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Wilczek’s Litany

• The SM is in great shape
• FP & CP is well described by CKM

2

arXiv:1003.4672v1 [hep-ph]

Particle Physics Today:

• Why these groups and representations (specially hypercharge?)
• Existence of small non-zero neutrino masses, appears gratuitous
• Gravity
• Dark matter? Dark Energy?
• Why is θ so small?
• Flavor ...

Shortcomings of the SM

http://arxiv.org/abs/1003.4672v1
http://arxiv.org/abs/1003.4672v1
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The Discovery of CP Violation: a Surprise -- Prof. Jim Cronin 
From the Proton Synchroton to the Large Hadron Collider - 50 Years of Nobel 
Memories in High-Energy Physics, CERN 2009
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A Little History: the Origins of FP&CP
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A Little History: the Origins of FP&CP

湯川 秀樹 (Yukawa Hideki)
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A Little History: the Origins of FP&CP

Seth Neddermeyer

Carl David Anderson

The mesotron
(1936)

湯川 秀樹 (Yukawa Hideki)

became 
the mu-meson

(1947)
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Who ordered that?
- I.I. Rabi

A Little History: the Origins of FP&CP

Seth Neddermeyer

Carl David Anderson

The mesotron
(1936)

湯川 秀樹 (Yukawa Hideki)

became 
the mu-meson

(1947)
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This is the partly the theme of this talk:

A theoretical idea (right or wrong) can motivate a good experiment.

Intuition needed to follow the right path.

Luck cannot hurt.

conjecture serendipity

intuition

Discovery
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Cronin, Fitch and Turlay -- Proposal : 2 pages long 
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The Discovery of CP Violation: a Surprise -- Prof. Jim Cronin 
From the Proton Synchrotron to the Large Hadron Collider - 50 Years of Nobel 
Memories in High-Energy Physics, CERN 2009

Cronin, Fitch and Turlay -- Proposal : 2 pages long 
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So I propose to you to take a sampling of non-mainstream (aka “crazy”) ideas

Some have well motivated theory

Some don’t

The only criterion is that confirmation of any would result in a
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So I propose to you to take a sampling of non-mainstream (aka “crazy”) ideas

Some have well motivated theory

Some don’t

The only criterion is that confirmation of any would result in a

Paradigm Shift

Paradigm shift (or revolutionary science) is the term first coined by Thomas Kuhn in his influential book The Structure of 
Scientific Revolutions (1962) to describe a change in basic assumptions within the ruling theory of science. It is in contrast to his 
idea of normal science.

The term paradigm shift, as a change in a fundamental model of events, has since become widely applied to many other realms 
of human experience as well, even though Kuhn himself restricted the use of the term to the hard sciences.

http://en.wikipedia.org/wiki/Thomas_Samuel_Kuhn
http://en.wikipedia.org/wiki/Thomas_Samuel_Kuhn
http://en.wikipedia.org/wiki/The_Structure_of_Scientific_Revolutions
http://en.wikipedia.org/wiki/The_Structure_of_Scientific_Revolutions
http://en.wikipedia.org/wiki/The_Structure_of_Scientific_Revolutions
http://en.wikipedia.org/wiki/The_Structure_of_Scientific_Revolutions
http://en.wikipedia.org/wiki/Theory
http://en.wikipedia.org/wiki/Theory
http://en.wikipedia.org/wiki/Science
http://en.wikipedia.org/wiki/Science
http://en.wikipedia.org/wiki/Normal_science
http://en.wikipedia.org/wiki/Normal_science
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Non-paradigm shifts

• Supersymmetry, flavons, technicolor, unphysics, Little Higgs, ...
• Basic principles remain intact
• Sure, they require additional fields and interactions
• Sure, would be exciting and interesting

• Extra-dimensions
• If generalized duality is general, cannot distinguish form above



9

Violation of CPT and/or QM
L. Maiani, in the DAΦNE Physics Handbook, Vol. I
S. Ellis et al, PLB293(1992)142 (“EHNS”)
P. Huet & M.E. Peskin, NPB434(1995)3

• Local, hermitian QFT implies CPT
• Theories of Quantum Gravity (strings, loop QG) are non-local
• Black Holes cannot carry discrete “charge”

• QM implies pure states do not evolve into mixed states
• Because of Black Holes information loss Hawking proposed

a generalization of QM which allows pure to mix evolution
• Page showed this leads to CPT violation
• Weinberg’s “testing QM:” non-associative matrix QM

• Eberhard: test existence of unitary S-matrix
• Phenomenological analysis of QM violation
• Tests in neutral K’s by Carither’s et al

P. H. Eberhard, CERN 72-1, unpub
W.C. Carithers et al, PRD14(1976)290

S.W. Hawking, PRD 14 (1975) 2460
D.N. Page, Gen. Rel. Grav. 14 (1982)
S.Weinberg, PRL62 (1989) 485; 
                     Annals Phys.194:336,1989.
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m2
K

MPl
∼ 10−19 GeVexpected size of

parameters:

S.W. Hawking, PRD 14 (1975) 2460
D.N. Page, Gen. Rel. Grav. 14 (1982)
S.Weinberg, PRL62 (1989) 485; 
                     Annals Phys.194:336,1989.
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R+−(τ) =
N(K(τ)→ π+π−)

N(K(τ = 0)→ π+π−)

δ(τ) =
N(K(τ)→ π−$+ν)−N(K(τ)→ π+$−ν̄)
N(K(τ)→ π−$+ν) + N(K(τ)→ π+$−ν̄)

|KS〉 ∝ (1 + εS)|K0〉+ (1− εS)|K̄0〉
|KL〉 ∝ (1 + εL)|K0〉+ (1− εL)|K̄0〉

εS = ε + ∆
εL = ε−∆

mS − i
2ΓS = m̄− i

2 Γ̄− d

mL − i
2ΓL = m̄− i

2 Γ̄ + d
d = ∆m− i

2∆Γ

δ(τ) =
2 cos(∆mτ)e−(Γ̄+α−γ)τ + 2Re ε−S e−ΓSτ + 2Re ε+Le−ΓLτ

e−ΓSτ + e−ΓLτ

R+−(τ) = e−ΓSτ + RLe−ΓLτ + 2|η̄+−| cos(∆m τ + φ+−)e−(Γ̄+α−γ)τ

Define, as usual:

Then:

For pure KL beam

δL = 2Re ε+L

RL = |ε−L |2 +
γ

∆Γ
+ 4

β

∆Γ
Im

(
ε−Ld

d∗

)

where

ε±L,S = εL,S ±
β

d
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KLOE reach, with and without the 
insertion of an inner tracker with vertex 
resolution of 0.25 τS (to be compared 
with the present KLOE vertex 
resolution, 0.9 τS).

Venanzoni, arXiv:1001.3591v1 [hep-ex]
CPLEAR,Phys. Reports 374 (2003) 165 

I apologize for the plot being so 
dim, I do not know how to fix it.

http://arxiv.org/abs/1001.3591v1
http://arxiv.org/abs/1001.3591v1
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Violations to Lorentz Invariance
D. Mattingly,  Living Rev.Rel.8(2005)5

SME (QED part):

A. Basic theory

The standard model of particle physics is believed to be

the low-energy limit of a fundamental theory that includes all

the forces in nature. The natural scale of this fundamental

theory is likely to be determined by the Planck mass. The

possibility that Lorentz- and CPT-violating signals from this

theory may be observable at energies attainable today led to

the development of the standard-model extension !4", which
is a general theory based on the standard model but allowing

for violations of Lorentz and CPT symmetry !5". The addi-
tional terms must be small because the usual standard model

agrees well with experiment. They may originate from spon-

taneous symmetry breaking in the fundamental theory !6".
The standard-model extension can be defined as the usual

standard-model Lagrangian plus all possible additional

Lorentz- and CPT-violating terms involving standard-model

fields that maintain invariance under Lorentz transformations

of the observer’s inertial frame. This invariance ensures that

the physics is independent of the choice of coordinates. The

Lorentz violation is associated with rotations and boosts of

particles or localized field configurations in a fixed observer

inertial frame.

Many of the detailed investigations of the standard-model

extension have been performed under the simplifying as-

sumption that the additional Lorentz- and CPT-violating

terms preserve the SU(3)!SU(2)!U(1) local gauge sym-
metry of the usual standard model. Another widely adopted

simplifying assumption is that the coefficients for Lorentz

violation are independent of position. This implies the viola-

tion is restricted to the Lorentz symmetry instead of the full

Poincaré symmetry and has several useful consequences for

experiment, including the conservation of energy and mo-

mentum. It is also often convenient to restrict attention to the

renormalizable sector of the theory, since this is expected to

dominate the physics at low energies. However, nonrenor-

malizable terms are known to play an important role at

higher energies !21".
Extracting terms involving the photon fields from the

standard-model extension yields a Lorentz- and

CPT-violating extension of QED !4". The fermion sector of
this theory has been widely studied. Here, we focus attention

on the pure-photon sector and limit attention to the renormal-

izable terms, which involve operators of mass dimension

four or less. The relevant Lagrangian is !4"

L"#
1

4
F#$F

#$$
1

2
%kAF&'(')#$A

)F#$

#
1

4
%kF&')#$F

')F#$, %1&

where F#$*+#A$#+$A# . This theory maintains the usual

U%1& gauge invariance under the transformations qA#
→qA#$+#, . The Lagrangian contains the standard Max-
well term and two additional Lorentz-violating terms. The

first of these extra terms is CPT odd, and its coefficient

(kAF)
' has dimensions of mass. The other is CPT even. Its

coefficient (kF)')#$ is dimensionless and has the symmetries

of the Riemann tensor and a vanishing double trace, which

implies a total of 19 independent components.

The CPT-odd term has received much attention in the

literature !22". This term provides negative contributions to

the canonical energy and therefore is a potential source of

instability. One solution is to set the coefficient to zero,

(kAF)
'"0. This is theoretically consistent with radiative

corrections in the standard-model extension and is well sup-

ported experimentally: stringent constraints on kAF have

been set by studying the polarization of radiation from dis-

tant radio galaxies !14".
In contrast, much less is known about the CPT-even co-

efficient kF . Theoretical studies show that it provides posi-

tive contributions to the canonical energy and that it is radia-

tively induced from the fermion sector in the standard-model

extension !4,23". Constraints on some components have re-
cently been obtained from optical spectropolarimetry of cos-

mologically distant sources !15". In the present work, we
focus on the experimental implications of this CPT-even

term. The coefficient (kAF)
' is set to zero for the analysis.

The equations of motion from Lagrangian %1& are

+-F#
-$%kF&#-./+-F./"0. %2&

These are modified source-free inhomogeneous Maxwell

equations. The homogeneous Maxwell equations,

+#F̃
#$*

1

2
(#$')+#F')"0, %3&

remain unchanged.

Although it lies beyond our present scope, the techniques

presented here and the results obtained can be generalized to

the nonrenormalizable sector. The nonrenormalizable terms

can be classified according to their mass dimension. The di-

mensions of the corresponding coefficients are inverse pow-

ers of mass, and it is plausible that these coefficients are

suppressed by corresponding powers of the Planck scale.

Terms of this type appear in various special Lorentz-

violating theories, including noncommutative field theories

incorporating QED !24". Indeed, any coordinate-independent
theory with a photon sector containing nonrenormalizable

Lorentz-violating terms must be a subset of the standard-

model extension. It would be interesting to provide a detailed

study of the nonrenormalizable terms in the Lorentz-

violating electrodynamics and their experimental signals.

B. Analogy and definitions

A useful analogy exists between the Lorentz-violating

electrodynamics in vacuo and the conventional situation in

homogeneous anisotropic media !4". The idea is to define

fields D! and H! by the six-dimensional matrix equation

! D!
H!
" "! 1$'DE 'DB

'HE 1$'HB
" ! E!
B!
" , %4&

V. ALAN KOSTELECKÝ AND MATTHEW MEWES PHYSICAL REVIEW D 66, 056005 %2002&

056005-2

L = − 1
4FµνFµν − 1

4 (kF )µνλσFµνFλσwhere E! and B! are the electric and magnetic fields obtained
from solving the modified Maxwell equations !2". The 3
!3 matrices #DE , #HB , #DB , and #HE are defined by

!#DE" jk"#2!kF"0 j0k,

!#HB" jk"
1

2
$ jpq$krs!kF"pqrs,

!#DB" jk"#!#HE"k j"!kF"0 jpq$kpq.
!5"

The double-trace condition on (kF)#%&' translates to the

tracelessness of (#DE$#HB), while (kF)#[%&']"0 implies
the tracelessness of #DB"#(#HE)

T. This leaves #DE and

#HB with eleven independent elements and the matrix #DB

"#(#HE)
T with eight, which together represent the 19 in-

dependent components of kF . Note also that #DE and #HB

are parity even, while #DB"#(#HE)
T is parity odd.

With these definitions, the modified Maxwell equations

!2", !3" take the familiar form

(! !H! #)0D! "0, (! •D! "0,

(! !E! $)0B! "0, (! •B! "0. !6"

As a consequence, many results from conventional electro-

dynamics in anisotropic media also hold for this Lorentz-

violating theory. For example, the energy-momentum tensor

takes the standard form in terms of E! , B! , D! and H! . This
implies the usual Poynting theorem, which can be applied in

conjunction with the symmetries of the matrices in Eq. !4" to
show that the vacuum is lossless.

For the applications to be addressed in later sections, it is

convenient to introduce the following decomposition of

(kF)#%&' coefficients:

! #̃e$" jk"
1

2
!#DE$#HB" jk,

! #̃e#" jk"
1

2
!#DE##HB" jk#

1

3
* jk!#DE" ll,

! #̃o$" jk"
1

2
!#DB$#HE" jk,

! #̃o#" jk"
1

2
!#DB##HE" jk,

#̃ tr"
1

3
!#DE" ll. !7"

The first four of these equations define traceless 3!3 matri-
ces, while the last defines a single coefficient. All parity-even

coefficients are contained in #̃e$ , #̃e# and #̃ tr , while all
parity-odd coefficients are in #̃o$ and #̃o# . The matrix #̃o$

is antisymmetric while the other three are symmetric.

The form of this decomposition helps in determining the

portion of the parameter space to which experiments are sen-

sitive and how different experiments might overlap. For ex-

ample, typical laboratory experiments with electromagnetic

cavities search for rotation-violating parity-even observables.

The sensitivity of such experiments is therefore expected to

be dominantly to the ten rotation-violating parity-even coef-

ficients #̃e$ and #̃e# . For those observables depending at

leading order on the velocity, the eight coefficients #̃o$ and

#̃o# can be expected to play a role. Finally, at second order

in the velocity one can expect the sole rotation-invariant

quantity #̃ tr to affect measurements. These considerations are
confirmed by the results of the detailed analysis in the sec-

tions below.

As another example of the use of the decomposition !7",
recall that birefringence is known to depend on ten linearly

independent combinations of the components of kF , which

can be chosen as +15,

ka"+!kF"0213, !kF"0123, !kF"0202#!kF"1313,

!kF"0303#!kF"1212, !kF"0102$!kF"1323,

!kF"0103#!kF"1223, !kF"0203$!kF"1213,

!kF"0112$!kF"0323, !kF"0113#!kF"0223,

!kF"0212#!kF"0313]. !8"

Relating these to the #̃ matrices, we find

! #̃e$" jk"#! #!k3$k4" k5 k6

k5 k3 k7

k6 k7 k4
" ,

! #̃o#" jk"! 2k2 #k9 k8

#k9 #2k1 k10

k8 k10 2!k1#k2"
" . !9"

In this way, we can see directly that birefringence is con-

trolled by the matrices #̃e$ and #̃o# .

In terms of the # matrices defined in Eq. !5", and assum-
ing as before that (kAF)

-"0, the Lagrangian !1" becomes

L"
1

2
!E! 2#B! 2"$

1

2
E! •!#DE"•E! #

1

2
B! •!#HB"•B!

$E! •!#DB"•B! . !10"

Similarly, using instead the #̃ matrices defined in Eq. !7", we
find

L"
1

2
+!1$#̃ tr"E!

2#!1##̃ tr"B!
2,$

1

2
E! •! #̃e$$#̃e#"•E!

#
1

2
B! •! #̃e$##̃e#"•B! $E! •! #̃o$$#̃o#"•B! . !11"
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The first four of these equations define traceless 3!3 matri-
ces, while the last defines a single coefficient. All parity-even

coefficients are contained in #̃e$ , #̃e# and #̃ tr , while all
parity-odd coefficients are in #̃o$ and #̃o# . The matrix #̃o$

is antisymmetric while the other three are symmetric.

The form of this decomposition helps in determining the

portion of the parameter space to which experiments are sen-

sitive and how different experiments might overlap. For ex-

ample, typical laboratory experiments with electromagnetic

cavities search for rotation-violating parity-even observables.

The sensitivity of such experiments is therefore expected to

be dominantly to the ten rotation-violating parity-even coef-

ficients #̃e$ and #̃e# . For those observables depending at

leading order on the velocity, the eight coefficients #̃o$ and

#̃o# can be expected to play a role. Finally, at second order

in the velocity one can expect the sole rotation-invariant

quantity #̃ tr to affect measurements. These considerations are
confirmed by the results of the detailed analysis in the sec-

tions below.

As another example of the use of the decomposition !7",
recall that birefringence is known to depend on ten linearly

independent combinations of the components of kF , which

can be chosen as +15,
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In this way, we can see directly that birefringence is con-
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In terms of the # matrices defined in Eq. !5", and assum-
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is antisymmetric while the other three are symmetric.
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ample, typical laboratory experiments with electromagnetic

cavities search for rotation-violating parity-even observables.
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where E! and B! are the electric and magnetic fields obtained
from solving the modified Maxwell equations !2". The 3
!3 matrices #DE , #HB , #DB , and #HE are defined by
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The double-trace condition on (kF)#%&' translates to the

tracelessness of (#DE$#HB), while (kF)#[%&']"0 implies
the tracelessness of #DB"#(#HE)

T. This leaves #DE and

#HB with eleven independent elements and the matrix #DB

"#(#HE)
T with eight, which together represent the 19 in-

dependent components of kF . Note also that #DE and #HB

are parity even, while #DB"#(#HE)
T is parity odd.

With these definitions, the modified Maxwell equations

!2", !3" take the familiar form

(! !H! #)0D! "0, (! •D! "0,

(! !E! $)0B! "0, (! •B! "0. !6"

As a consequence, many results from conventional electro-

dynamics in anisotropic media also hold for this Lorentz-

violating theory. For example, the energy-momentum tensor

takes the standard form in terms of E! , B! , D! and H! . This
implies the usual Poynting theorem, which can be applied in

conjunction with the symmetries of the matrices in Eq. !4" to
show that the vacuum is lossless.

For the applications to be addressed in later sections, it is

convenient to introduce the following decomposition of

(kF)#%&' coefficients:
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The first four of these equations define traceless 3!3 matri-
ces, while the last defines a single coefficient. All parity-even

coefficients are contained in #̃e$ , #̃e# and #̃ tr , while all
parity-odd coefficients are in #̃o$ and #̃o# . The matrix #̃o$

is antisymmetric while the other three are symmetric.

The form of this decomposition helps in determining the

portion of the parameter space to which experiments are sen-

sitive and how different experiments might overlap. For ex-

ample, typical laboratory experiments with electromagnetic

cavities search for rotation-violating parity-even observables.

The sensitivity of such experiments is therefore expected to

be dominantly to the ten rotation-violating parity-even coef-

ficients #̃e$ and #̃e# . For those observables depending at

leading order on the velocity, the eight coefficients #̃o$ and

#̃o# can be expected to play a role. Finally, at second order

in the velocity one can expect the sole rotation-invariant

quantity #̃ tr to affect measurements. These considerations are
confirmed by the results of the detailed analysis in the sec-

tions below.

As another example of the use of the decomposition !7",
recall that birefringence is known to depend on ten linearly

independent combinations of the components of kF , which

can be chosen as +15,
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" ,
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In this way, we can see directly that birefringence is con-

trolled by the matrices #̃e$ and #̃o# .

In terms of the # matrices defined in Eq. !5", and assum-
ing as before that (kAF)

-"0, the Lagrangian !1" becomes
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Define e(o): parity even (odd)
+(−): boost (in)dependent
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Rotating optical cavity experiment testing Lorentz invariance at the 10−17 level
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2 ZARM, Universität Bremen, Am Fallturm 1, 28359 Bremen
(Dated: February 5, 2010)

We present an improved laboratory test of Lorentz invariance in electrodynamics by testing the
isotropy of the speed of light. Our measurement compares the resonance frequencies of two or-
thogonal optical resonators that are implemented in a single block of fused silica and are rotated
continuously on a precision air bearing turntable. An analysis of data recorded over the course of
one year sets a limit on an anisotropy of the speed of light of ∆c/c ∼ 1 × 10−17. This constitutes
the most accurate laboratory test of the isotropy of c to date and allows to constrain parameters of
a Lorentz violating extension of the standard model of particle physics down to a level of 10−17.

The theory of special relativity formulated in 1905 [2]
revealed Lorentz invariance as the universal symmetry of
local space-time, rather than a symmetry of Maxwell’s
equations in electrodynamics alone. This striking insight
was drawn from two postulates: (i) the speed of light
in vacuum is the same for all observers independent of
their state of motion, and (ii) the laws of physics are the
same in any inertial reference frame. Today, local Lorentz
invariance constitutes an integral part of the standard
model of particle physics, as well as the standard theory
of gravity, general relativity. Still, there have been claims
that a violation of Lorentz invariance might arise within
a yet to be formulated theory of quantum gravity [3–8].
Given a lack of quantitative predictions, the hope is to
reveal a tiny signature of such a violation by pushing test
experiments for Lorentz invariance across the board. An
overview of recent such experiments can be found in [9].

Previous measurements testing the isotropy of the
speed of light, often referred to as modern Michelson-
Morley experiments [10], have compared the resonance
frequencies of optical [11–14] or microwave [1, 15] cav-
ities, which were either actively rotated on a turntable
or relied solely on Earth’s rotation. The most precise of
these have tested the isotropy of c at an accuracy of a
few parts in 1016 limited by relative resonator frequency
stability.

The experiment presented here improves on this by one
order of magnitude, based on an optimized cavity design
and rotation on a precision turntable that allows to mini-
mize systematic effects. The basic principle is depicted in
Figure 1. At the core of the experiment are two crossed
optical Fabry-Pérot resonators. We compare their res-
onance frequencies by stabilizing two Nd:YAG lasers to
these cavities and taking a beat note measurement. The
resonance frequency ν of a linear Fabry-Pérot cavity de-
pends on the speed of light c along its optical axes as
given by

ν = mc/2L (1)

where m is an integer number and L is the length of the
resonator. Thus, to detect an anisotropy of the speed of
light ∆c = cx − cy we continuously rotate the setup and
look for a modulation of the beat frequency ∆ν. Since
the light in the cavities travels in both directions and

c refers to the two-way speed of light, such an isotropy
violation indicating modulation would occur at twice the
rotation rate.
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FIG. 1: Left: High-finesse fused silica resonators used in this
experiment. Right: Basic principle of the experiment. The
frequencies of two lasers, each stabilized to one of two or-
thogonal cavities, are compared during active rotation of the
setup. (Photograph by E. Fesseler)

I. THE EXPERIMENT

The experiment applies a pair of crossed optical high-
finesse resonators implemented in a single block of fused
silica (Figure 1). This spacer block is a 55mm× 55mm×
35mm cuboid with centered perpendicular bore holes of
10mm diameter along each axis. Four fused silica mir-
ror substrates coated with a high-reflectivity dielectric
coating at λ = 1064 nm are optically contacted to ei-
ther side. The length of these two crossed optical res-
onators is matched to better than 2µm. The finesse of
each resonator (TEM00 mode) is 380 000, resulting in a
linewidth of 7 kHz. Two Nd:YAG lasers at λ = 1064 nm
are stabilized to these resonators using a modified Pound-
Drever-Hall method [16]. Tuning and modulation of the
laser frequency is achieved with piezo electric actuators
attached to the laser crystal. Mechanical resonances of
the piezo-electric actuators at fm = 444 kHz and 687 kHz
respectively are used for modulation of the laser frequen-
cies. The light reflected from the cavities is detected and
demodulated at 3fm to generate an error signal. Ther-
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TABLE I: Estimates on photonic SME parameters obtained
from this work (one sigma errors). For comparison the limits
obtained by Stanwix et al. [1] are also given. All values are
×10−17. β⊕ = v⊕/c = 10−4 accounts for Earth’s orbital
boost.

this work Stanwix et al. [1]

κXY
e− -0.31 ± 0.73 29 ± 23

κXZ
e− 0.54 ± 0.70 -69 ± 22

κY Z
e− -0.97 ± 0.74 21 ± 21

κXX
e− − κY Y

e− 0.80 ± 1.27 -50 ± 47

κZZ
e− -0.04 ± 1.73 1430 ± 1790

β⊕κ
XY
o+ -0.14 ± 0.78 -9 ± 26

β⊕κ
XZ
o+ -0.45 ± 0.62 -44 ± 25

β⊕κ
Y Z
o+ -0.34 ± 0.61 - 32 ± 23

B. Analysis in the Mansouri-Sexl framework

We also analyze the data according to the kinematic
test theory of R. Mansouri and R.U. Sexl [23], which
builds on earlier work by H.P Robertson [24]. In this
test theory a preferred frame is assumed in which the
speed of light c is isotropic, usually taken to be the cosmic
microwave background. General, linear transformations,
using three free parameters α,β, δ, transform from this
preferred frame to a frame moving at a velocity v. In the
moving frame an anisotropy of the propagation of light
then takes the form ∆c/c = (β+ δ− 1

2 )v
2/c2 sin2 θ where

θ is the angle between the direction of the propagation
of light and the direction of v. For α = 1

2 ,β = 1
2 , δ = 0,

the generalized transformations reduce to Lorentz trans-
formations and no anisotropy of c is observed.

A derivation of the signal amplitudes of equations (6)
and (7) in the Mansouri-Sexl framework has been given
in [13]. The resulting expressions are given in Table III.

Therein we take the velocity of the laboratory relative
to the CMB as the superposition of the solar system’s
velocity vc = 370 km/s, pointing towards ψ = 100◦ right
ascension and φ = −7◦ declination and the annual mod-
ulation due to Earth’s orbit with v⊕ = 30 km/s.
Simultaneously fitting these expressions to our data

yields a value of (β + δ − 1
2 ) = (4± 8)× 10−12. This is a

factor of 10 more stringent as compared to the value of
(9.4± 8.1)× 10−11 given by Stanwix et al. [1].

III. CONCLUSION

In conclusion, we have set a limit on an anisotropy of
the speed of light at a level of ∆c/c ∼ 1 × 10−17, which
allows us to confirm the validity of Lorentz invariance in
electrodynamics at the 10−17 level. This accuracy has
been obtained with optical resonators that feature a rel-
ative frequency stability of ∆ν/ν0 ∼ 1×10−15 in 1 s. The
final precision could be reached by integrating over more
than 130 000 rotations relying on a careful suppression of
systematic effects caused by the turntable rotation.
Finally, we note that comparable results from a similar
experiment [25] have been reported after submission of
this manuscript.
The relative frequency stability is currently limited by

thermal noise of the cavity mirrors. Thus, in the longer
term it should be possible to improve the relative fre-
quency stability by using cryogenic resonators [11, 26].
Together with a reasonable improvement in the suppres-
sion of systematic effects, this would ultimately allow one
to test for potential violations of Lorentz invariance in
electrodynamics in the ∆c/c ∼ 10−20 regime.
We thank G. Ertl for his support and H. Müller for

valuable discussions. S. H. acknowledges support from
the Studienstiftung des deutschen Volkes.
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Scale of Lorentz violation? (Origin of Lorentz Violation?)

• Doubly Special Relativity (DSP): In addition to speed of light being boost invariant 
there is an invariant length scale, the Planck Length, or an invariant energy, the Planck 
Mass-Scale 

• Non-commutative spacetime: A quantum mechanical theory, it assumes [xμ , xν]= θμν. 
The parameter θμν is dimensionfull and sets the scale of Lorentz violation. Again it is 
taken to be (the appropriate power of) the Planck Length. 

• Rainbow (energy dependent) metric, κ-Minkowski, Hopf-algebras, spacetime foam, etc

F : P → P P = {(π0,"π)} = Linear, unphysicalP = {(p0, !p)} = Physical

p′ = F−1(ΛF (p))

How to construct a DSP: non-linear realization of the Lorentz group

So take F (pP ) = 0(∞) where pP is a special momentum, eg,  with p0 = κ

position space realization of the MS model, which we assume to be commutative, but

depends only on the deformed dispersion relation.

The result of our investigation is that the correct nonrelativistic limit is obtained.

However, the rest energy of the particle does not coincide with its inertial mass, but
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High energy parametrization: 

Energy dependent speed of light! 
Limits from  Gamma-Ray-Bursts

An important point is that, as far as time-of-flight experi-
ments are concerned, the NLSB and DSR scenarios can
produce exactly the same leading-order effects. Thus, to
distinguish them one must take into account experiments
where either one or both of the modifications in trans-
formation laws and energy-momentum conservation arise,
since these are modified in DSR, but not in NLSB.
Observations where this is the case are tests of threshold
effects such as the GZK threshold predicted [5] for cosmic-
ray protons from their scattering off the cosmological
microwave background. Similar predictions [6] hold for
infrared photons scattering off of the infrared background.
Because DSR maintains the principle of relativity of iner-
tial frames, the interactions involved can always be eval-
uated in the center-of-mass frame, where the energies
coming into the deformations from special relativity are
smaller. Consequently, DSR makes, up to unobservably
small corrections [11], the same predictions for threshold
experiments as ordinary special relativity. However, both
Lorentz symmetry breaking scenarios, NLSB and LSB-
EFT, predict, for suitable choices of parameters, sizable
modifications to these thresholds.

To the extent that recent observations by Auger confirm
the standard special relativistic predictions for the GZK
cutoff, the Lorentz symmetry breaking scenarios are dis-
favored, while the DSR scenario remains unaffected. The
only reservation might be that the GZK analysis applies to
protons, and as this is the only significant constraint for the
NLSB scenario, it is experimentally possible that the pho-
ton and proton dispersions are governed by independent
parameters.

III. FIRST OBSERVATIONS FROM FERMI
RELEVANT FOR QUANTUM GRAVITY

PHENOMENOLOGY

At present there are reports [15–17] of !200 GRBs ob-
served at low energies by Fermi’s Gamma-ray Burst Moni-
tor (GBM), and for eight of these GRBs there are reports of
associated observations by Fermi’s Large Area Telescope
(LAT), with photons with energies on the order of or
greater than 1 GeV. With the exception of GRB080916C,
which was thoroughly described in Ref. [15], most of the
information on these bursts is presently only publicly
available in resources, such as GCNs, that are not custom-
arily in use in the quantum gravity community, which is
part of the target readership of this paper. Hence, for the
convenience of theorists we summarize in Appendix A the
information publicly available [15–17,50–60] on these
eight GRBs. We also summarize the information in Table I.

A. Discussion of features of the bursts

It is clear from the above table that there is a growing
wealth of information being gathered by Fermi which will
be relevant for testing the quantum gravity phenomeno-
logical scenarios we discussed above. It would be prema-

ture to draw rigorous conclusions at this stage, before most
of the data have been analyzed and the results published by
the Fermi Collaboration. Our aim here is not to compete
with the work of observers; instead we want only to draw
attention to the potential inherent in what is publicly
known about the growing catalogue of events to resolve a
question at the heart of fundamental theoretical research.
To this end we now briefly discuss some first conclusions
which can be drawn from the public reports of these events.

1. GRB080916C

Let us start by briefly summarizing the observation of
GRB080916C, as reported by the Fermi Collaboration in
Ref. [15]. For GRB080916C Fermi detected [15] !200
high-energy (> 100 MeV) photons, allowing time-
resolved spectral studies. And there was a significant delay
of ’ 4:5 s between the onset of>100 MeV and!100 keV
radiation. The most energetic photon, with an energy of "
13:2 GeV, was detected by the LAT 16.5 s after the GBM
trigger. Also noteworthy is the fact that the time-resolved
spectra for GRB080916C are well fitted [15,61] by an
empirical broken-power-law function (the so-called Band
function [62]) in the entire energy range, from 8 keV to
!10 GeV, leading to the conjecture that a single emission
mechanismmight have to describe what has been seen over
this broad range of energies. Moreover, the >100 MeV
emission lasts at least 1400 s, while photons with
<100 MeV are not detected past 200 s. And for us it is
particularly significant that the time when the >100 MeV
emission is detected ( ’ 4:5 s after the first<5 MeV pulse)
roughly coincides with the onset of a second <5 MeV
pulse, but most of the emission in this second
(½<5 MeV$ % ½>100 MeV$) pulse shifts [63] towards later
times as higher energies are considered.

2. GRB081024B and GRB090510

Information that is somewhat complementary to the
information provided by GRB080916C could come from

TABLE I. GRBs seen by Fermi LAT with photon energies *
1 GeV. tLATi is the time after the initial burst that high-energy
photons seen by the LAT begin. tLATf is the time after the initial

burst that the high-energy signals extend to. For references see
the Appendix.

GRB Redshift Duration countsjLAT Emax tLATi tLATf

080916C 4.35 Long Strong 13 GeV 4.5 s >103 s
081024B Short 3 GeV 0.2 s
090510 0.9 Short Strong >1 GeV <1 s * 60 s
090328 0.7 Long >1 GeV " 900 s
090323 4 Long Strong >1 GeV >103 s
090217 Long !1 s " 20 s
080825C Long Weak 0.6 GeV 3 s >40 s
081215A Weak 0.2 GeV

PROSPECTS FOR CONSTRAINING QUANTUM GRAVITY . . . PHYSICAL REVIEW D 80, 084017 (2009)

084017-5

Amelino-Camelia & L. Smolin, PRD 80, 084017 (2009) 

Fermi LT data, from reference above

Analysis gives: 

κ > 1.3× 1018GeV ≈ 0.10MPlanck

∆t ≈ (∆E/κ)L

E ≈ p +
m2

p
− 1

2
E2

κ
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Fermi LT data, from reference above

Analysis gives: 

κ > 1.3× 1018GeV ≈ 0.10MPlanck

∆t ≈ (∆E/κ)L

E ≈ p +
m2

p
− 1

2
E2

κ

M. Coraddu & S. Mignemi, arXiv: 0911.4241

No QFT yet. Instead consider generalized Klein-Gordon
Determine energies 

and expanding it for p2 ! c2m2. This yields

E =
√

c2p2 + c4m2 ∼ c2m +
p2

2m
+ . . . (5)

The first term on the right hand side corresponds to the rest energy, while the second

reproduces the nonrelativistic kinetic energy.

In the MS model, one assumes instead the deformed dispersion relation (3). Notice

that, contrary to special relativity , the dispersion relation is not invariant for E → −E.

Solving (3) for the energy, one obtains

E =
− c4m2

κ
±

√

(

1 − c4m2

κ2

)

c2p2 + c4m2

1 − c4m2/κ2
. (6)

The correct sign for a positive-energy particle is the upper one. Expanding as above, yields

E ∼
c2m

1 + c2m
κ

+
p2

2m
+ . . . (7)

It results that the classical nonrelativistic limit of the MS model coincides with that of

special relativity, except that the rest energy is given by

m+ =
m

1 + c2m
κ

, (8)

and differs from the inertial mass m. The effect of the deformed dispersion relation (3) in

this limit is therefore simply a renormalization of the rest energy of the particle. It is also

interesting to note that the Casimir mass m, whose physical significance was not clear in

the earlier literature, can be identified with the inertial mass.

If one considers the lower sign in (6), one has at first order,

E ∼ −

(

c2m

1 − c2m
κ

+
p2

2m
+ . . .

)

. (9)

The mass m− = −m/(1 − c2m/κ) will be identified with the rest mass of the negative

energy states in the Klein-Gordon equation.

4

do NR expansion and interpret ± as that for a particle/hole (ie, antiparticle)

m± = ± m

1± c2m
κ

Bound from K0:
B. Grinstein, FPCP 2010

κ >
2c2m

(∆m/m)max, exp
≈ 1.1× 1018 GeV

(coincidentally same as above!)
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Acausality and Nonlocality

• Metaphysical causality holds
• Modern view

• Special Relativity
• Locality

• Drop locality: Grandfather paradox?
• QM: Schrodinger equation

• Get ψ(x,t) given ψ(x,0).
• Lorentz covariance ⇒ QFT

• Causality in QFT
• Confusion (commutators? analyticity? blah...)
• Schrodinger evolution + Lorentz covariance ⇒ Causality in QFT

• Ah, find examples ...
• Lee-Wick quantization of higher derivative QFT

past

future

Sutra of cause and effect
in the Past and Present
(Kako genzai inga kyō),
Japan,  8 century AD

?

past

future

LSM + !2(D2H)∗(D2H)



15

Weird behavior of LW resonances: acausal or non-local?

T. D. Lee and G. C. Wick, NPB9, 209 (1969).
Coleman, Acausality, in Erice 1969
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particle beam

target

decay of normal resonance

Weird behavior of LW resonances: acausal or non-local?

T. D. Lee and G. C. Wick, NPB9, 209 (1969).
Coleman, Acausality, in Erice 1969
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decay of LW resonance
particle beam

target

decay of normal resonance

Weird behavior of LW resonances: acausal or non-local?

!

α

T. D. Lee and G. C. Wick, NPB9, 209 (1969).
Coleman, Acausality, in Erice 1969
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decay of LW resonance
particle beam

target

decay of normal resonance

Weird behavior of LW resonances: acausal or non-local?

!

α

Better chance experimentally: 
Clockwise Phase shift

CK Lutrus and S H Suck Salk, PRA 39 (1989) 391 

T. D. Lee and G. C. Wick, NPB9, 209 (1969).
Coleman, Acausality, in Erice 1969
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Final remarks

• SM is in great shape
• SM is incomplete

• Explanation for: hierarchy, neutrino mass, dark stuff, baryogenesis...
• Theory of flavor?  Q-gravity? Unification/SUSY?

• Great excitement ahead of us

• The excitement could be greater
• In the “blood” of FPCP to test fundamental principles: what if!
• I do not advocate any of the avenues I described above
• Theory may be garbage, but where to look? 
• Still, understanding nature may require new paradigms
• Conjecture, Intuition, Serendipity ... Discovery!
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