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Who broke electroweak symmetry?

Since LEP we know for a fact fundamental interactions of matter obey
SU(2)× U(1) local symmetry that is however spontaneously broken
(non-linearly realized), as W, Z and fermions have masses

The Question for the LHC is the precise nature of electroweak symmetry
breaking

More rigorously, the question is what stops the growth of the scattering
amplitudes of W and Z bosons:

In the SM (without Higgs) the tree-level amplitude for longitudinally
polarized W’s and Z’s grows with energy, M∼ s/v2

Unitarity requires ReMJ < 1/2 for all partial waves. Perturbative unitarity
is lost at TeV
Something else must enter before that scale!



Options for Electroweak Symmetry Breaking

3 basic possibilities. Unitarity saved by

Non-Perturbative effects in the SM (no concrete framework so far)

Strongly Coupled: composite vectors and/or scalars to WW and WZ

Weakly Coupled: fundamental scalar coupled to WW and ZZ, otherwise
known as the Higgs

...or a combination of the above...

Christophe Grojean Alternatives to the SM Higgs Moriond, 14 March 2011

 what is unitarizing the WW scattering amplitude?

Weak vs. Strong EWSB
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Weakly coupled models Strongly coupled models

prototype: Susy prototype: Technicolor
susy partners ~ 100 GeV

rho meson ~ 1 TeV

other  ways? TeV
QCD

W+ W+

W-W-

W+ W+

W-W-

h0

need new particles to stabilize 

the Higgs mass

bounds on the masses of these particles  

fine-tuning O(1%)

!
resonances needed for unitarization 

generate EW oblique corrections

Ŝ ∼ m2
W

m2
ρ

|Ŝ| < 10−3

@95% CL

mρ > 2.5 TeV

picture stolen from C. Grojean



Only Higgs

Current experimental data strongly suggest that the weakly coupled option
is approximately true, at least for E . 1 TeV.

Electroweak precision tests
No new vector states observed at the Tevatron and LHC
Higgs-like excess near 125 GeV

Furthermore, they point to the simplest realization with a single Higgs
boson resposible for unitarizing WW scattering

Approximate global symmetries of SM, such as flavor and CP seem to be
very well preserved



Why something else than Higgs out there

(almost) Unshakable Arguments

1 Observed neutrino masses imply new physics (at least, right-handed
neutrinos) somewhere between 1 keV and 1015 GeV

2 Existence of dark matter requires new physics somewhere between
sub-eV and 1019 GeV

3 Domination of matter over anti-matter requires new physics between
100 GeV and 1016 GeV

unfortunately, none of above guarantees new physics showing up in LHC

Some Esthetic Arguments

Fermion masses and mixings suggests another sector generating the
observed structures, at any scale above TeV and Planck

Approximate unification of gauge couplings suggests new states at
any scale between 100 and 1014 GeV

Instability of Higgs mass against radiative corrections suggests new
states at 100 GeV

only one, somewhat shaky argument clearly points to new physics in LHC



Fine-tuning of Higgs potential

< H >= 0

but we need

The hierarchy problem

V (H) = ��2
UV H2 + ⇥H4

� ⇠ O(1) � ⇠ �O(1)

hHi ⇠ ⇤UV

generically

✏ ⇠ 10�34

hHi =
p
��UV
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Fine-tuning puzzle

SM + Higgs

Mass

SM New

Natural Theories

�m2
H = + ⇠ 0

The more natural the theory the more the Higgs rates deviate from SM

+

+ +
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Hierarchy problem dominated model building for last 30 years

Two important classes of solutions
Supersymmetry: fermion-boson cancellation, may be weakly coupled up to
Planck scale
Composite/Little Higgs: boson-boson or fermion-fermion cancellation,
weakly coupled up to 3-10 TeV, then strongly coupled

All existing models introduce a multitude of new particles at weak scale,
and require serious conspiracy why they preserve approximate accidental
symmetries of the SM, to avoid showing up indirectly in numerous
precision measurements

Typically, in specific realizations advertised as natural one has 1− 0.1%
fine-tuning, after experimental constraints are taken into account



Naturalness with fermionic partners

Fermionic top partners T

Limits depending on dominant decay

Constraints on T → bW channel (typically 50% branching ratio in models
without T-parity) and on T → t+MET (expected in models with T-parity)

Current limits on mass around 400− 500 GeV

Naturalness under stress, but not completely dead yet...
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FIG. 1: (a) Transverse mass of the lepton and missing energy
and (b) Emiss

T after applying all selection criteria except the
cut on the variable shown. MC background contributions are
stacked on top of each other and normalized according to the
data-driven corrections discussed in the text. The lines with
the arrows indicate the selection criteria that define the signal
region (mT > 150 GeV and Emiss

T > 100 GeV). ‘Other Back-
grounds’ includes both multi-jet backgrounds and Z+jets,
single top and diboson production. Expectations from two
signal mass points are stacked separately on top of the SM
background. The last bin includes the overflow.

140 GeV. Figure 3 shows the cross-section times branch-
ing ratio excluded at the 95% confidence level versus T
mass, for an A0 mass of 10 GeV. A cross-section times
branching ratio of 1.1 (1.9) pb is excluded at the 95% con-
fidence level for a T mass of 420 (370) GeV and an A0

mass of 10 (140) GeV. The estimated acceptance times
efficiency for spin- 1

2 TT models is consistent within sys-
tematic uncertainties with that for scalar models, such
as pair production of stop squarks (with a ttχ0χ0 final
state) or third-generation leptoquarks (with a ttντντ fi-
nal state). The cross-section limits presented in Fig. 3 are
therefore approximately valid for such models, although
the predicted cross-section is typically below the current
sensitivity.
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FIG. 2: Excluded region (under the curve) at the 95% confi-
dence level as a function of T and A0 masses, compared with
the CDF exclusion [10, 11]. Theoretical uncertainties on the
TT cross-section are not included in the limit, but the effect
of these uncertainties is shown. The gray contours show the
excluded cross-section times branching ratio as a function of
the two masses.
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95% confidence level versus T mass for an A0 mass of 10 GeV.
Theoretical predictions for both spin- 1

2
and scalar T pair pro-

duction are also shown.

In summary, in 1.04 fb−1 of data in pp collisions at a
center-of-mass energy of 7 TeV, there is no evidence of an
excess of events with large Emiss

T in a sample dominated
by tt events. Using a model of pair-produced quark-like
objects decaying to a top quark and a heavy neutral par-
ticle, a limit is established excluding masses of these top
partners up to 420 GeV and stable weakly-interacting
particle masses up to 140 GeV (see Fig. 2). In particular,
a cross-section times branching ratio of 1.1 pb is excluded
at the 95% confidence level for m(T ) = 420 GeV and
m(A0) = 10 GeV. The cross-section limits are approxi-
mately valid for a number of models of new phenomena.



Naturalness with scalar partners

Scalar top partners t̃

In generic SUSY mt̃ & 1 TeV → serious fine-tuning problem

But, for mt̃ � mq̃ and mt̃ � mg̃ limits become much weaker

Currently only theorist-level robust limit on stops, mt̃ & 150− 250 GeV,
depending on decay mode and LSP mass Papucci et al [1110.6926]

Related limits on direct sbottom production from ATLAS [1112.3832]

Reasonanble fine-tuning still possible if stops and sbottom are only colored
superpartner below TeV

For comparison with the LHC limits, we have also shown in Fig. 3, the strongest limit

from the Tevatron, which comes from the D0 sbottom search with 5.2 fb�1. This search sets

limits on sbottom pair production, with the decay b̃ ! bÑ1. For the left-handed spectrum,

this limit applies directly to the sbottom, which decays b̃L ! bH̃0 for the mass range of

interest (the decay to top and chargino is squeezed out). For the right-handed stop, the

dominant decay is t̃R ! bH̃±, which means that the stop acts like a sbottom, from the point

of view of the Tevatron search7. We note that the Tevatron limit only applies for higgsinos

just above the LEP-2 limit, mH̃ < 110 GeV, and we see that the Tevatron has been surpassed

by the LHC in this parameter space.
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FIG. 3: The LHC limits on the left-handed stop/sbottom (left) and right-handed stop (right), with

a higgsino LSP. The axes correspond to the stop pole mass and the higgsino mass. We find that the

strongest limits on this scenario come from searches for jets plus missing energy. For comparison,

we show the D0 limit with 5.2 fb�1 (green), which only applies for mÑ1

<⇠ 110 GeV, and has been

surpassed by the LHC limits.

7 In order to apply the Tevatron sbottom limit to right-handed stops, we have assumed that the decay

products of the charged higgsino are soft enough not to e↵ect the selection, which applies when the mass

splitting between the charged and neutral higgsino is small

20

4

 [GeV]CTm
0 100 200 300 400

En
tri

es
 / 

25
 G

eV

0

10

20

30

40

50 ATLAS

 = 7 TeVs, -1L dt ~ 2.05 fb∫
2-jet exclusive

 [GeV]miss
TE

100 200 300 400 5000

10

20

30

40

50 Data 2011
SM Total
top, W+hf
Z+hf
Others

 100 GeV
1
0χ
∼

 300, b~

FIG. 1: Measured mCT (left) and Emiss
T (right) distributions

before the mCT selection compared to the SM predictions
(solid line) and SM+MSSM predictions (dashed lines). The
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and neutralino masses of 300 GeV and 100 GeV, respectively.
Results are compared to previous exclusion limits from Teva-
tron experiments. Results from LEP cover the region with
sbottom mass below 100 GeV.

suming BR(b̃1 → bχ̃0
1)=100%. Systematic uncertainties

are treated as nuisance parameters and correlated when
appropriate. For the MSSM scenarios considered, the
upper limit at 95% C.L. on the sbottom masses obtained
in the most conservative hypothesis, σmin, is 390 GeV
for m

χ̃0
1

= 0. The limit becomes 405 GeV for σnom and

420 GeV for σmax. Neutralino masses of 120 GeV are
excluded for 275 < mb̃1

< 350 GeV. The three signal re-

gions are used to set limits on the effective cross section
of new physics models, σeff , including the effects of ex-
perimental acceptance and efficiency. The observed (ex-
pected) excluded values of σeff at 95% C.L. are 13.4 fb,

9.6 fb and 5.6 fb (15.2 fb, 9.2 fb and 4.7 fb), respectively
for mCT>100, 150, 200 GeV.

In summary, we report results of a search for sbottom
pair production in pp collisions at

√
s = 7 TeV, based

on 2.05 fb−1 of ATLAS data. The events are selected
with large Emiss

T and two jets required to originate from
b-quarks in the final state. The results are in agreement
with SM predictions for backgrounds and translate into
95% C.L. upper limits on sbottom and neutralino masses
in a given MSSM scenario for which the exclusive de-
cay b̃1 → bχ̃0

1 is assumed. For neutralino masses below
60 GeV, sbottom masses up to 390 GeV are excluded,
significantly extending previous results.
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Fine

Naturalness window still half open

But no experimental hint of a larger framework just around the corner

Alternative solution:

same tuning to reach  boundary of 2nd order phase transition

How did nature choose to deal with hierarchy problem?

stolen from V. Rychkov

✏ ⇠ 10�34
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Dominant attitude in theory:

Hierarchy problem may or may not be relevant

Model building now dominated by LHC data, not theory prejudice







Hierarchy problem and Higgs physics

SM + Higgs

new states

Mass

SM New

Natural Theories

�m2
H = + ⇠ 0

The more natural the theory the more the Higgs rates deviate from SM

+

+ +
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The SM Higgs with mass mh ∼ 125 GeV has many decay channels that
are potentially observable at the LHC

Now: H → ZZ∗ and H → γγ
Shortly: H →WW ∗

Longer perspective: H → τ+τ−, H → bb̄

Also different production channels can be isolated
Now: gluon fusion
Shortly: vector boson fusion
Longer Perspective: W/Z and tt̄ associated production and

Rich Higgs physics available in near future

If new physics exists, Higgs interactions likely to be modified

If new physics restores naturalness, Higgs interactions are necessarily
modified

Measuring Higgs rates at the LHC may be the shortest route to new
physics!



Higgs effective theory

Define effective Higgs Lagrangian at µ ≈ mh ∼ 125GeV . Couplings relevant for
current LHC data

Leff = cV
2m2

W

v
hW+

µ W−µ + cV
m2

Z

v
h ZµZµ − cb

mb

v
h b̄b (1)

+cg
αs

12πv
h G a

µνG
a
µν + cγ

α

πv
h AµνAµν

Only one theoretical prejudice: custodial isospin requires same Higgs
coupling to W and Z

Top already integrated out, contributing to cg and cγ

SM predicts cV = cb = cg = 1 and cγ = 2/9

Any of the couplings can be modified in specific scenarios beyond the SM

All LHC Higgs rates can be easily expressed as functions of the ci couplings



Higgs Widths

The decay widths of the Higgs relative to the SM predictions are modified
approximately as,

Γ(h→ bb̄)

ΓSM (h→ bb̄)
' |cb|2

Γ(h→WW ∗)

ΓSM (h→WW ∗)
=

Γ(h→ ZZ∗)

ΓSM (h→ ZZ∗)
' |cV |2

Γ(h→ gg)

ΓSM (h→ gg)
' |cg |2

Γ(h→ γγ)

ΓSM (h→ γγ)
'

∣∣∣∣ ĉγ
ĉγ,SM

∣∣∣∣2 (2)

where, taking into account W loop and assuming mh ≈ 125, ĉγ ≈ cγ − cV , and
ĉγ,SM ≈ −0.8



Higgs rates

Assuming H → bb dominates Higgs widths

RV ≡ σ(pp → h)Br(h→ ZZ∗)

σSM (pp → h)BrSM (h→ ZZ∗)
'
∣∣∣∣cgcV

cb

∣∣∣∣2 , (3)

Rγ ≡ σ(pp → h)Br(h→ γγ)

σSM (pp → h)BrSM (h→ γγ)
'
∣∣∣∣ cg ĉγ
ĉγ,SMcb

∣∣∣∣2 , (4)

Rγ,VBF ≡ σ(pp → hjj)Br(h→ γγ)

σSM (pp → hjj)BrSM (h→ γγ)
'
∣∣∣∣ cV ĉγ
ĉγ,SMcb

∣∣∣∣2 . (5)



LHC Higgs data

Several channels updated to 5 fb-1 in ATLAS and CMS

Currently most information can be extracted from inclusive
H → ZZ∗ → 4l and H → γγ channels



H → γγ
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Both ATLAS and CMS observe an excess near mh ∼ 125 GeV, ATLAS
centered at 126 and CMS centered at 124

In both case the best fit cross section at the peak exceeds the SM value,
though the latter is well within uncertainties

CMS also observes an excess in inclusive γγjj channel dominated by VBF
production mode, corresponding to cross section well exceeding the SM
one (though, again, uncertainties are still large)



H → ZZ ∗ → 4l
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Figure 1: a) Distribution of the four-lepton reconstructed mass for the sum of the 4e, 4µ, and
2e2µ channels. b) Expansion of the low mass range with existing exclusion limits at 95% CL;
also shown are the central values and individual candidate mass measurement uncertainties.
Points represent the data, shaded histograms represent the background and unshaded his-
togram the signal expectations.

The reducible and instrumental background rates are small. These rates have been obtained
from data and the corresponding m4` distributions are obtained from MC samples.

The measured distribution is compatible with the expectation from SM direct production of
ZZ pairs. We observe 72 candidates, 12 in 4e, 23 in 4µ, and 37 in 2e2µ, while 67.1 ± 6.0 events
are expected from standard model background processes. No hard photon (pg

T > 5 GeV) was
found, outside the isolation veto cone that surrounds each lepton, that could be unambiguously
identified as FSR. Thirteen candidates are observed within 100 < m4` < 160 GeV while 9.5 ± 1.3
background events are expected. We observe 53 candidates for the high-mass selection com-
pared to an expectation of 51.3 ± 4.6 events from background. This high-mass event selection
is used to provide a measurement of the total cross section s(pp ! ZZ + X) ⇥ B(ZZ ! 4`) =
28.1+4.6

�4.0(stat.) ± 1.2(syst.) ± 1.3(lumi.) fb. The measurement agrees with the SM prediction at
NLO [47] of 27.9 ± 1.9 fb. The local p-values, representing the significance of local excesses
relative to the standard model expectation, are shown as a function of mH in Fig. 2a, obtained
either taking into account or not the individual candidate mass measurement uncertainties,

Table 1: The number of candidates observed, compared to background and signal rates for
each final state for 100 < m4` < 600 GeV for the baseline selection. For the Z+X background,
the estimations are based on data

Channel 4e 4µ 2e2µ

ZZ background 12.27 ± 1.16 19.11 ± 1.75 30.25 ± 2.78
Z+X 1.67 ± 0.55 1.13 ± 0.55 2.71 ± 0.96
All background 13.94 ± 1.28 20.24 ± 1.83 32.96 ± 2.94
mH = 120 GeV 0.25 0.62 0.68
mH = 140 GeV 1.32 2.48 3.37
mH = 350 GeV 1.95 2.61 4.64
Observed 12 23 37
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Figure 4: m4! distribution of the selected candidates, compared to the background expectation for (a) the 100 − 250 GeV
mass range and (b) the full mass range of the analysis. Error bars represent 68.3% central confidence intervals. The signal
expectation for several mH hypotheses is also shown. The resolution of the reconstructed Higgs mass is dominated by detector
resolution at low mH values and by the Higgs boson width at high mH .

ing an additional uncertainty for the extrapolation
to the later data-taking period with higher instan-
taneous luminosity.

7. Results

In total, 71 candidate events are selected by
the analysis: 24 4µ, 30 2e2µ, and 17 4e events.
From the background processes, 62 ± 9 events are
expected: 18.6 ± 2.8 4µ, 29.7 ± 4.5 2e2µ and
13.4 ± 2.0 4e. In Table 3, the number of events
observed in each final state is summarized and com-
pared to the expected backgrounds, separately for
m4! < 180 GeV and m4! ≥ 180 GeV, and to the
expected signal for various mH hypotheses. The
m12 and m34 mass spectra are shown in Fig. 3. The
expected m4! distributions for the total background
and several signal hypotheses are compared to the
data in Fig. 4.

Upper limits are set on the Higgs boson produc-
tion cross section at 95% CL, using the CLs modi-
fied frequentist formalism [78] with the profile like-
lihood ratio test statistic [79]. The test statistic
is evaluated with a binned maximum-likelihood fit
of signal and background models to the observed
m4! distribution. Figure 5 shows the observed
and expected 95% CL cross section upper limits,

calculated using ensembles of simulated pseudo-
experiments, as a function of mH . The SM Higgs
boson is excluded at 95% CL in the mass ranges
134−156 GeV, 182−233 GeV, 256−265 GeV and
266 − 415 GeV. The expected exclusion ranges are
136 − 157 GeV and 184 − 400 GeV.

The significance of an excess is given by the
probability, p0, that a background-only experi-
ment is more signal-like than that observed. In
Fig. 6 the p0-values, calculated using an ensem-
ble of simulated pseudo-experiments, are given
as a function of mH for the full mass range of
the analysis. The most significant upward devia-
tions from the background-only hypothesis are ob-
served for mH = 125 GeV with a local p0 of 1.6%
(2.1 standard deviations), mH = 244 GeV with
a local p0 of 1.3% (2.2 standard deviations) and
mH = 500 GeV with a local p0 of 1.8% (2.1 stan-
dard deviations). The median expected local p0

in the presence of a SM Higgs boson are 10.6%
(1.3 standard deviations), 0.14% (3.0 standard de-
viations) and 7.1% (1.5 standard deviations) for
mH = 125 GeV, 244 GeV and 500 GeV, respec-
tively. An alternative calculation, using the asymp-
totic approximation of Ref. [79], yielded compatible
results — within 0.2 standard deviations — in the
entire mass range.

8

Very low background

ATLAS has 3 events at m4l ≈ 124 GeV

CMS has 2 events at m4l ≈ 126 GeV



Illegal ATLAS/CMS combination
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Effective Theory Interpretation

Leff = cV
2m2

W

v
hW+

µ W−µ + cV
m2

Z

v
h ZµZµ − cb

mb

v
h b̄b

+cg
αs

12πv
h G a

µνG
a
µν + cγ

α

πv
h AµνAµν

We will find the region of effective theory parameter space favored by 2011
LHC Higgs data

Interesting to check whether the current LHC data are consistent with the
SM Higgs

Also interesting, whether they favor or disfavor any particular BSM
scenario

Of course at this stage one cannot make very strong statements about
Higgs couplimgs (some of you don’t even think Higgs has been discovered)

Consider it a warm-up exercise, in preparation for serious signals



Fits assuming mh = 125 GeV
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Carmi [1202.3144] See also Azatov [1202.3415] and Espinosa [1202.3697]



Scalar partner toy model

Very toy ”natural” model: just one scalar top partner (this is not SUSY,
where at least two scalar partners are needed)

Top partner interactions with Higgs to cancel top quadratic divergences

− (yHQtc + h.c.)− |t̃|2
(
M2 + 2y 2|H|2

)
.

Only one free parameter: top partner mass m2
t̃ = M2 + y 2v 2

New contributions to effective dimension 5 Higgs interactions
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Fermion partner model

For fermionic top partner, non-renormalizable interactions with Higgs
needed to cancel top quadratic divergence

Simple model inspired by T-parity conserving Little Higgs

− (y sin(|H|/f )Qtc + h.c.)− yf cos(|H|/f )TT c

Again only one free parameter: top partner mass mT = yf cos(v/
√

2f )

New contributions to effective dimension 5 Higgs interactions
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Beginning of a beautiful friendship

More Higgs data from LHC may favor/disfavor particular BSM scenarios...

...or just confirm the SM again



One more thing...

ggF
h®ZZ*

ggF
h®ZZ*

ggF
h®ΓΓ
ggF

h®ΓΓVBF
h®ΓΓ
VBF
h®ΓΓ

CombinedCombined

SMSM

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

∆cΓ

∆c
g

cV =cb=cΤ=1

ggF
h®ZZ*

ggF
h®ZZ*

ggF
h®ΓΓ
ggF

h®ΓΓ VBF
h®ΓΓ
VBF
h®ΓΓ

CombinedCombined

SMSM

0.0 0.5 1.0 1.5 2.0
-3

-2

-1

0

1

2

3

cV

c b

cb=cΤ=cg=9�2cΓ

ggF
h®ZZ*

ggF
h®ZZ*

ggF
h®ΓΓ
ggF

h®ΓΓ

VBF
h®ΓΓ
VBF
h®ΓΓ

CombinedCombined
SMSM

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

cV

∆c
g

∆cΓ=2�9 ∆cg, cb=cΤ=1

ggF
h®ZZ*

ggF
h®ZZ*

ggF
h®ΓΓ
ggF

h®ΓΓ

VBF
h®ΓΓ
VBF
h®ΓΓ

CombinedCombined
SMSM

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

cV

∆c
g

∆cΓ=2�9 ∆cg, cΤ=cb=cV

Current combined Higgs data allow, and VBF γγ channel in CMS favors
increased Higgs coupling to WW and ZZ

What if indeed cV > 1?



What if cV > 1?

If SM Higgs doublet mixes with a singlet or another doublet, then always
cV = cosα < 1. Thus enhancement impossible in typical SUSY models.

For Higgs being a pseudo-Goldstone boson of any compact coset (Little
Higgs and composite Higgs), also cV = cos(v/f ) < 1. Again,
enhancement of cV impossible

Low et al [0907.5413] : sum rule proving cV > 1 implies charge-2 Higgs

AA et al [1202.1532] : stronger sum rule

1− c2
V ≈

v 2

6π

∫ ∞
0

ds

s

(
2σtot

I =0(s) + 3σtot
I =1(s)− 5σtot

I =2(s)
)
.

For cV > 1, enhancement of isospin 2 channel of WW scattering

Simplest realization: a quintuplet of weakly coupled scalars
Q =

(
Q−−,Q−,Q0,Q+,Q++

)
coupled to electroweak gauge bosons as{√

2

3
Q0
(
m2

WW+
µ W−µ −m2

ZZ
2
µ

)
+
(
Q++m2

WW−µ W−µ +
√

2Q+mWmZW
−
µ Zµ + h.c.

)}



Summary

The puzzle of electroweak symmetry breaking is about to be solved

Hints from the LHC and other experiments consistently point to weakly
coupled electroweak symmetry breaking with a light Higgs boson

Measuring Higgs coupling may soon give us strong hints favoring or
disfavoring particular models beyond the Standard Model

At least this year is going to be exciting...
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