Electron-Phonon Interactions, MIT & Holographic Massive Gravity

Matteo Baggioli Universitat Autonoma de Barcelona UAB Institut de fisica d'Altes Energies IFAE

Gauge Gravity Duality 2015

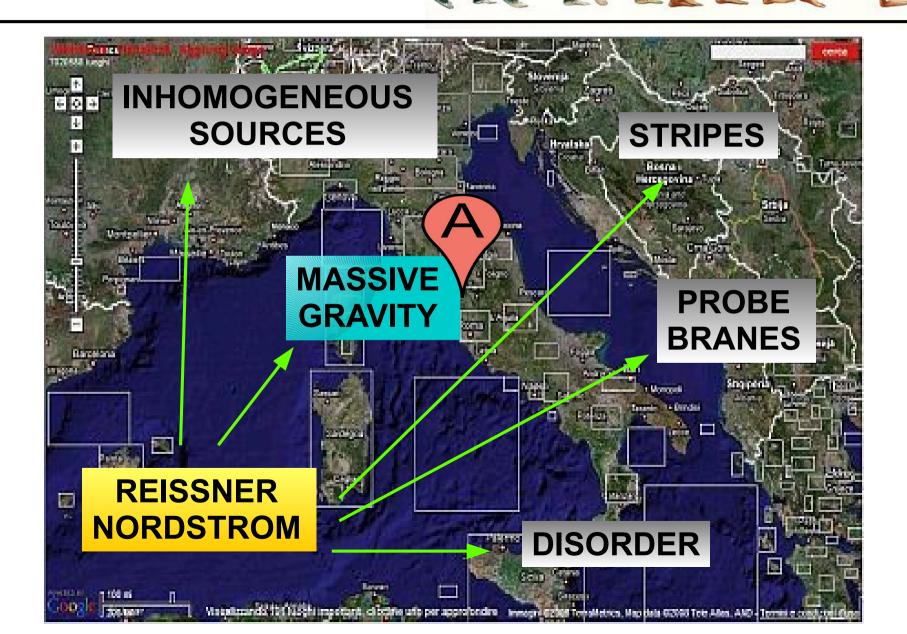
MENU

Massive Gravity and effective field theories for phonons in solids

Electron-Phonon Interactions & Holographic Response

> Conclusions & future

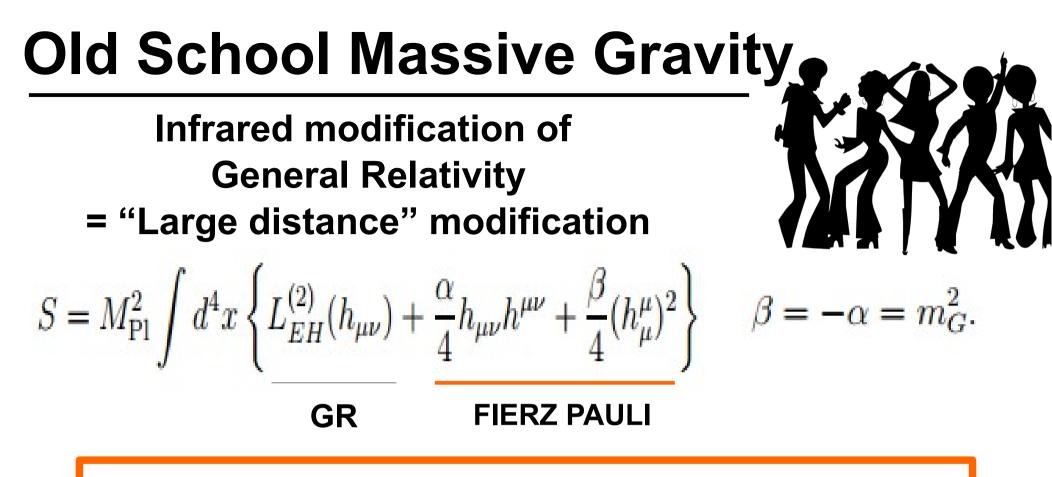
Holographic



Massive Gravity is a wonderful effective approach, but ...



Who are we talking about ??

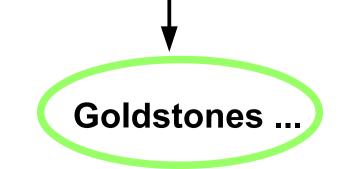


BREAKING OF DIFFEOMORPHISM INVARIANCE !!

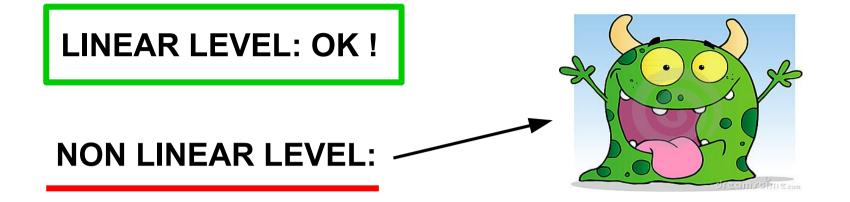
GRAVITON WITH EXTRA DEGREES OF FREEDOM

Attention:

- Ghosts
- dVDZ discontinuity
- Strong Coupling



Massive Gravity Nightmare



BOULWARE DESER GHOST

Recently (probably) solved by :

But this is for the Lorentz Invariant case And we are doing Condensed Matter ...

Non Relativistic Massive Gravity

$$S^{(2)} = S^{(2)}_{EH} + S_m,$$
 arXiv:0802.4379
arXiv:hep-th/0409124

$$L_m = \frac{1}{4} \left[m_0^2 h_{00} h_{00} + 2m_1^2 h_{0i} h_{0i} - m_2^2 h_{ij} h_{ij} + m_3^2 h_{ii} h_{jj} - 2m_4^2 h_{00} h_{ii} \right].$$

+ mass terms in the holographic direction ...

SUPER HEALTHY THEORIES AT NON LINEAR LEVEL (provided some weak constraints)

WAY MORE GENERAL THAN dRGT MODEL !!

 $m_2^2 > ($

Not all the choices healthy, need to impose constraints on the masses...

For Example :

1

$$). \qquad m_1^2 \ge$$

Residual Gauge Simmetries

One elegant way to avoid fine tuning the masses is thinking of various Residual gauge simmetries...

In several cases this approach does lead to healthy theories...

Example:

$$t \to t + \zeta^0(x^i, t)$$
. $\longrightarrow m_0 = m_1 = m_4 = 0.$

Our case: we want to preserve SO(3) and homogeneity And break Just translation in the spatial boundary directions...

More elegant way: COSET constructions

arXiv:1307.0517

Solids, fluids, superfluids, supersolid

Stuckelberg Trick

IDEA : "ENLARGE" THE FIELD CONTENT RESTORE GAUGE INVARIANCE

introduces a new, Stückelberg field ξ_{μ} and a new field $\bar{h}_{\mu\nu}$ by writing $h_{\mu\nu} = \bar{h}_{\mu\nu} + \partial_{\mu}\xi_{\nu}(x) + \partial_{\nu}\xi_{\mu}(x).$

Then the linearized theory is invariant under gauge transformations

$$\bar{h}_{\mu\nu}(x) \rightarrow \bar{h}_{\mu\nu}(x) + \partial_{\mu}\zeta_{\nu}(x) + \partial_{\nu}\zeta_{\mu}(x) ,$$

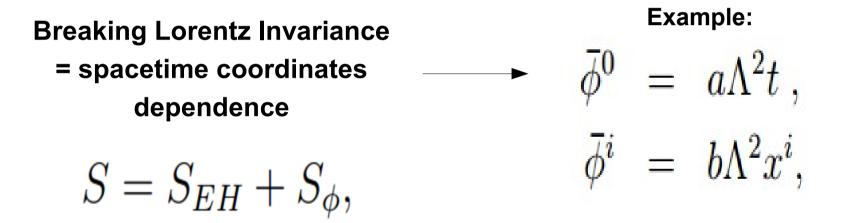
$$\xi_{\mu} \rightarrow \xi_{\mu} - \zeta_{\mu}.$$

Lorentz Violating Scalars and Massive Gravity

Adding additional scalar fields :

$$\phi^{\alpha},\,\alpha=0,1,2,3,$$

GOLDSTONE FIELDS



To be solution : Lagrangian contains their derivatives only

Shift sym : $\phi^{lpha}(x) \, o \, \phi^{lpha}(x) + \lambda^{lpha}$

Eventually internal Sym :

$$SO(3) \quad \phi^i \to \Lambda^i_j \phi^j.$$

Avoiding issues with the scalars

In Minkowski background (cosmology for example) these scalars are dangerous

Very hard to neglect their contribution to stress energy tensor Without violating null energy condition !!

Here we are happy of having them backreacting!

Note that they dont screw up the UV AdS Asymptotics needed for the dictionary .

HAPPY END :
LOTS OF SUPER HEALTHY LV MASSIVE GRAVITIES
AVAILABLE !

LV Massive Gravity in stuckelberg form

$$S_{\phi} = \int d^4x \,\sqrt{-g}\Lambda^4 F(X, V^i, Y^{ij}, Q)$$

This is Way More than A solid

$$X = \frac{1}{\Lambda^4} g^{\mu\nu} \partial_\mu \phi^0 \partial_\nu \phi^0,$$

$$V^i = \frac{1}{\Lambda^4} g^{\mu\nu} \partial_\mu \phi^0 \partial_\nu \phi^i,$$

$$Y^{ij} = \frac{1}{\Lambda^4} g^{\mu\nu} \partial_\mu \phi^i \partial_\nu \phi^j,$$

1

1

Even preserving homogeneity Lot of freedom and opportunities...

Effective Field Theory Valid at Low energy

The UV cutoff in this theory Λ_{UV} is to be somewhat below Λ

$$\phi^{\alpha} = \bar{\phi}^{\alpha} + \underline{\pi}^{\alpha}, \qquad \qquad L_{\pi} = (\partial \pi)^2 + \frac{1}{\Lambda} (\partial \pi)^3 + \dots$$

See: Chiral Perturbation Theory and Pions

Stuckelbergs = Goldstones

LV MASSIVE GRAVITY FOR SOLIDS

$$S_{\phi} = \int d^4x \ \sqrt{-g} \Lambda^4 F(X, \mathbf{V}^i, Y^{ij}, \mathbf{Q})$$

.05

1

Note: Simmetries allow for a generic function F

$$SO(3) \longrightarrow \text{JUST SCALARS COMING FROM } Y^{ij} = \frac{1}{\Lambda^4} g^{\mu\nu} \partial_\mu \phi^i \partial_\nu \phi^j$$
$$Tr[Y], Tr[Y^2], \dots$$
$$arXiv:1311.5157 \quad S_0 = \int_M \sqrt{-g} \left[R - 2\Lambda - \frac{1}{2} \sum_{I}^{d-1} (\partial \psi_I)^2 - \frac{1}{4} F^2 \right] d^{d+1}x$$

A simple holographic model of momentum relaxation

Effective field theory for solids

COMOVING COORDINATES OF THE VOLUME ELEMENTS :

TRIPLETS OF SCALARS $\phi^{I}(\vec{x},t)$

arXiv:hep-th/0512260 arXiv:1501.03845

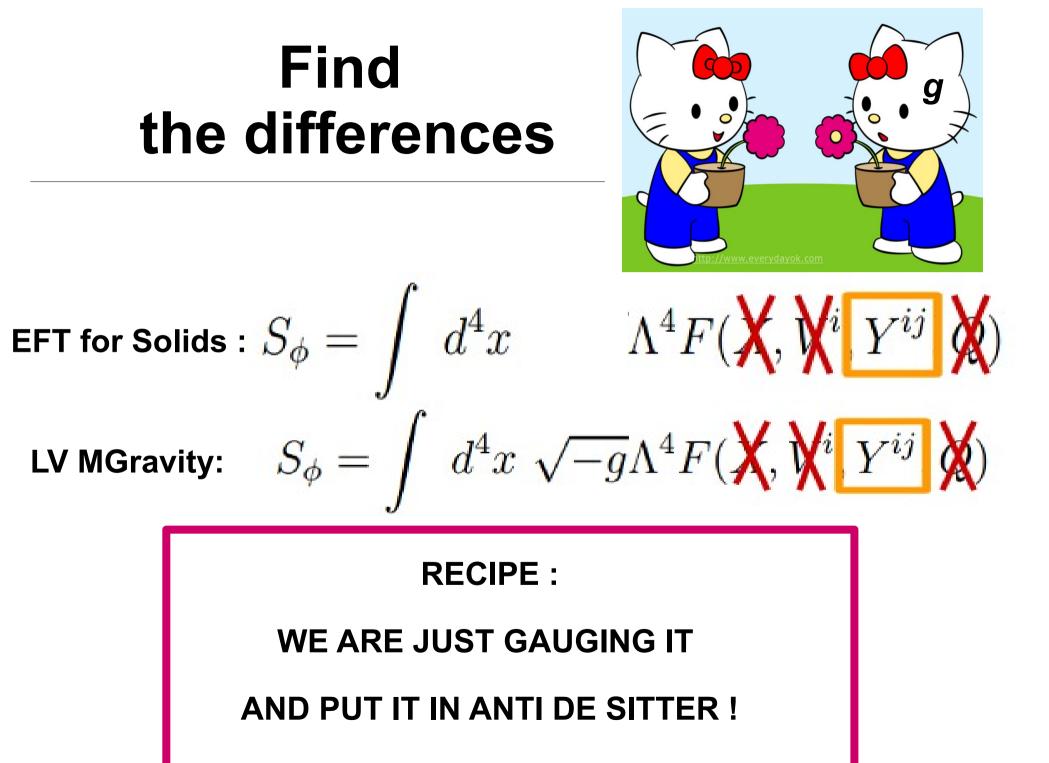
GROUND STATE = $\langle \phi^I(x) \rangle = x^I$. = EQUILIBRIUM

Homogeneity and isotropy $\longrightarrow \phi^I \to \phi^I + a^I$, $\phi^I \to SO(3) \cdot \phi^I$, of solids at large scales

SPATIAL DEFORMATIONS DEGREES OF FREEDOM PHONONS

GOLDSTONES BOSONS FOR BROKEN SIMMETRIES

 $\phi^a = x^a + \underline{\pi}^a$ describe the three (acoustic) phonons of the solid,



Getting Concrete: the Model

$$\begin{split} S_{HMG} &= M_P^2 \int d^4 x \sqrt{-g} \left[\frac{R}{2} + \frac{3}{\ell^2} - m^2 V(X) \right] \\ S &= S_{HMG} - \frac{M_P^2}{4} \int d^4 x \sqrt{-g} F_{\mu\nu} F^{\mu\nu} \begin{bmatrix} \text{Generalizing:} \\ \text{arXiv:1311.5157} \\ \text{arXiv:1406.4870} \end{bmatrix} \end{split}$$

$$X \equiv \frac{1}{2} g^{\mu\nu} \partial_{\mu} \Phi^{I} \partial_{\nu} \Phi^{I}$$

$$\bar{\Phi}^I = \alpha \, \delta^I_i \, x^i$$

arXiv:1411.1003

With Oriol Pujolàs

MOMENTUM DISSIPATION BUT ENERGY CONSERVATION

Consistency and stability

 $V'(\bar{X}) > 0$.

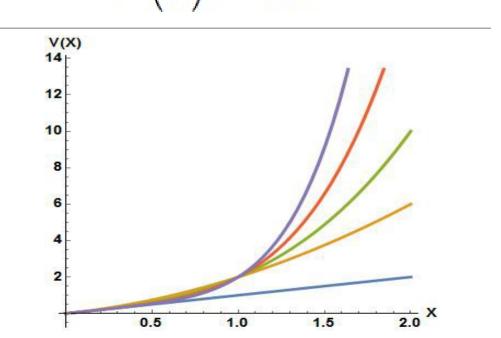
NO GHOSTS :

NO GRADIENT INSTABILITY :

AdS UV ASYMPTOTICS :

WEAKLY COUPLED GOLDSTONES SECTOR:

V'(0) is not too small.



 $c_S^2 = 1 + \frac{\bar{X}V''(\bar{X})}{V'(\bar{X})} > 0$.

(0) = 0.

The Physics of the model

GRAVITON + NEW GOLDSTONE DEGREES OF FREEDOM

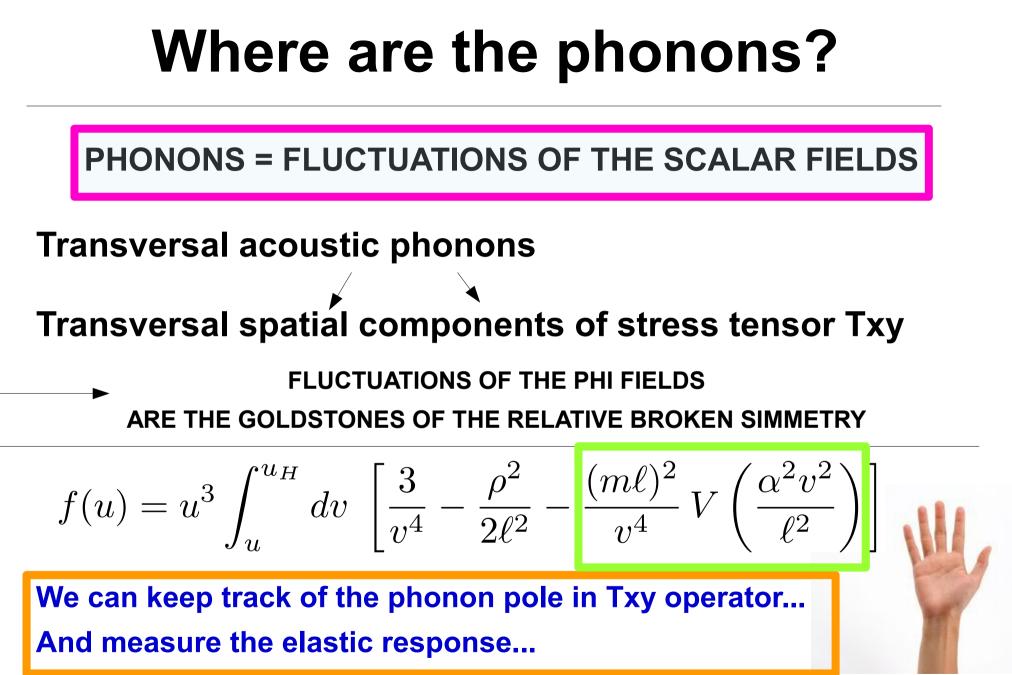
Operators of the CFT with shift simmetries "Somehow" related to Phonons and Impurities

ELECTROMAGNETIC SECTOR + NEW "PHONONS" SECTOR

GENERIC POTENTIAL FOR THE PHONONS NON TRIVIAL DYNAMICS NON ZERO SELF INTERACTIONS

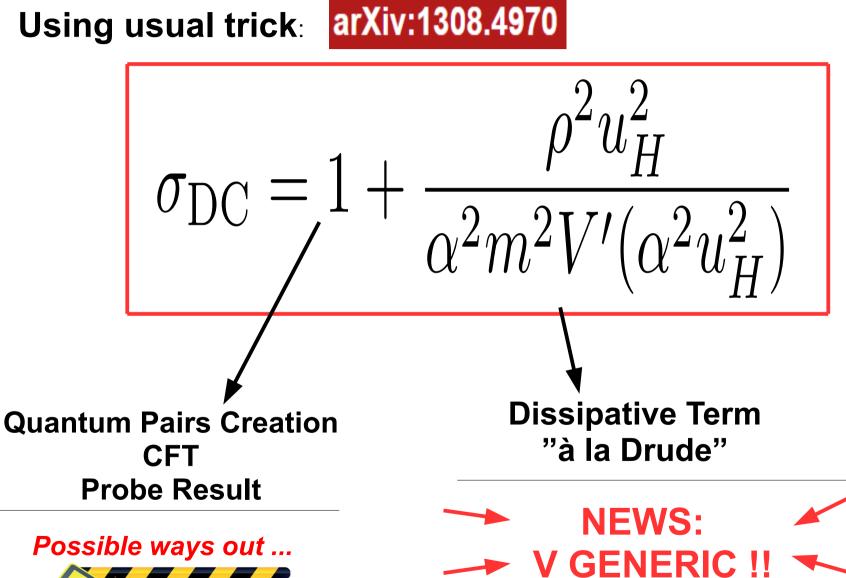
 $\Phi^I = \bar{\Phi}^I +$

Phonon-Phonon interactions Electron-Phonon interactions



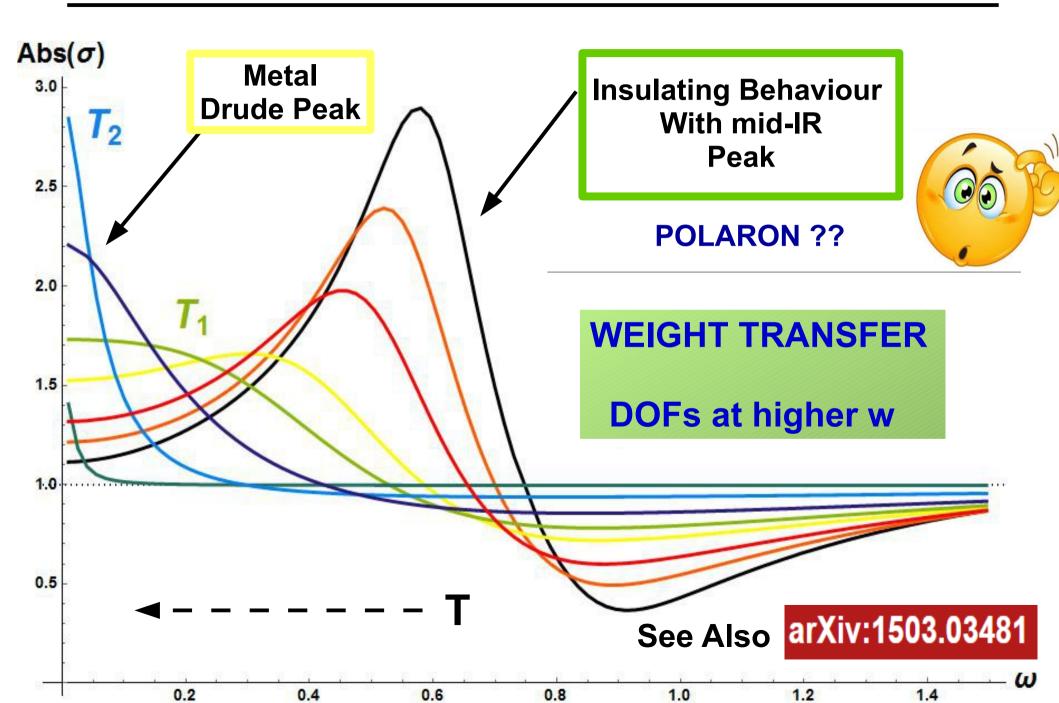
With O.Pujolàs

Analytical DC conductivity

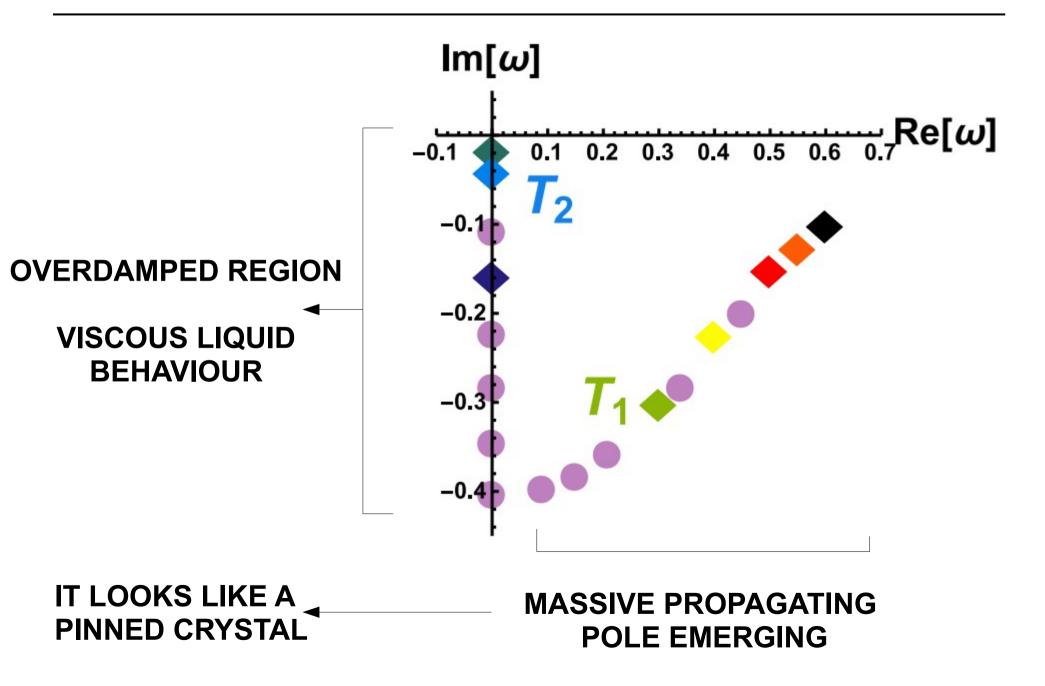


Temperature Dependence

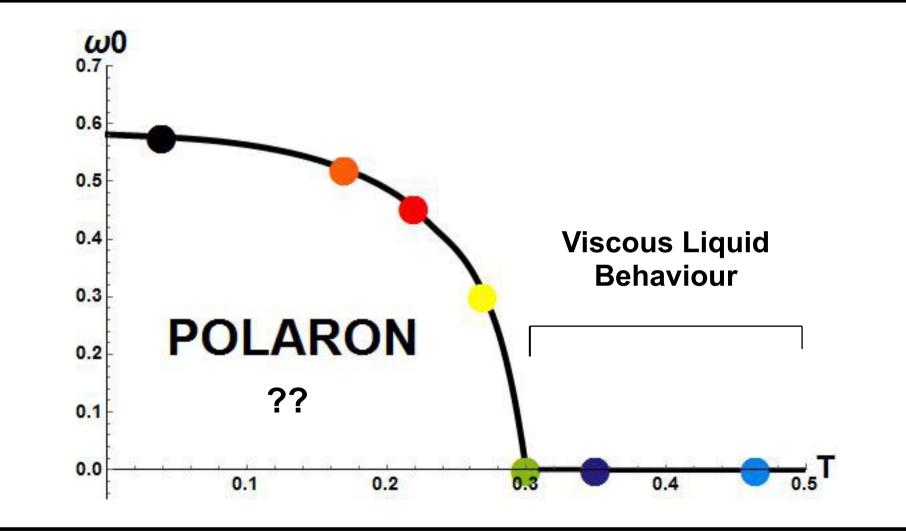
AC conductivity



QNMs and their physics

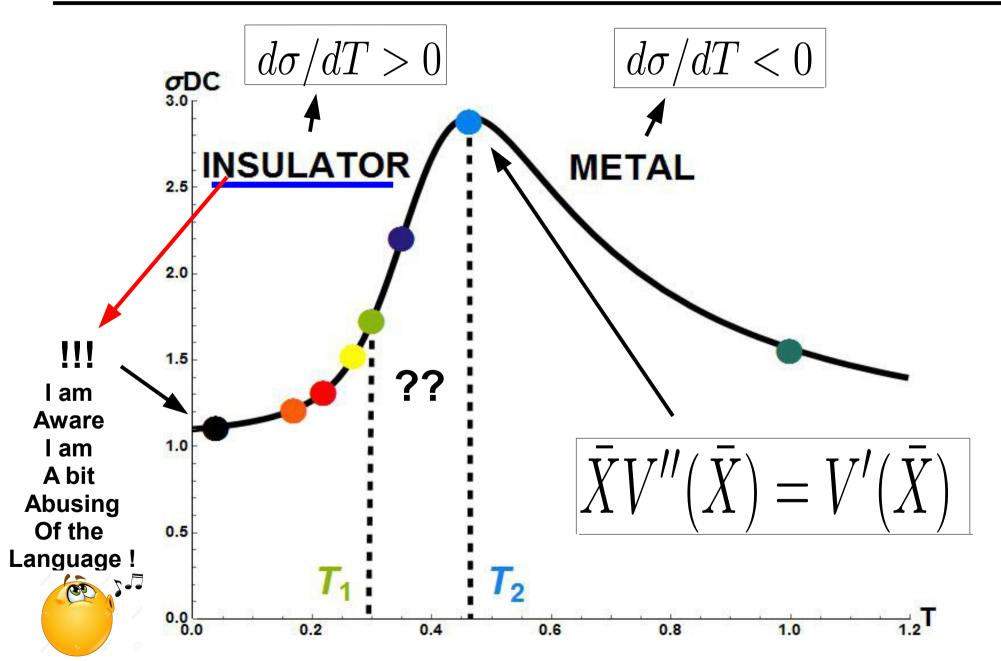


Localized peak formation

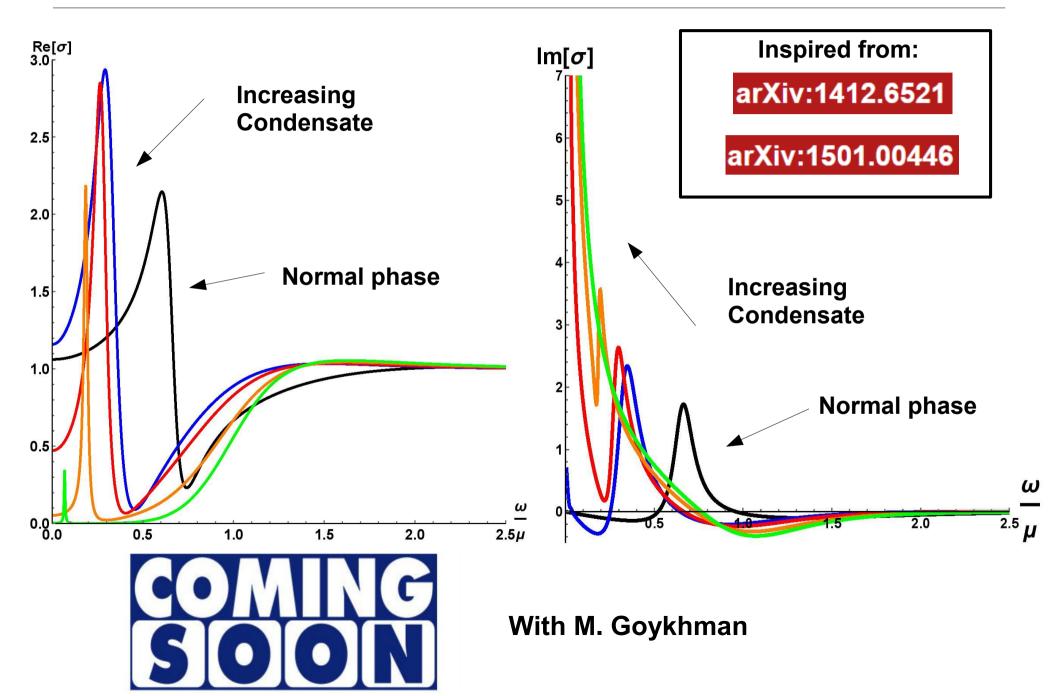


Looks like 2nd order Phase transition (Holographic Superconductors) BUT : No Spontaneous Simmetry Breaking , No Condensate

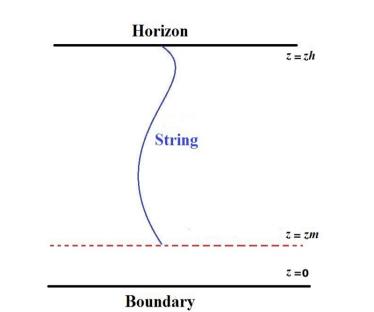
"MIT" : from a viscous liquid to a pinned crystal



Holographic Superconductors



Massive Gravity Check In



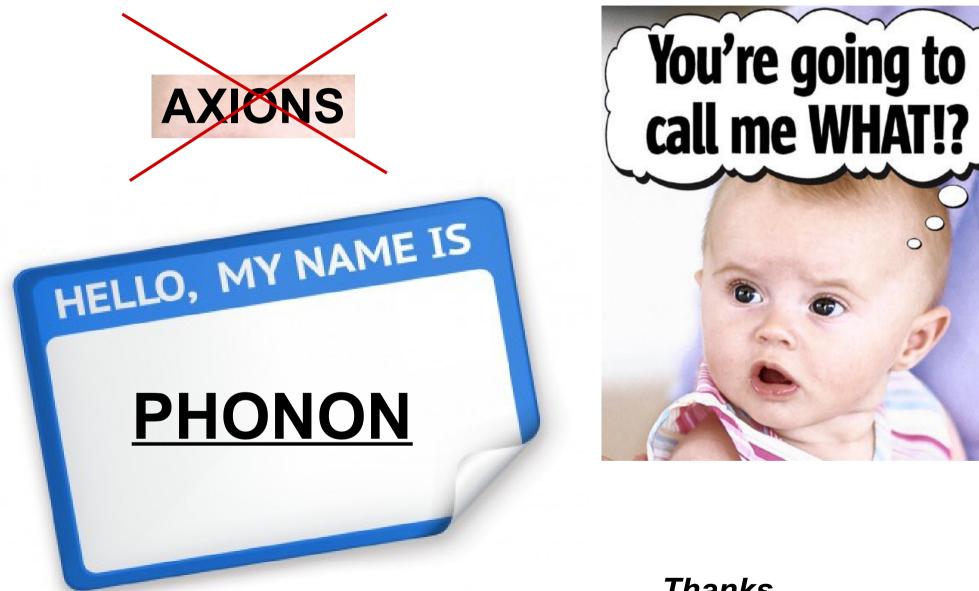
Probe String moving In a background with massive graviton

With Danny Brattan

Idea: understand what massive gravity Mimicks and test its quality as An effective description for Condensed Matter

- Additional Drag and Momentum Dissipation
- Non zero entropy at zero temperature
- Decreased mobility
- Heat Capacity
- Temperature Dependent Damping

PRE-CONCLUSIONS



Thanks ...

Conclusions

MASSIVE GRAVITY PROVIDES AN EFFECTIVE HOLOGRAPHIC THEORY FOR PHONONS IN SOLIDS

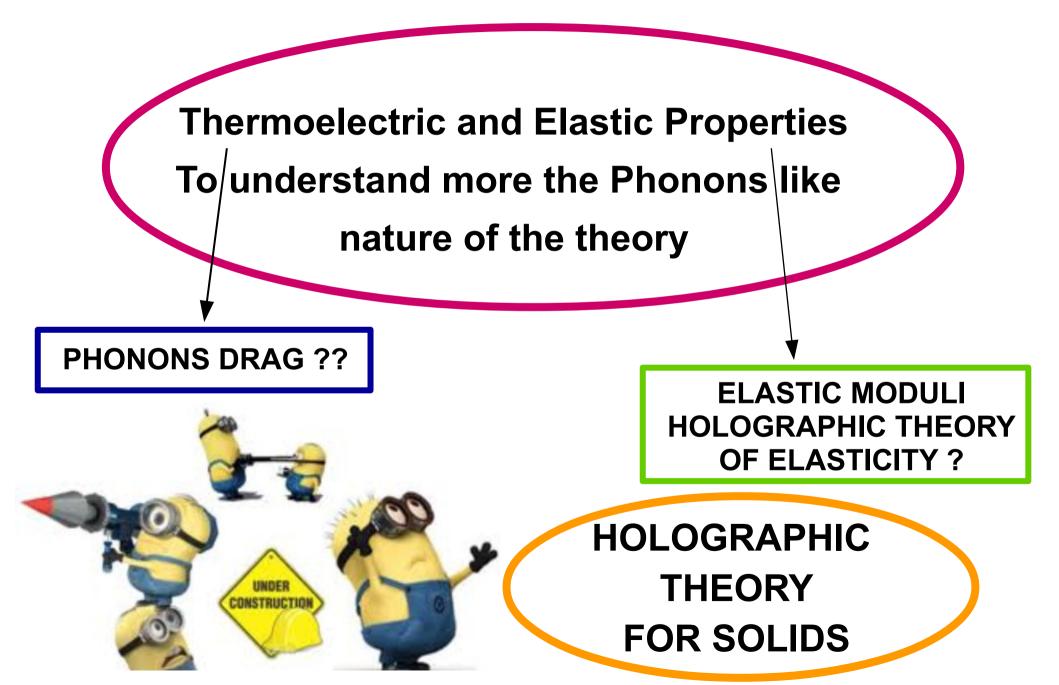
PHONONS ARE ENCODED IN THE FLUCTUATIONS OF THE STUCKELBERG FIELDS WHICH ARE NOTHING ELSE THAN THE GOLDSTONES

> SCALARS VEVs PROVIDES ALSO AN EXPLICIT BREAKING WHICH CAN MIMICK IMPURITIES EFFECTS

MASSIVE GRAVITY PROVIDES INTERESTING HOLOGRAPHIC FEATURES LORENTZ VIOLATING MASSIVE GRAVITIES ARE WAY MORE GENERAL THAN dRGT AND HAVE STILL A LOT OF POWER TO BE EXPLOITED

IDEA: TEST AND IMPROVE THE QUALITY OF THE ADS-CMT TOOL

To Do



THANKYOU FOR YOUR AJUENDON

VESSES, FINALY OVER

quickmeme.com

BACKGROUND

$$T = -\frac{f'(u_H)}{4\pi} = \frac{6 - \mu^2 u_H^2 - 2m^2 V\left(\alpha^2 u_H^2\right)}{8\pi u_H}$$

$$f(u) = u^3 \int_u^{u_H} dv \, \left[\frac{3}{v^4} - \frac{\rho^2}{2\ell^2} - \frac{(m\ell)^2}{v^4} \, V\left(\frac{\alpha^2 v^2}{\ell^2}\right) \right]$$

GOLDSTONE SECTOR AND INSTABILITY

$$V'(\bar{X})\partial_{\mu}\phi^{i}\partial^{\mu}\phi^{i} + \bar{X}V''(\bar{X})(\partial_{i}\phi^{i})^{2}$$

$$M_{\Phi}^{2}(u) = (\partial\bar{a})^{2} + \Box\bar{a} = \frac{f(u\partial_{u}\bar{a})^{2}}{\ell^{2}} + \frac{u^{2}\partial_{u}(f\partial_{u}\bar{a})}{\ell^{2}}$$

$$\sqrt{V'(\bar{X})}\phi^{i} \qquad \bar{a}(u) = \frac{1}{2}\log V'(\bar{X})$$

$$M_{\Phi}^{2} \sim -|f'(u)|\frac{V''(\bar{X})}{V'(\bar{X})}\Big|_{\text{horizon}} < 0$$

EOM

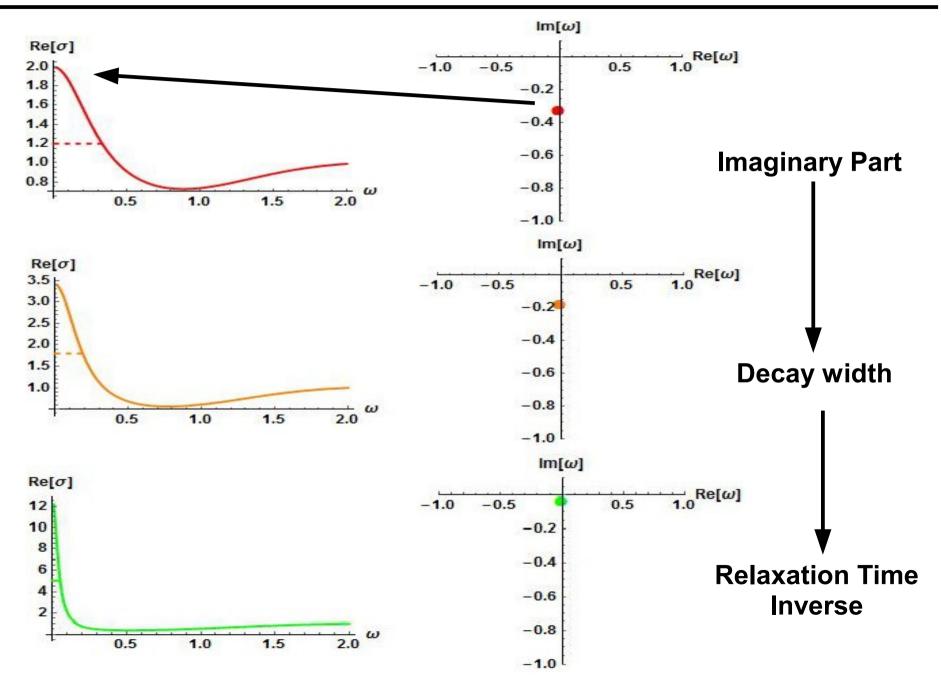
$$T_i \equiv u^2 h_{ti} - \frac{\partial_t \phi_i}{\alpha} , \ U_i \equiv f(u) \left[h_{ui} - \frac{\partial_u \phi_i}{\alpha u^2} \right] , \ B_i \equiv b_i - \frac{\phi_i}{\alpha}$$

$$\partial_{u}(f \partial_{u} a_{i}) + \left[\frac{\omega^{2}}{f} - k^{2} - 2u^{2}\rho^{2}\right]a_{i} = \frac{i\rho u^{2}(2\bar{m}^{2} + k^{2})}{\omega}U_{i} - \frac{if\rho k^{2}}{\omega}\partial_{u}B_{i}$$
$$\frac{1}{u^{2}}\partial_{u}\left[\frac{fu^{2}}{\bar{m}^{2}}\partial_{u}\left(\bar{m}^{2}U_{i}\right)\right] + \left[\frac{\omega^{2}}{f} - k^{2} - 2\bar{m}^{2}\right]U_{i} = -2i\rho\omega a_{i} + \frac{f'k^{2}}{u^{2}}B_{i}$$
$$= \left[\left(\frac{2}{\sigma}\rho_{u}\left(\frac{f}{m}\rho_{u}-p_{u}\right)\right) - \left[\frac{\omega^{2}}{r} - k^{2} - 2\bar{m}^{2}\right]D_{i} = -2i\rho\omega a_{i} + \frac{f'k^{2}}{u^{2}}B_{i}$$

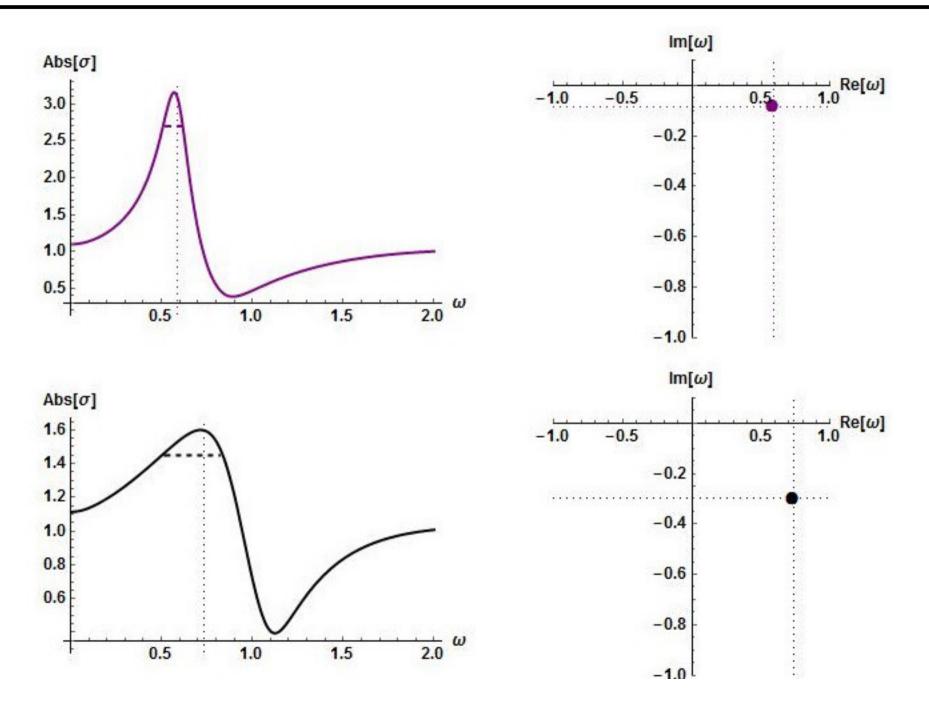
$$k\left\{u^2\partial_u\left(\frac{J}{u^2}\partial_u B_i\right) + \left[\frac{\omega^2}{f} - k^2 - 2\bar{m}^2\right]B_i = -2\frac{m}{\bar{m}}U_i\right\}$$

 $\sigma(\omega) = \frac{\partial_u a_j}{i\,\omega\,a_j}\big|_{u\to 0}$ $\bar{m}^2(u) = \alpha^2 m^2 V'(\alpha^2 u^2)$

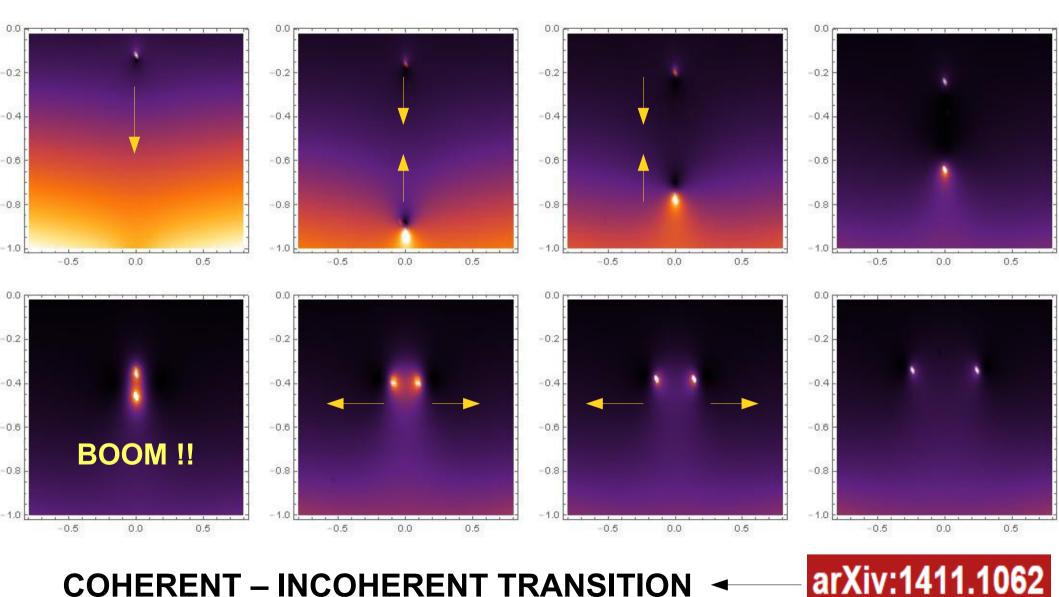
Quasinormal Modes I



Quasinormal Modes II



Quasinormal Modes IV



COHERENT – INCOHERENT TRANSITION – & LOCALIZED PROPAGATING EXCITATION –

Non-Relativistic Effective field arXiv:hep-ph/9311264 theories arXiv:hep-ph/9609466

SOLIDS :

relevant effective fields are the components of the vector $\vec{\xi}(x) = (\xi^1(x), \xi^2(x), \xi^3(x))$,

which specifies the displacement of the material from the position in the ground state.

$$\mathcal{L}_{2} = \frac{1}{2}\rho_{0}\dot{\xi}_{a}\dot{\xi}_{a} - \frac{1}{2}\mu\partial_{a}\xi_{b}\partial_{a}\xi_{b} - \frac{1}{6}(\mu + 3K)\partial_{a}\xi_{a}\partial_{b}\xi_{b} + l_{0}\xi_{a}\xi_{a} + O(p^{4})$$

Theory of Sound Waves in Solids
 $l_{0} = 0$, $k_{1} = -\mu$, $k_{2} = \frac{2}{3}\mu - K$. Phonons as goldstone fields

Phonons as goldstone fields

COVARIANT FORMULATION:

$$z_a(t,\vec{x}\,) = x_a - \xi_a(t,\vec{x}\,)$$

$$\mathcal{L}_{eff} = \sqrt{|g|} F(\partial z, \nabla \partial z, \ldots)_g$$
.

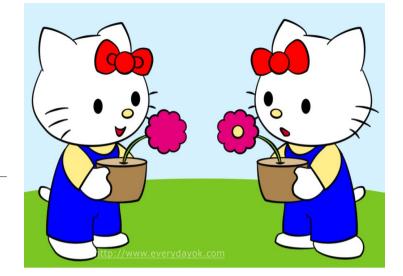
If only 1st derivatives :

$$H_{ab} = g^{\mu\nu} \partial_{\mu} z_a \partial_{\nu} z_b$$

$$\mathcal{L}_{eff} = \sqrt{|g|} c^2 f(H)$$

Find the differences

Effective theories for phonons in solids :



COVARIANT FORMULATION :

$$z_a(t, \vec{x}) = x_a - \xi_a(t, \vec{x})$$

$$\mathcal{L}_{eff} = \sqrt{|g|} F(\partial z, \nabla \partial z, \ldots)_g$$
.

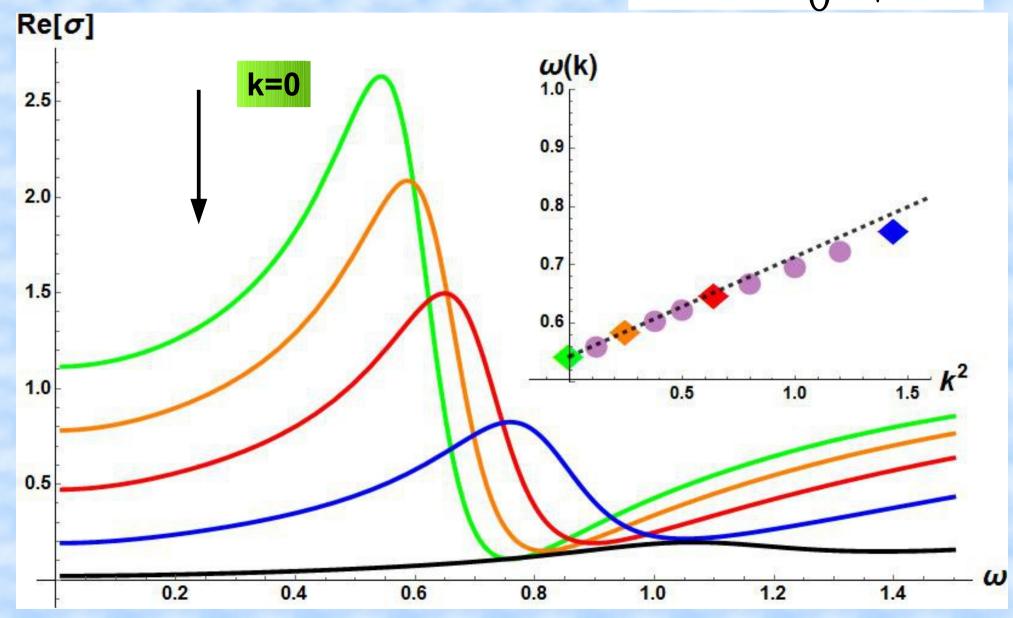
If only 1st derivatives : $H_{ab} = g^{\mu\nu} \partial_{\mu} z_{a} \partial_{\nu} z_{b}$ $\mathcal{L}_{eff} = \sqrt{|g|} c^{2} f(H)$

PREVIEW – RECIPE :

WE ARE JUST GOING TO GAUGE IT

AND PUT IT IN ANTI DE SITTER !

EMERGED PROPAGATING "(quasi) PARTICLE" $\omega = \omega_0 + \imath \Gamma$



Quasinormal Modes Imprints

