

Search for t+b resonances in the leptonic final state with the CMS experiment

David Sperka (Boston University)

LaThuile 2013, XVII Rencontres de Physique de La Vallée d'Aoste

On behalf of the CMS collaboration

Outline

- Motivation
- Method
- Previous results
- Data analysis
 - → Event selection
 - → Mass reconstruction
 - → Systematic Uncertainties
- Mass limits for generalized coupling strengths
- Cross section limits for right-handed W'
 - → BDT analysis
- Conclusion / Outlook

Motivation

- The CMS and ATLAS collaborations have observed a new boson with mass ~125 GeV
- Fundamental scalar particles such as the Standard Model Higgs receive divergent corrections to their mass from other SM particles:

• Restricting fine tuning to the 10% level requires new physics which cuts off these divergent contributions [1]:

$$\Lambda_{top} \lesssim 2 \text{ TeV}$$

$$\Lambda_{gauge} \lesssim 5 \text{ TeV}$$

$$\Lambda_{Higgs} \lesssim 10 \text{ TeV}$$

Motivation

- Many new physics models which explain the light Higgs mass introduce new particles which cancel the divergences of the top, gauge, and self-coupling loops
- Our search focuses on a heavy new charged gauge boson, referred to as a W', which is predicted by many theories, for example:

- Little Higgs [1]
- Extra Dimensions [2,3]
- Extended Technicolor [4]
- Left-Right Symmetry [5]
- We perform a model independent search for a W' boson which to decays to a top+bottom quark pair

Method

• The most general, lowest-order Lagrangian which describes the W' coupling to fermions can be written as [6]: Z. Sullivan, Phys. Rev. D 66 (2002) 075011

$$\mathcal{L} = \frac{V_{f_i f_j}}{2\sqrt{2}} g_w \overline{f}_i \gamma_\mu \left(a_{f_i f_j}^R (1 + \gamma^5) + a_{f_i f_j}^L (1 - \gamma^5) \right)^\mu f_j + \text{H.c.}$$

- Both left- and right-handed couplings are allowed, and if the lefthanded coupling is non-zero, the W' will interfere with the SM W
- We focus on the top+bottom quark decay mode, with a leptonic (electron/muon) decay of the W boson from the top decay
 - Complimentary to leptonic channel
 - Small QCD background compared to light quark decays
 - Extremely important if leptonic channel is suppressed, or coupling to third generation is enhanced [7]

Method

- The full effect of interference can be taken into account by simulating three different signal samples [8]:
 - "SM+W'_L" i.e. $a_{ud}^L = a_{cs}^L = a_{tb}^L = 1$, $a_{ud}^R = a_{cs}^R = a_{tb}^R = 0$
 - "W'_R" i.e right-handed W' with $a_{ud}^L = a_{cs}^L = a_{tb}^L = 0$, $a_{ud}^R = a_{cs}^R = a_{tb}^R = 1$
 - "SM+W'_{mixed}" i.e. $a_{ud}^L = a_{cs}^L = a_{tb}^L = 1$, $a_{ud}^R = a_{cs}^R = a_{tb}^R = 1$
- We search for a W' with an arbitrary combination of left- and right-handed couplings
 - Set limits on the mass for a given combination of couplings
 - Also set limits on the cross section for a W' with only righthanded couplings

Previous Results (Other Experiments)

 Previous results have been presented by the D0 collaboration
 [9] including the effect of interference, and a mass limit of 890 GeV for right- handed W'

 Search by ATLAS with 1.04 fb-1 set a limit of 1.13 TeV for a righthanded W' [10]

Event Selection

Search has been performed using 5.0 fb-1 of 7 TeV data

[11] CMS Collaboration, Phys. Lett. B (2013) 718 (EXO-12-001)

- 1 tight electron (muon) with Pt > 35(32)
 GeV, and
 |n| < 2.5(2.1)
- 2 jets with Pt > 100 GeV and > 40 GeV
 - At least one of the jets is "tagged" as a b-jet
- Missing transverse energy > 20(35) GeV
- Same event selection is applied to samples of simulated events to estimate the backgrounds
 - SM V+jets
 - SM top pair production+single top
- Corrections derived using control regions in data are applied to the MC to account for different reconstruction and identification efficiencies
 - The fraction of W+heavy flavor jets
 - Shape of M(tb) in data vs. W+jets MC

CMS Experiment at LHC, CERN
Data recorded: Mon Sep 19 02:53:21 2011 CDT
Run/Event: 176702 / 1256852370

Lumi section: 766

Mass Reconstruction

- The neutrino z momentum is determined by using the W-mass constraint
- W candidates are combined with the "best" jet in the event, which gives the closest reconstructed top mass
- M(tb) found by combining top candidate with the highest pT remaining jet
- For the final generalized couplings analysis, additional cuts are made to further reduce the background and enhance the signal:

130 < m(top) < 210 GeV pt(top) > 75 GeV pt(j1,j2) > 100 GeV

Systematic Uncertainties

Normalization

- Luminosity (2.2%)
- Trigger (3%) and ID (3%) efficiencies
- Top pair cross section (15%)

• Shape

- Jet Energy Scale
- Jet Energy Resolution
- B-tagging efficiency and mistag rate
- W+jets heavy flavor fraction
- Jet parton matching
- Factorization scale
- W+jets 0-tag Shape data vs simulation

Shape systematic uncertainties are evaluated by raising or lower the corresponding parameter by 1σ and repeating the analysis

Generalized Couplings Analysis

- The cross section for pp \to W/W' \to tb with arbitrary left- and right-handed W' couplings can be written as:
- For each point determine the mass limit

$$\sigma = \sigma_{SM} + a_{ud}^{L} a_{tb}^{L} (\sigma_{L} - \sigma_{R} - \sigma_{SM})$$

$$+ \left(\left(a_{ud}^{L} a_{tb}^{L} \right)^{2} + \left(a_{ud}^{R} a_{tb}^{R} \right)^{2} \right) (\sigma_{R})$$

$$+ \frac{1}{2} \left(\left(a_{ud}^{L} a_{tb}^{R} \right)^{2} + \left(a_{ud}^{R} a_{tb}^{L} \right)^{2} \right) (\sigma_{LR} - \sigma_{L} - \sigma_{R})$$

Right-handed W' analysis using BDT

- For a W' with right- handed couplings, we perform a multivariate analysis with Boosted Decision Trees to obtain the best sensitivity
- Variables are chosen to optimize sensitivity and minimize correlation, and are checked in control regions dominated by W+jets (2 jets HT<300 GeV) and top pairs (>3 jets)

Object kinematics	Event kinematics
$\eta(\text{jet1})$	Aplanarity(alljets)
$p_{\mathrm{T}}(\mathrm{jet1})$	Sphericity(alljets)
$\eta(\text{jet2})$	Centrality(alljets)
$p_{T}(jet2)$	M(btag1, btag2, W)
η (jet3)	M(jet1, jet2, W)
$p_{\mathrm{T}}(\mathrm{jet3})$	M(alljets)
$\eta(\text{jet4})$	M(alljets, W)
$\eta({\sf lepton})$	M(W)
$p_{\mathrm{T}}(\mathrm{lightjet})$	$M(alljets, lepton, E_T^{miss})$
$p_{\mathrm{T}}(\mathrm{lepton})$	M(jet1, jet2)
η (notbest1)	$M_T(W)$
$p_{T}(notbest1)$	$p_{T}(jet1, jet2)$
$p_{T}(\text{notbest2})$	$p_{T}(jet1, jet2, W)$
E _T miss	p_z/H_T (alljets)
Top quark reconstruction	Angular correlations
M(W, btag1) ("btag1" top mass)	$\Delta \phi$ (lepton, jet1)
M(W, best1) ("best" top mass)	$\Delta \phi$ (lepton, jet2)
M(W, btag2) ("btag2" top mass)	$\Delta \phi$ (jet1, jet2)
$p_{\mathrm{T}}(W, \mathrm{btag1})$ ("btag1" top p_{T})	cos(best, lepton)besttop
$p_{\mathrm{T}}(W, \mathrm{btag2})$ ("btag2" top p_{T})	cos(light, lepton) _{besttop}
	$\Delta R(\text{jet1},\text{jet2})$

BDT

Invariant mass

Right-handed W' Results

For W' bosons with right-handed couplings, CMS excludes masses below 1.85 TeV

1.51 TeV

1.85 TeV

World's best limit in this decay channel!

1.91 TeV

1.64 TeV

Conclusions/Outlook

D. Duffty and Z. Sullivan, 382 Phys.Rev. D86 (2012) 075018

- CMS has searched for W' bosons decaying into top+bottom quark pairs
 - W' boson with right-handed couplings is excluded below 1.85 TeV
 - Limits at 8 TeV should approach 2 TeV [13]
 - We have also set limits on the W' mass for an arbitrary combination of left- and right-handed coupling strengths
 - First analysis of its kind at the LHC

CMS will also start to explore other topologies with a t+b final state:

Charged Higgs particle H+ in SUSY theories can decay to t+b if it is heavier than the top quark

Stay tuned!

References

- [1] M. Schmaltz, D. Tucker-Smith, Ann. Rev. Nucl. Part. Sci. 55 (2005) 229
- [2] T. Appelquist, H.-C. Cheng, B.A. Dobrescu, Phys. Rev. D 64 (2001) 035002
- [3] H.C. Cheng et al, Phys. Rev. D64 (2001) 065007
- [4] R.S. Chivukula, E.H. Simmons, J. Terning, Phys. Rev. D 53 (1996) 5258
- [5] R.N. Mohapatra and J.C. Pati, Phys. Rev. D11 (1975) 566
- [6] Z. Sullivan, Phys. Rev. D 66 (2002) 075011
- [7] E. Malkawi, T. Tait, and C.P. Yuan, Phys. Lett. B385 (1996) 304
- [8] E.E. Boos et. al, Phys. Atom. Nucl. 69 (2006) 1317
- [9] D0 Collaboration, Phys. Lett. B 699 (2011) 145
- [10] ATLAS Collaboration, Phys. Rev. Lett. 109 (2012) 081801
- [11] CMS Collaboration, Phys. Lett. B (2013) 718
- [12] CMS Collaboration, Phys. Rev. D 84 (2011) 092004
- [13] D. Duffty and Z. Sullivan, 382 Phys.Rev. D86 (2012) 075018