New Frontiers in Theoretical Physics, Cortona 28-31 May 2014 — XXXIV Convegno Nazionale di Fisica Teorica

Higgs Couplings and EW observables

Andrea Tesi

mainly based on Barbieri, T 1311.7493 , Barbieri, Buttazzo, Kannike, Sala, T 1304.3670 New Frontiers in Theoretical Physics, Cortona 28-31 May 2014 — XXXIV Convegno Nazionale di Fisica Teorica

Higgs Couplings and EW observables

vs. direct searches

Andrea Tesi

mainly based on Barbieri, T 1311.7493 , Barbieri, Buttazzo, Kannike, Sala, T 1304.3670

Is the Weak scale natural?

Hierarchy Problem and its consequences

If a scalar is coupled (with strength y) to a particle with mass M

tuning
$$\equiv \Delta \sim rac{y^2 M^2}{16 \pi^2 m_h^2}$$

With a protection mechanism we don't care of higher energies

SUSY and Composite Higgs are compelling paradigms.

They realize a natural NP scale M.

 $M \lesssim 450 {\rm GeV} \sqrt{\Delta}$

Explicit models can have still room for natural scenarios

Explicit models can have still room for natural scenarios

In any case, after a period of direct searches, precision measurements might help

Where to look indirectly for NP?

In many cases, largest effect in the Higgs sector

$$\mathcal{L} \supset m_V^2 V_\mu V^\mu c_V \frac{h}{v} - m_\psi \, \bar{\psi} \psi c_\psi \frac{h}{v} + \mathcal{L}_{\rm NP}(\Phi; M), \qquad c \simeq 1 - \# \frac{v^2}{M^2}$$

Where to look indirectly for NP?

In many cases, largest effect in the Higgs sector

$$\mathcal{L} \supset m_V^2 V_\mu V^\mu c_V \frac{h}{v} - m_\psi \, \bar{\psi} \psi c_\psi \frac{h}{v} + \mathcal{L}_{\mathrm{NP}}(\Phi; M), \qquad c \simeq 1 - \# \frac{v^2}{M^2}$$

LHC observables Sensitive to both c_V and c_{ψ} , via signal rates

Where to look indirectly for NP?

In many cases, largest effect in the Higgs sector

$$\mathcal{L} \supset m_V^2 V_\mu V^\mu c_V \frac{h}{v} - m_\psi \, \bar{\psi} \psi c_\psi \frac{h}{v} + \mathcal{L}_{\mathrm{NP}}(\Phi; M), \qquad c \simeq 1 - \# \frac{v^2}{M^2}$$

LHC observablesSensitive to both c_V and c_{ψ} , via signal ratesEW observablesMainly sensitive to c_V , via oblique corrections

Focus on paradigmatic explicit models

Natural SUSY weak Composite Higgs strong

- What is the present scenario?
- Higgs couplings and EWPT (vs. direct searches)

[D'Agnolo, Kuflik, Zanetti; Gupta, Montull, Riva; Gupta, Rzehak, Wells; ...]

Some numbers...

Experimental status: fit

Agreement with SM within 1σ . In principle room for sizeable deviations

 $\delta c_V \lesssim 15\%, \quad \delta c_\psi \lesssim 20\%$

[Ciuchini, Franco, Mishima, Silvestrini '13] New fit after Higgs discovery

$$\Delta \varepsilon_1 = (5 \div 8) 10^{-4}$$

In the "near" future (2022)

	ATLAS	CMS	
$h \to \gamma \gamma$	0.16	0.15	
$h \to ZZ$	0.15	0.11	O(10%)
$h \to WW$	0.30	0.14	O(1070)
$Vh \to Vb\bar{b}$	-	0.17	
$h \to \tau \tau$	0.24	0.11	
$h ightarrow \mu \mu$	0.52	-	

300/fb LHC14

In the "near" future (2022)

		ATLAS	CMS	
	$h ightarrow \gamma \gamma$	0.16	0.15	
	$h \to ZZ$	0.15	0.11	O(10%)
300/fb LHC14	$h \to WW$	0.30	0.14	O(1070)
	$Vh \to Vb\bar{b}$	_	0.17	
	$h \to \tau \tau$	0.24	0.11	
	$h ightarrow \mu \mu$	0.52	_	

...and in the far (20^{**})

HL-LHC (3000/fb)

 $\delta c_V \lesssim 4 \div 5\%$

[ATLAS & CMS twiki]

In the "near" future (2022)

		ATLAS	CMS	
	$h \to \gamma \gamma$	0.16	0.15	O(10%)
	$h \rightarrow ZZ$	0.15	0.11	
300/fb LHC14	$h \to WW$	0.30	0.14	
	$Vh \to Vb\bar{b}$	_	0.17	
	$h \to \tau \tau$	0.24	0.11	
	$h ightarrow \mu \mu$	0.52	_	

...and in the far (20^{**})

HL-LHC (3000/fb)	TLEP σ_{hZ}	TLEP Z-factory
$\delta c_V \lesssim 4 \div 5\%$	$\delta c_V < 1\%$	$\Delta \varepsilon_1 \lesssim 10^{-4}$
[ATLAS & CMS twiki]	[1308.6176]	[Mishima]

Science Fiction??

Models [a few paradigmatic examples]

THE PARTICLE PHYSICISTS VIEW OF THE WORLD

[from D.B. Kaplan '97]

Natural SUSY

Cohen et al '94 Dimopoulos, Giudice '95

Barbieri, Pappadopulo '09 Papucci et al '11

. . .

$$-\frac{m_Z^2}{2} \simeq |\mu|^2 + m_{Hu}^2, \qquad m_h^2 \simeq m_Z^2 + \Delta_t^2$$
$$\Delta_t \gtrsim 85 \text{ GeV} \longrightarrow \text{stops} > 1 \text{ TeV}$$

$$-\frac{m_Z^2}{2} \simeq |\mu|^2 + m_{Hu}^2, \qquad m_h^2 \simeq m_Z^2 + \Delta_t^2$$
$$\Delta_t \ge 85 \text{ GeV} \longrightarrow \text{stops} \ge 1 \text{ TeV}$$

NMSSM as a better option for Natural SUSY,

 $W \supset \lambda SH_dH_u + f(S)$

$$-\frac{m_Z^2}{2} \simeq |\mu|^2 + m_{Hu}^2, \qquad m_h^2 \simeq m_Z^2 + \Delta_t^2$$
$$\Delta_t \ge 85 \text{ GeV} \longrightarrow \text{stops} > 1 \text{ TeV}$$

NMSSM as a better option for Natural SUSY,

 $W \supset \lambda SH_dH_u + f(S)$

Less sensitive to stop-top sector

$$m_h^2 = m_Z^2 c_{2\beta}^2 + \lambda^2 v^2 s_{2\beta}^2 + \Delta_{mix}^2 + \Delta_t^2$$

$$-\frac{m_Z^2}{2} \simeq |\mu|^2 + m_{Hu}^2, \qquad m_h^2 \simeq m_Z^2 + \Delta_t^2$$
$$\Delta_t \ge 85 \text{ GeV} \longrightarrow \text{stops} \ge 1 \text{ TeV}$$

NMSSM as a better option for Natural SUSY,

 $W \supset \lambda SH_dH_u + f(S)$

Less sensitive to stop-top sector

$$m_h^2 = m_Z^2 c_{2\beta}^2 + \lambda^2 v^2 s_{2\beta}^2 + \Delta_{mix}^2 + \Delta_t^2$$

Small tuning $\Delta \lesssim 10$ for small $\tan \beta$ and $\lambda \simeq 1$ [Gherghetta et al '12]

$$-\frac{m_Z^2}{2} \simeq |\mu|^2 + m_{Hu}^2, \qquad m_h^2 \simeq m_Z^2 + \Delta_t^2$$
$$\Delta_t \ge 85 \text{ GeV} \longrightarrow \text{stops} \ge 1 \text{ TeV}$$

NMSSM as a better option for Natural SUSY,

 $W \supset \lambda SH_dH_u + f(S)$

Less sensitive to stop-top sector

$$m_h^2 = m_Z^2 c_{2\beta}^2 + \lambda^2 v^2 s_{2\beta}^2 + \Delta_{mix}^2 + \Delta_t^2$$

Small tuning $\Delta \lesssim 10$ for small $\tan \beta$ and $\lambda \simeq 1$ [Gherghetta et al '12]

It allows the lightest particle to be an extra Higgs

$$\tilde{m} \longrightarrow \frac{2\lambda}{g} \tilde{m}$$

This spectrum allows us to focus only on the Higgs sector

This spectrum allows us to focus only on the Higgs sector

NMSSM with light singlet

All Higgs couplings rescaled universally by $\cos \gamma$ (mixing between h and singlet)

This spectrum allows us to focus only on the Higgs sector

NMSSM with light singlet

All Higgs couplings rescaled universally by $\cos \gamma$ (mixing between h and singlet)

MSSM

Higgs couplings depend on an eta and δ (mixing between h and extra doublet)

Fitting the Higgs

We used the code of [Giardino, Kannike, Masina, Raidal, Strumia, 13]

	FIT	c_V
NMSSM light singlet	$\sin^2 \gamma < .22$	$\sim 10\%$
MSSM	$\sin\delta _{\tan\beta=10} \lesssim 5\%$	$\sim .1\%$

Fitting the Higgs

We used the code of [Giardino, Kannike, Masina, Raidal, Strumia, 13]

	FIT	c_V
NMSSM light singlet	$\sin^2 \gamma < .22$	$\sim 10\%$
MSSM	$\sin\delta _{\tan\beta=10} \lesssim 5\%$	$\sim .1\%$

MSSM more constrained than NMSSM by Higgs fit

NMSSM with light singlet and $\lambda=0.8$

NMSSM with light singlet and $\lambda = 0.8$

This is a natural region poorly constrained by precision measurements

- ▶ In the allowed region: $BR(h_2 \rightarrow hh)$ [CMS-PAS-HIG-13-032]
- $\blacktriangleright ~ H \rightarrow ZZ$ right place where to look for an excess
- At large λ the model is less attractive

NMSSM Higgs sector

with Dario Buttazzo and Filippo Sala for "What Next?"

MSSM

- $\blacktriangleright\,$ LHC8, $m_H>350~{\rm GeV}$ @ 95% CL
- ▶ @ large-tan β direct searches $H, A \rightarrow \tau \tau$ important
- ► LHC14 will close the parameter space of this picture

Composite Higgs

Georgi, Kaplan '84 Agashe, Contino, Pomarol '04 Contino, Da Rold, Pomarol '06

Effective description below the compositeness scale

Why light and natural?

Higgs as pseudo-GB of a strong sector with SO(5)/SO(4) symmetry

▶ Separation of scales f > v

 $\begin{array}{c} m_{\rho} \sim 3 \text{ TeV} \\ m_{\psi} \\ f \\ m_{h} \end{array}$ $\begin{array}{c} \bullet \text{ Composite fermions } \hline m_{\psi} = g_{\psi}f \text{ needed to trigger EWSB} \\ \bullet \text{ Higgs mass set by top yukawa and } g_{\psi} \\ m_{h}^{2} = C \frac{N_{c}m_{t}^{2}}{2\pi^{2}}g_{\psi}^{2} \\ \bullet \text{ Tuning (for 126 GeV Higgs)} \end{array}$

$$m_h^2 = C \frac{N_c m_t^2}{2\pi^2} g_\psi^2$$

► Tuning (for 126 GeV Higgs)

$$\Delta \sim \frac{m_\psi^2}{v^2} \geq \frac{f^2}{v^2}$$

Top partners have been actively searched for: $m_{\psi} > 700 \text{ GeV}$

Tree-level effects mainly sensitive to $\boldsymbol{v}/\boldsymbol{f}$

 $f \ge 550 {
m ~GeV}$

 $c_V \sim 10\%$

Tree-level effects mainly sensitive to v/f

 $f \ge 550 \,\, {\rm GeV}$

 $c_V \sim 10\%$

$$\widehat{S} = -\frac{g^2}{96\pi^2}(1-c_V^2)\log\frac{\Lambda}{m_h}, \qquad \widehat{T} = -(1-c_V^2)\frac{3\alpha}{8\pi c_w^2}\log\frac{\Lambda}{m_h}$$

Assuming no other contribution, precision on $c_V \sim 5\%$ [Ciuchini, Franco, Mishima, Silvestrini '13]

Tree-level effects mainly sensitive to v/f

 $f \ge 550 \,\,\mathrm{GeV}$

 $c_V \sim 10\%$

$$\widehat{S} = -\frac{g^2}{96\pi^2}(1-c_V^2)\log\frac{\Lambda}{m_h}, \qquad \widehat{T} = -(1-c_V^2)\frac{3\alpha}{8\pi c_w^2}\log\frac{\Lambda}{m_h}$$

Assuming no other contribution, precision on $c_V \sim 5\%$ [Ciuchini, Franco, Mishima, Silvestrini '13]

It is possible to find UV contributions that relax this bound [Grojean, Matsedonskyi, Panico '13]

Tree-level effects mainly sensitive to v/f

 $f \ge 550 {
m ~GeV}$

 $c_V \sim 10\%$

$$\widehat{S} = -\frac{g^2}{96\pi^2}(1-c_V^2)\log\frac{\Lambda}{m_h}, \qquad \widehat{T} = -(1-c_V^2)\frac{3\alpha}{8\pi c_w^2}\log\frac{\Lambda}{m_h}$$

Assuming no other contribution, precision on $c_V \sim 5\%$ [Ciuchini, Franco, Mishima, Silvestrini '13]

It is possible to find UV contributions that relax this bound [Grojean, Matsedonskyi, Panico '13]

At present, Composite Higgs has natural islands allowed by precision tests

We can simulate the physics of Composite Higgs by a (computable) L ΣM

$$1 - c_V^2 = \sin^2 \theta = \xi - \frac{m_h^2}{m_\sigma^2} + O(\xi \frac{m_h^2}{m_\sigma^2})$$

$$\Delta \varepsilon_1 = -\sin^2 \theta \frac{3\alpha}{8\pi c_w^2} \left[\log \frac{m_\sigma}{m_h} + c_1(m_h) + O(\frac{m_Z^2}{m_\sigma^2}) \right]$$
solid δc_V , dashed $\Delta \varepsilon_1$

$$\int_{20}^{1400} \frac{1}{100} \frac{1}{2.5\%} \frac{1}{2.5\%} \frac{1}{2.5\%} \frac{1}{100} \frac{1}{10$$

Complementary info on top-partners mass: $m_\psi\gtrsim 3 imes f imes \left(rac{g_\psi}{3}
ight)$

Is the weak scale (quasi) natural? No conclusive answer yet, but...

No conclusive answer yet, but...

Higgs mass and couplings useful tool

- ► LHC8 powerfully constrained 2HDM type-II (MSSM)
- Competitive with direct searches in the MSSM (at moderate $\tan \beta$)

No conclusive answer yet, but...

Higgs mass and couplings useful tool

- LHC8 powerfully constrained 2HDM type-II (MSSM)
- Competitive with direct searches in the MSSM (at moderate $\tan \beta$)

NMSSM with light singlet seems a natural candidate

- Poorly constrained by precision measurements
- Direct searches can probe the parameter space

No conclusive answer yet, but...

Higgs mass and couplings useful tool

- ► LHC8 powerfully constrained 2HDM type-II (MSSM)
- Competitive with direct searches in the MSSM (at moderate $\tan \beta$)

NMSSM with light singlet seems a natural candidate

- Poorly constrained by precision measurements
- Direct searches can probe the parameter space

Higgs couplings right place to see indirect effects in future EWPTs play a role only in strongly coupled scenarios