Measurement of ϕ_s

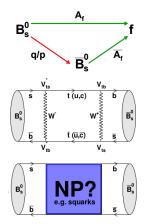
Miriam Lucio, on behalf of the LHCb Collaboration

Rencontres de Physique de la Vallée d'Aoste

February 27, 2018

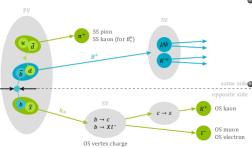
イロト イポト イヨト イヨト

Introduction


- 3 types of \mathcal{CP} violation:
 - Direct CP violation $(A_f \neq \overline{A}_f)$
 - CP violation in mixing (arg $\left|\frac{q}{p}\right| \neq 0$)
 - \mathcal{CP} violation in the interference between mixing an decay (ϕ_s)

$$\phi_s = -\arg(\lambda_f), \lambda_f = \eta_f \frac{g}{\rho} \frac{\bar{A}_f}{\bar{A}_f}$$

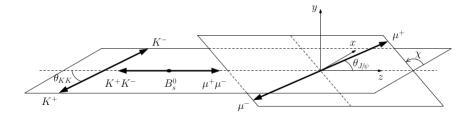
 $\eta_f = 1$ for CP-even states, -1 for CP-odd states


Today's menu from LHCb:

- $B^0_s o J/\psi K^+ K^-$ (Run 1) [PRL 114, 041801 (2015)]
- $B^0_s o (K^+\pi^-)(K^-\pi^+)$ (Run 1) [arXiv:1712.08683]
- $B^0_s
 ightarrow \phi \phi$ (Run 1) [JHEP 10 (2015) 053]
- $\sqrt{s} = 7,8 \mathrm{TeV}$, integrated luminosity of 3.1 fb^{-1}

Flavour-Changing Neutral Currents \Rightarrow loop diagrams

Flavour tagging: identify the initial flavour of the meson


- **Opposite-side tagging:** flavour from $b(\bar{b})$ quark produced in association with the signal $\bar{b}(b)$ quark originating from primary vertex
- same side poate side Skaan Ska

イロト イポト イヨト イヨト

• Effective tagging power: ϵD^2

 \mathcal{D} : dilution factor, $\mathcal{D} = (1 - 2\omega)$, ω : per event mistag probability

• Fits done in several trigger categories

▲ロト ▲圖ト ▲注ト ▲注ト


$B_s^0 \to J/\psi K^+ K^-$ [PRL 114, 041801 (2015)]

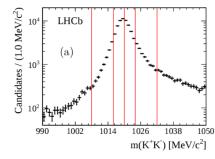
$b \to c \overline{c} s$ transition

• Very precise SM prediction : $\phi_s^{SM} = -2\beta_s$, where $\beta_s = \arg \left[\frac{-V_{ts}V_{tb}^*}{V_{cs}V_{*}^*} \right]^{-1}$

Golden mode $\phi_s^{SM} = -0.0364 \pm 0.0016 ext{ rad} ext{ [PRD 84 (2011) 033005]}$

Also measured by CDF, D0, ATLAS and CMS

¹(assuming no penguin contributions)

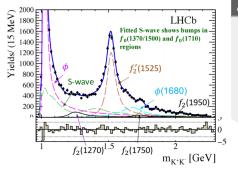

ヘロト スピト メヨト メヨト

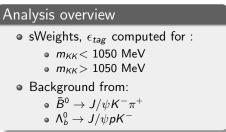
$B_s^0 o J/\psi K^+ K^-$ [PRL 114, 041801 (2015)]

- Observables: $|\lambda|$, Γ_s , $\Delta\Gamma_s$, $|A_{\perp}|^2$, $|A_0|^2$, δ_{\parallel} , δ_{\perp} , ϕ_s , Δm_s
 - ullet In the baseline fit : $|\lambda|$ common to all polarization states, f
 - Checks with different λ_f consistent with previous assumption
- 4 amplitudes : 3 from P-wave for the K^+K^- pair $({\cal A}_0,{\cal A}_\|,{\cal A}_\perp)+1$ from S-wave $({\cal A}_S)$

Analysis overview

- Angular and time acceptance + time resolution effects considered
- $\epsilon D^2 = 3.73 \pm 0.15\%$
- Backgrounds (sWeights): $B^0 \rightarrow J/\psi K^{*0}, \Lambda_b^0 \rightarrow J/\psi p K^-$
- Fit to m(J/ψK⁺K⁻): 2 years×2 trigger categories×6 bins in m(K⁺K⁻)
- 6 C_{SP} factors (coupling between P-wave and S-wave, $\in [0,1]$)




Main systematic source: angular acceptance

イロト イポト イヨト イヨト

$B^0_s ightarrow J/\psi K^+K^-$ high $m(K^+K^-)$ region [Jhep 08 (2017) 037]

- K⁺K⁻ mass spectrum : P-wave φ(1020) resonance + S-wave fraction + D-wave f₂'(1525) resonance ²
- m_{KK} above the ϕ meson to measure ϕ_s , Γ_s , $\Delta\Gamma_s$

イロト イポト イヨト イヨト

• Main systematic source: resonance modelling

²not included the unconfirmed $f_2(1640)$

M. Lucio

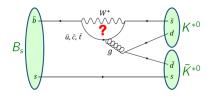
$B_s^0 \rightarrow J/\psi K^+ K^-$

Fit results (Run 1 data)

$$\phi_{s} = -0.058 \pm 0.049 (\text{stat.}) \pm 0.006 (\text{syst.}) \leftarrow \text{low } m_{KK} \text{ range}$$

 $\phi_{s} = -0.010 \pm 0.039 \leftarrow \text{combination with } B_{s}^{0} \rightarrow J/\psi \pi^{+} \pi^{-a}$
 $\phi_{s} = -0.119 \pm 0.107 (\text{stat.}) \pm 0.034 (\text{syst.}) \leftarrow \text{high } m_{KK} \text{ range}$

$$\begin{split} \mathbf{B_s^0} &\rightarrow \mathbf{J}/\psi \mathbf{K^+K^-} \text{ combination:} \\ \phi_s &= -0.025 \pm 0.045(\text{stat.}) \pm 0.008(\text{syst.}) \end{split}$$

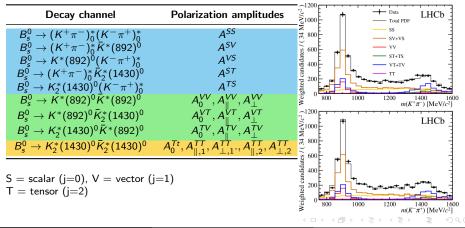

^a[PRL 114 (2015) 041801]

Experiment	$\phi_s[rad]$
CDF (9.6 fb^{-1})	[-0.60,+0.12], 68% CL [PRL 109 (2012) 171802]
D0 (8.0 fb^{-1})	$-0.55^{+0.38}_{-0.36}$ [PRD 85 (2012) 032006]
ATLAS (19.2 fb^{-1})	$-0.090\pm0.078\pm0.041$ [JHEP 08 (2016) 147]
CMS (19.7 ${ m fb}^{-1}$)	$-0.075\pm0.097\pm0.031$ [PLB 757 (2016) 97-120]

LHCb dominates world average

ヘロト スピト メヨト メヨト

- $\bar{b}\to\bar{s}d\bar{d}$ flavour-changing neutral current transition dominated by a penguin diagram
 - Loop also in the decay \Rightarrow more places where to find New Physics contributions
 - New heavy particles could enter the loop, affecting the measurement

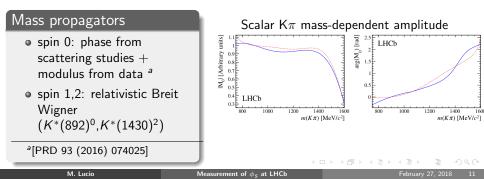


- **First** measurement of the weak phase $\phi_s^{d\bar{d}}$ in $B_s^0 \to (K^+\pi^-)(K^-\pi^+) +$ polarization fractions and strong phases
- Decay first observed in 2011 by LHCb [PLB 709 (2012) 50], updated in 2012 [JHEP 07 (2015) 166]

イロト イポト イヨト イヨト

Full time-dependent and angular analysis in the ${\cal K}\pi$ mass window [750,1600] ${\rm MeV/c^2}$

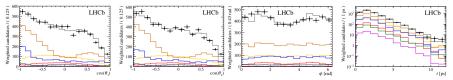
• 9 decay channels + 19 polarization amplitudes



Differential decay rate in a nutshell (B_s^0): (\bar{B}_s^0 : $c_{ij} \rightarrow -c_{ij}, d_{ij} \rightarrow -d_{ij}$)

 $\propto \sum e^{-\Gamma_s t} \left[a_{ij} \cosh\left(\frac{1}{2}\Delta\Gamma_s t\right) + b_{ij} \sinh\left(\frac{1}{2}\Delta\Gamma_s t\right) + c_{ij} \cos\left(\Delta m_s t\right) + d_{ij} \sin\left(\Delta m_s t\right)
ight]$

Where $a_{ij}, b_{ij}, c_{ij}, d_{ij}$ depend on $\eta_{i,j}$, the mixing angle and $A_{i,j}$:


- Angular dependence: spherical harmonics
- Mass dependence: mass propagators + barrier factors (Blatt-Weisskopf functions) + phase space factor

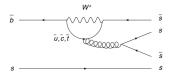
Analysis workflow:

- Event selection
 - $\bullet\,$ Multivariate selection (BDT) for combinatorial background + mass vetoes $+\,$ cuts on Particle Identification variables
 - Peaking backgrounds (B⁰ → (K⁺π⁻)(K⁻π⁺), B⁰_(s) → φ(K⁺π⁻), B⁰ → ρ(K⁺π⁻), Λ_b decays) + partially reconstructed decays and combinatorial background subtracted using sWeights in m(K⁺π⁻K⁻π⁺)
- Acceptance: angular and invariant mass acc. + cubic splines (decay time acc.)
- **Decay time resolution**: analytical convolution; gaussian model, width and per event decay time error linearly related.

• Flavour tagging: $\epsilon D^2 = 5.165 \pm 0.173\%$

Flavour-tagged time-dependent amplitude fit

- Separate datasets for 2011 and 2012 + 2 trigger categories
- High complexity of fit \Rightarrow implemented within **Ipanema** package [arXiv:1706.01420], uses GPU (high speed gain)


Fit results

- 19 polarisation amplitudes measured with highest (first) precision
- $f_L^{VV}=0.208\pm 0.032(stat.)\pm 0.046(syst.)$ (relatively low value, interesting for penguin dynamics)
- $\phi_s^{d\bar{d}} = -0.10 \pm 0.13(\text{stat.}) \pm 0.14(\text{syst.})$, consistent with SM prediction and $B_s^0 \rightarrow \phi \phi$ measurement [JHEP 10 (2015) 053]
- Main systematic source : multi-dimensional acceptance. Expected to decrease increasing the size of simulation sample.

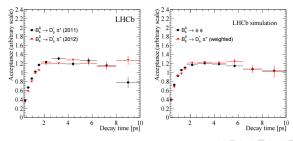
イロト イヨト イヨト イヨト

$B_s^0 \to \phi \phi$ [JHEP 10 (2015) 053]

- FCNC decay, proceeds via $b \rightarrow \bar{s}s\bar{s}$ process \Rightarrow close to 0 in the SM
- First observed in 2005, updated in 2010 [CDF] [PRL 95 (2005) 031801], [CDF Note 10064 (2010)]

 Decay time-dependent measurement to measure \$\phi^{ss\vec{s}}\$ and time-integrated study to determine the triple product asymmetries

Amplitude of the decay:

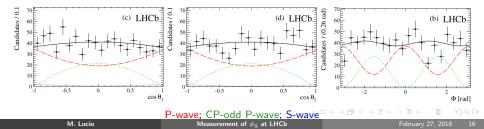

- ϕ close to $f_0(890)$ (S-wave) \Rightarrow VV + VS $(B_s^0 \rightarrow \phi f_0)$ + SS $(B_s^0 \rightarrow f_0 f_0)$
- Angular distribution used to determine the S-wave fraction
- C_{SP} factors to account for the coupling between the P-wave (Breit-Wigner) and S-wave (flat model) line shapes

$B_s^0 \to \phi \phi$ [JHEP 10 (2015) 053]

Analysis workflow:

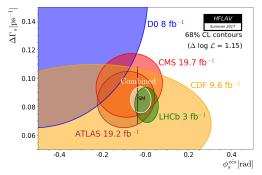
- Simulation : P-wave simulated (small S-wave fraction)
- Peaking backgrounds:
 - $B^+ \to \phi K^+$, $B^0_{(s)} \to \phi \pi^+ \pi^-$: negligible contributions
 - Expected 101 ± 35 events from $\Lambda_b^0 \to \phi K^- p$, 25 ± 1 from $B^0 \to \phi K^* (892)^0$ and ~ 1 from $B_s^0 \to \phi K^* (892)^0$
- Flavour tagging: $\epsilon D_{2011}^2 = 3.17 \pm 0.26\%$, $\epsilon D_{2012}^2 = 3.04 \pm 0.24\%$
- Angular acceptance: as for $B_s^0 \to (K^+\pi^-)(K^-\pi^+)$

Time acceptance: data-driven, B⁰_s → D⁺_s(→ K⁺K⁻π⁺)π⁻ as control mode (τ(D⁺_s) < 1ps):



$B_s^0 \to \phi \phi$ [JHEP 10 (2015) 053]

- 3 polarisation amplitudes + strong phases + direct CP-violation parameter
- 4 trigger categories + 3 mass regions of $m^1_{\mathcal{K}^+\mathcal{K}^-}$ vs $m^2_{\mathcal{K}^+\mathcal{K}^-}$
- Decay width (Γ_s) and decay width difference ($\Delta\Gamma_s$) taken from $B_s^0 \rightarrow J/\Psi K^+ K^-, B_s^0 \rightarrow J/\Psi \pi^+ \pi^-$ as Gaussian constraints


Fit results (Run 1 data)

- $\phi_s^{ss\bar{s}} = -0.17 \pm 0.15(stat.) \pm 0.03(syst.)$, consistent with SM [PRL 89 (2002) 231803]
- Largest systematic source : decay time and angular acceptances.

Conclusions

 $\begin{array}{l} \phi_s^{ss\bar{s}} = -0.17 \pm 0.15(\text{stat.}) \pm 0.03(\text{syst.}) \ ^3 \leftarrow \text{ world's best measurement} \\ \phi_s^{d\bar{d}} = -0.10 \pm 0.13(\text{stat.}) \pm 0.14(\text{syst.}) \ ^4 \\ \phi_s^{c\bar{c}s} = -0.025 \pm 0.045(\text{stat.}) \pm 0.008(\text{syst.}) \ ^5 \leftarrow \text{ dominates world average} \end{array}$

Measurements consistent with SM, but still a lot of room for NP!

```
<sup>3</sup>[PRL 114, 041801 (2015)]

<sup>4</sup>[arXiv:1712.08683, submitted to JHEP]

<sup>5</sup>[JHEP 10 (2015) 053]
```

```
M. Lucio
```

イロト イポト イヨト イヨン

Thanks for your attention!

M. Lucio

イロト イヨト イヨト イヨ