p>
 - HPS Medium Isolation: Iso. < 1 GeV</p>
 - HPS Loose Isolation: Iso. < 2 GeV</p>

\blacksquare μ discriminator:

- \blacksquare μ Loose: Leading track should not have μ chamber hits
- μ Medium: Leading track should not match with global/ tracker μ track
- \blacksquare μ Tight: μ Medium + μ should not have large energy deposits in ECAL and HCAL
- e DiscrimHiggs Hunting Workshop, July 18–20, 2012ination Based on PF e- π MVA (ξ):
 - \blacksquare e Loose: ξ < 0.6
 - **a** e Medium: ξ < -0.1 and not 1.4442 < $|\eta|$ < 1.566
 - \blacksquare e Tight: ξ < -0.1 and not 1.4442 < $\mid \eta \mid$ < 1.566 and Brem pattern cuts

ZZ Estimation

■ Estimated from simulation

	7 TeV	8 TeV
Decay	N_{ZZ}^{est} (2011)	$N_{ZZ}^{est} (2012)$
channel		
$\mu\mu\tau_h\tau_h$	0.68 ± 0.02	1.72 ± 0.03
$ee au_h au_h$	0.63 ± 0.02	1.58 ± 0.03
$ee au_e au_h$	0.71 ± 0.02	1.77 ± 0.03
$\mu\mu\tau_e au_h$	0.68 ± 0.02	1.74 ± 0.03
$\mu \mu au_{\mu} au_{h}$	0.92 ± 0.02	2.14 ± 0.03
$ee au_{\mu} au_{h}$	0.82 ± 0.02	1.85 ± 0.03
$ee au_e au_\mu$	0.53 ± 0.02	1.17 ± 0.03
$\mu \mu \tau_{\mu} \tau_{e}$	0.59 ± 0.02	1.47 ± 0.03
TOTAL	5.55 ± 0.05	13.42 ± 0.07