

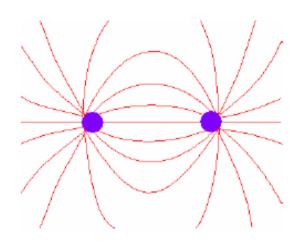
Plan of the talk

- Need for lattice phenomenology and introduction to simulations
- FLAG initiative

(b-quark mass for Higgs physics and heavy quarks on the lattice)

- Recent developments:
 - QCD + QED why, what, how?
 - Hadronic decays

Motivation: non-perturbative phenomena


QED → QCD (as prototype of strongly interacting theories)

QED

- Photons and e+, e- act much like free particles.
- Perturabtion theory makes sense.
- Solved by expansion in $\alpha_{em} = 1/137$.

QCD

- Quarks and gluons are never observed (confinement).
- Perturbative treatment is absurd at low energies.
- Conventional methods fail.

What theory is QCD?

Quite surprisingly it describes

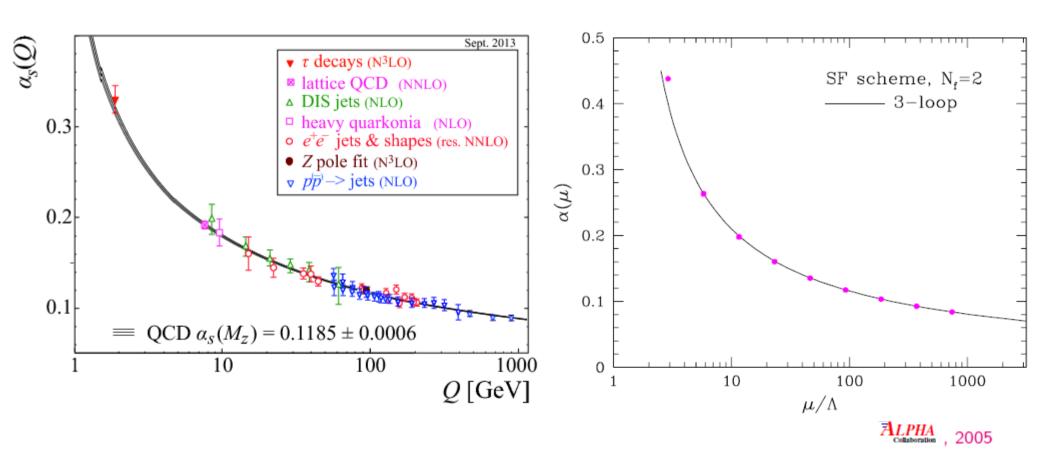
jets at large energies

QCD

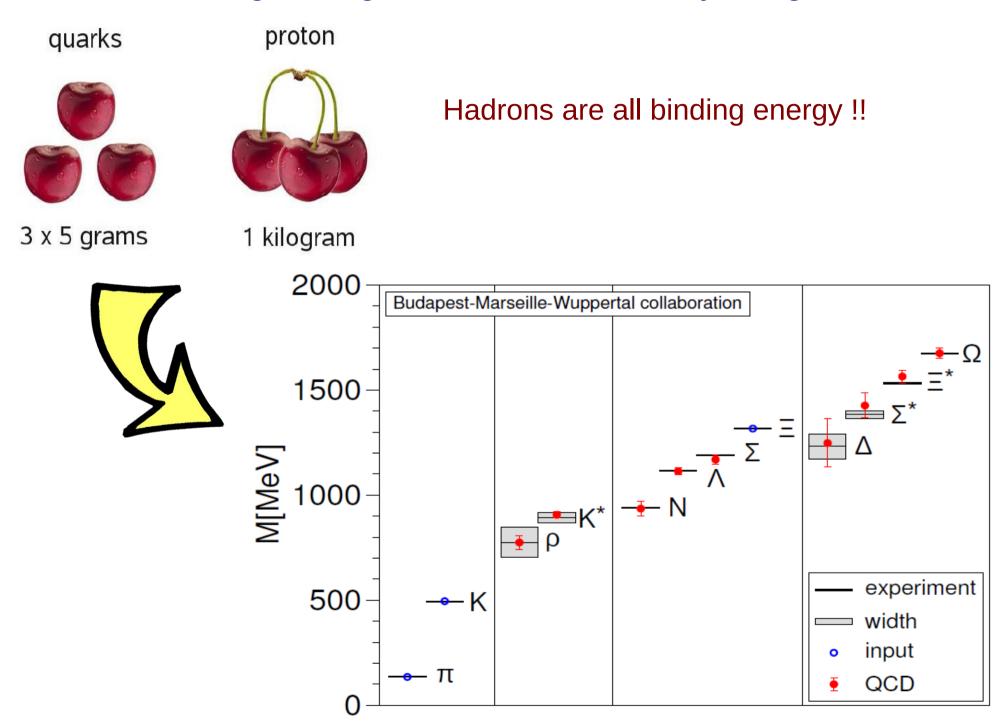
hadrons at small energies

QCD

nuclei at even smaller energies

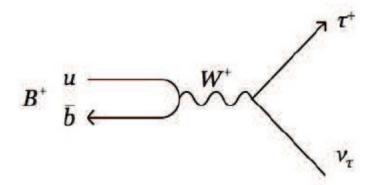


QCD


$$\mathcal{L}_{\text{QCD}} = -\frac{1}{2g_0^2} \text{tr}\{F_{\mu\nu}F_{\mu\nu}\} + \sum_{f=1}^{N_f} \overline{\psi}_f \{D + m_{0f}\} \psi_f$$

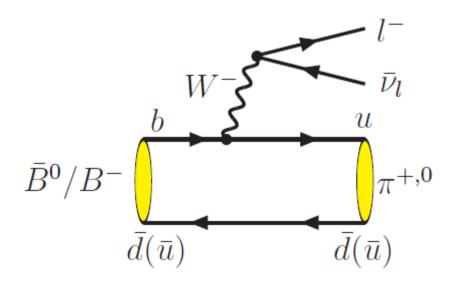
 $ightharpoonup N_{
m f}+1=7$ (bare) parameters

An intuitive picture can be gathered from the running of the coupling


Understanding strong interactions. Stability of light hadrons

Several hadronic processes depend on hadronic contributions. E.g.

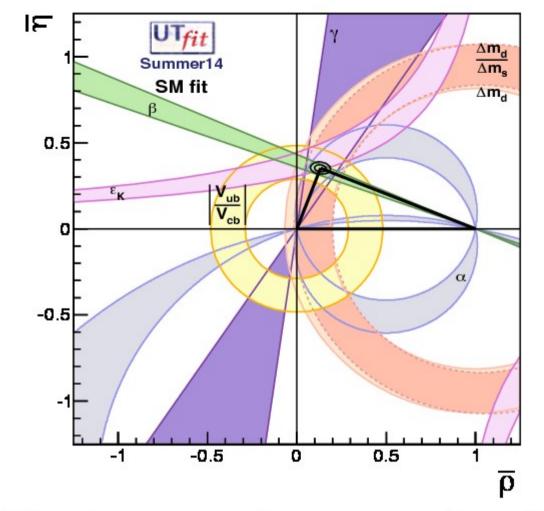
(Charged) Decay constants


 $\langle 0|\overline{u}_f\gamma_\mu\gamma_5 d_{f'}|P(p)\rangle = F_P p_\mu$ are the hadronic parameters entering leptonic decays of pseudoscalar mesons

$$\Gamma(B \to \ell \overline{\nu}_{\ell}) = \frac{G_F^2}{8\pi} |V_{ub}|^2 F_B^2 \left(\frac{m_{\ell}}{m_B}\right)^2 m_B^3 \left(1 - \frac{m_{\ell}^2}{m_B^2}\right)$$

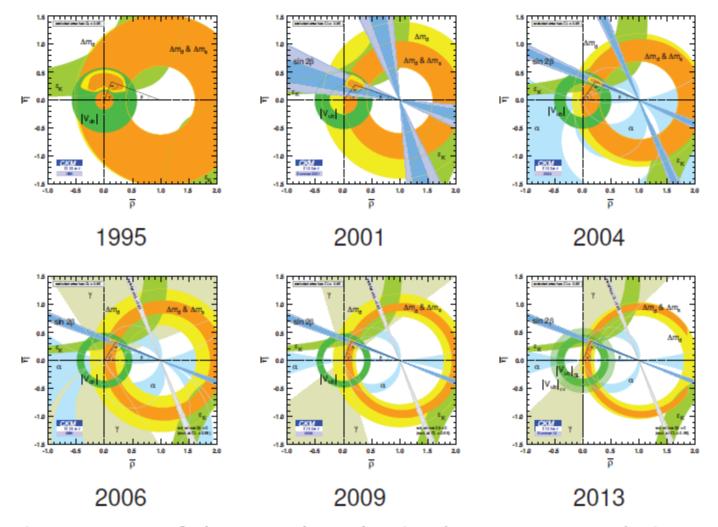
Form factors

Parameterizing semileptonic decay. Simplest: $B \to \pi \ell \nu$

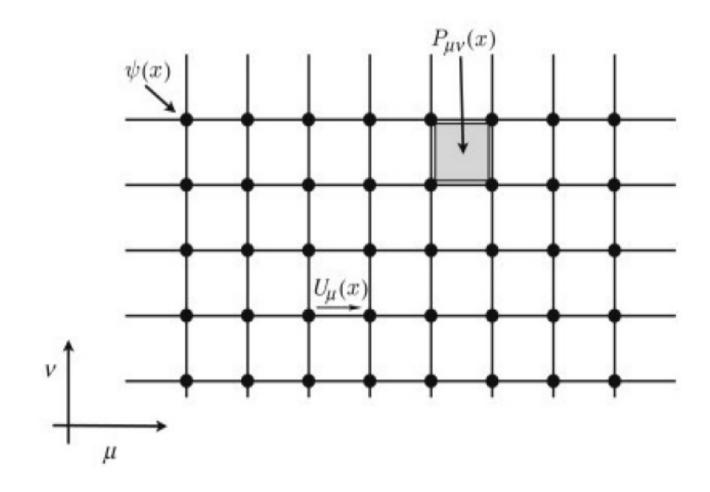


Ignoring the lepton mass:

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2}{24\pi^3} p_\pi^3 |V_{ub}|^2 |f_+(q^2)|^2$$

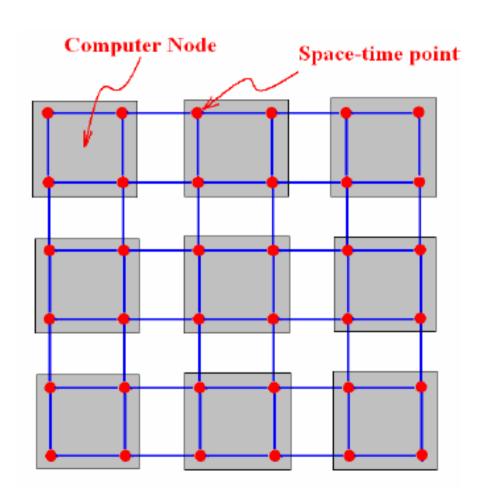

The hadronic matrix element is from a quark bilinear

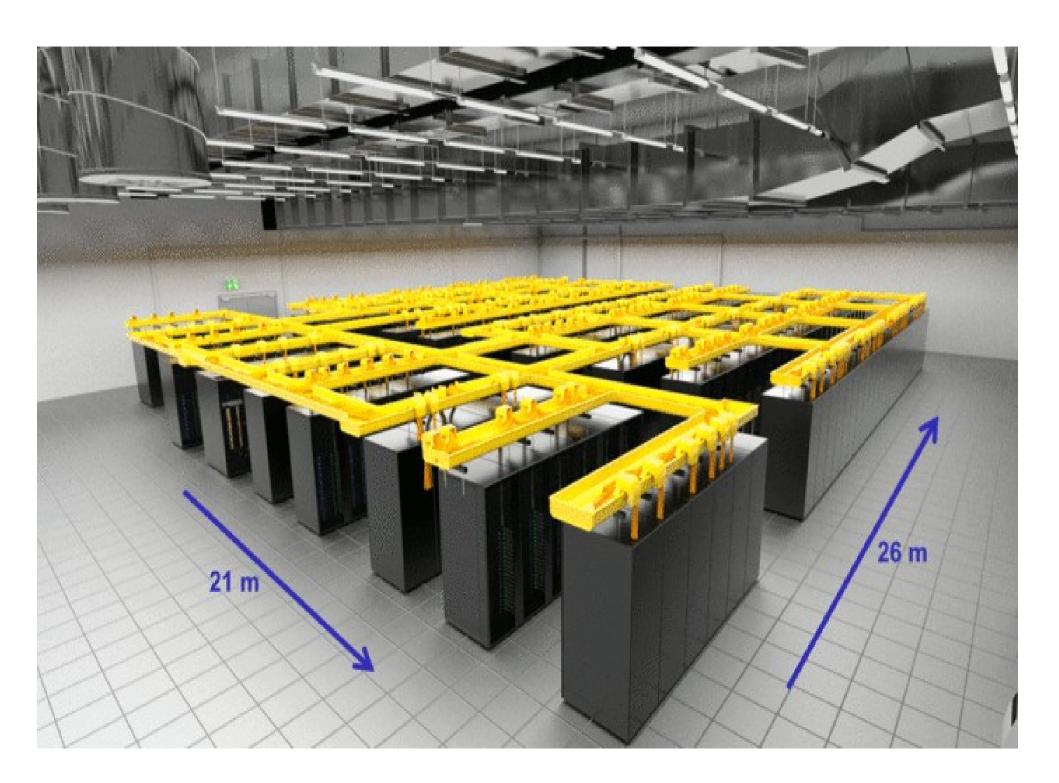
$$\langle \pi(p_\pi)|V^\mu|B(p_B)
angle = f_+(q^2)(p_\pi+p_B-q\Delta_{m^2})^\mu+f_0(q^2)q^\mu$$
 with $\Delta_{m^2}=(m_B^2-m_\pi^2)/q^2$

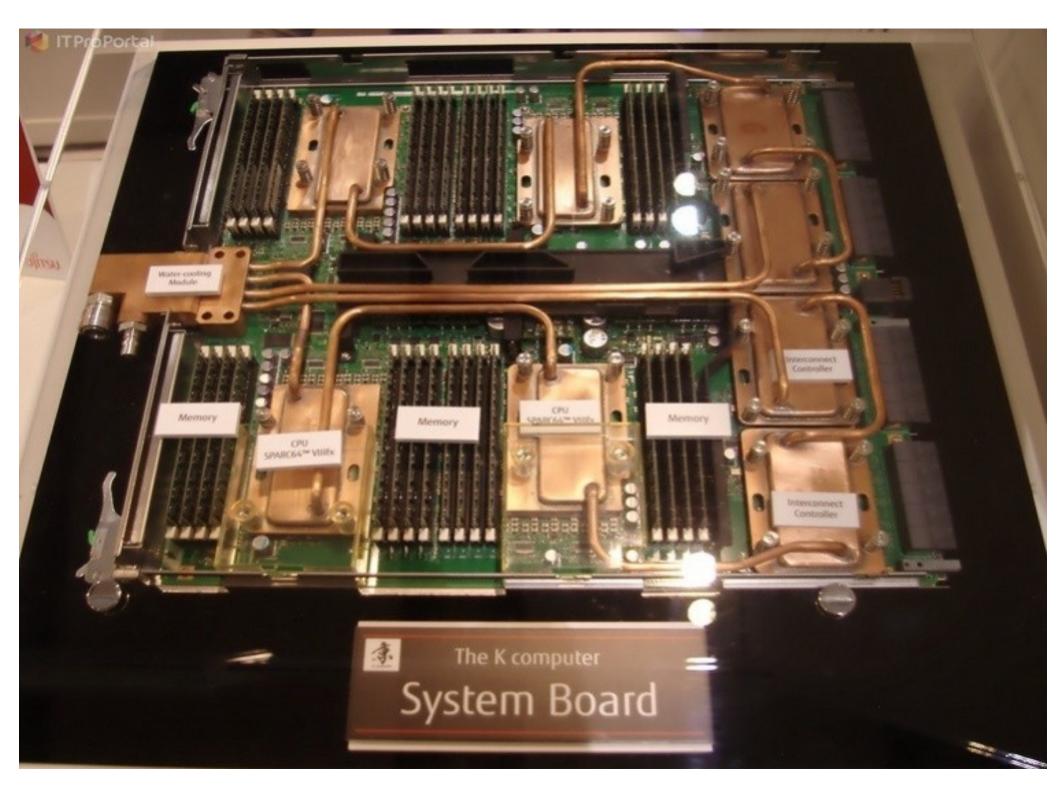

- The Higgs particle gives mass to leptons, quarks and vector bosons (EWSB).
- The matrix of Higgs Yukawa couplings to fermions is non-diagonal.
 Interactions eigenstates ≠ mass eigenstates. They are related through the unitary CKM matrix
- 4 parameters A, λ , ρ , η . The product of two columns closes up in a triangle (in the SM).

Goals of Flavor Physics: determine $V_{\rm CKM}$, look for signals of NP, constrain possible BSM models.

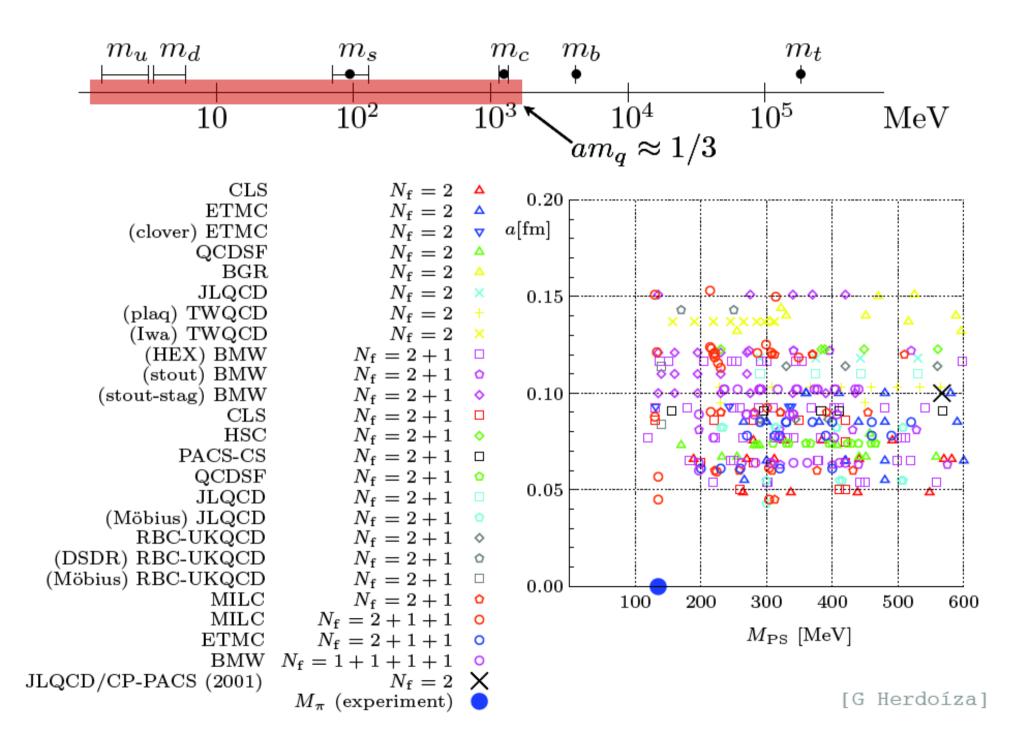
Impressive success of theory, where lattice has an extremely important role, and experiments. The analysis of experimental data, always requires non-perturbative hadronic parameters, as the processes always involve hadrons in the initial/final states.


QCD on the lattice




$$S_{\mathrm{W}}^{\mathrm{QCD}} = \overline{\psi}_{x} D_{xy}^{\mathrm{W}}(U) \psi_{y} + \beta \sum_{\square} \left(1 - \frac{1}{N} \operatorname{Re} \operatorname{Tr} U_{\mu\nu}(x) \right)$$

Lattice QCD and computers


- Huge computational demand.
- Uniform space-time structure → parallel computing.
- Assign a cluster of space-time points to each processor (core).
- Evaluate the path integral using importance sampling (Monte Carlo).
- Simple, repetitive arithmetic (10⁸x10⁸ matrices to vectors).
- Parallel computing was born for these problems (APE) and the progress in the beginning was driven by lattice applications (QCDOC).

Ensembles

Lattice can provide first principle – systematically improvable determinations of such parameters. However they are not free from approximations / systematics

- Number of dynamical flavours
- Unphysical quark masses (and no isospin breaking)
- > Finite lattice spacing
- > Finite volume
- Renormalization

FLAG's goal is to walk users of lattice results through systematics and the way they have been addressed

Review

Review of lattice results concerning low-energy particle physics

FLAG Working Group

S. Aoki¹, Y. Aoki^{2,3}, C. Bernard⁴, T. Blum^{3,5}, G. Colangelo^{6,a}, M. Della Morte^{7,8}, S. Dürr^{9,10}, A. X. El-Khadra¹¹, H. Fukaya¹², R. Horsley¹³, A. Jüttner¹⁴, T. Kaneko¹⁵, J. Laiho^{16,28}, L. Lellouch^{17,18}, H. Leutwyler⁶, V. Lubicz^{19,20}, E. Lunghi²¹, S. Necco⁶, T. Onogi¹², C. Pena²², C. T. Sachrajda¹⁴, S. R. Sharpe²³, S. Simula²⁰, R. Sommer²⁴, R. S. Van de Water²⁵, A. Vladikas²⁶, U. Wenger⁶, H. Wittig²⁷

¹ Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan

² Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya University, Nagoya 464-8602, Japan

³ RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA

⁴ Department of Physics, Washington University, Saint Louis, MO 63130, USA

⁵ Physics Department, University of Connecticut, Storrs, CT 06269-3046, USA

⁶ Albert Einstein Center for Fundamental Physics, Institut für theoretische Physik, Universität Bern, Sidlerstr. 5, 3012 Bern, Switzerland

⁷ CP3-Origins & Danish IAS, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark

⁸ IFIC (CSIC), c/ Catedrático José Beltrán, 2, 46980 Paterna, Spain

⁹ Bergische Universität Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany

¹⁰ Jülich Supercomputing Center, Forschungszentrum Jülich, 52425 Jülich, Germany

¹¹ Department of Physics, University of Illinois, Urbana, IL 61801, USA

¹² Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan

¹³ School of Physics, University of Edinburgh, Edinburgh EH9 3JZ, UK

¹⁴ School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK

¹⁵ High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801, Japan

¹⁶ SUPA, Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK

¹⁷ Aix-Marseille Université, CNRS, CPT, UMR 7332, 13288 Marseille, France

¹⁸ Université de Toulon, CNRS, CPT, UMR 7332, 83957 La Garde, France

¹⁹ Dipartimento di Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, 00146 Rome, Italy

²⁰ INFN, Sezione di Roma Tre, Via della Vasca Navale 84, 00146 Rome, Italy

²¹ Physics Department, Indiana University, Bloomington, IN 47405, USA

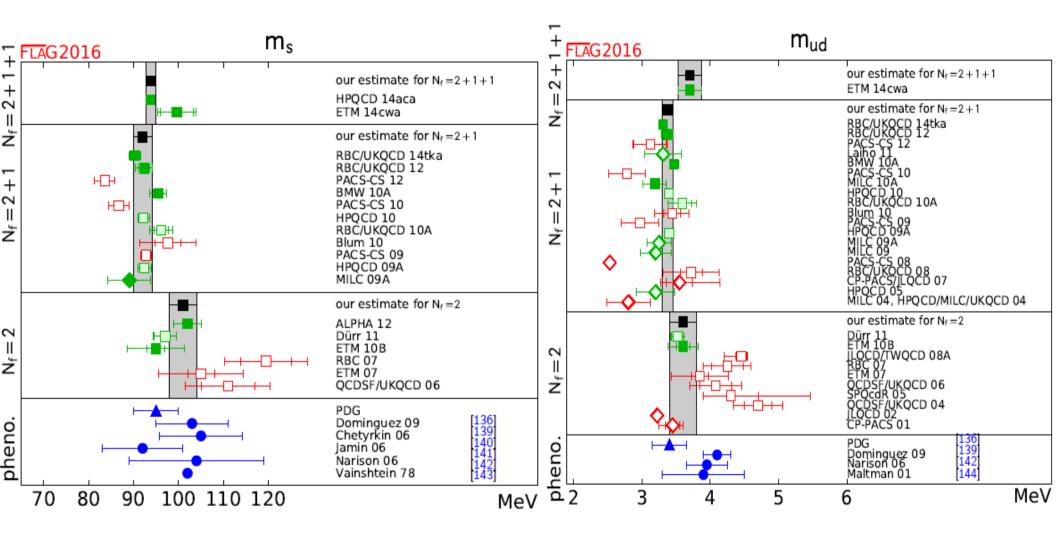
²² Instituto de Física Teórica UAM/CSIC and Departamento de Física Teórica, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain

²³ Physics Department, University of Washington, Seattle, WA 98195-1560, USA

²⁴ NIC @ DESY, Platanenallee 6, 15738 Zeuthen, Germany

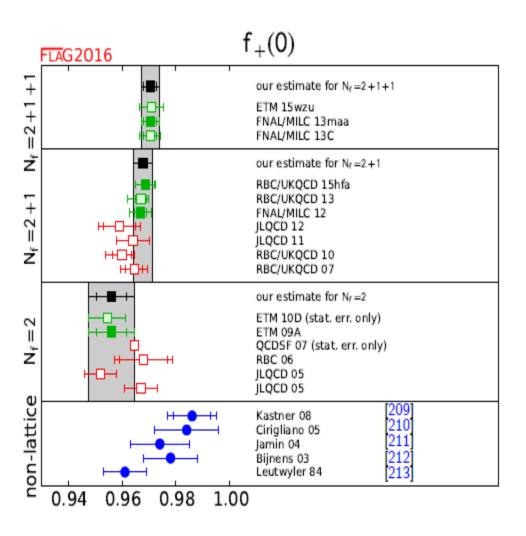
²⁵ Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

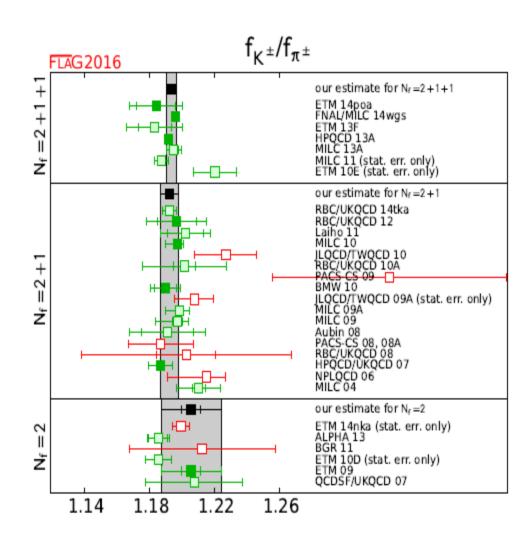
²⁶ INFN, Sezione di Tor Vergata, c/o Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy

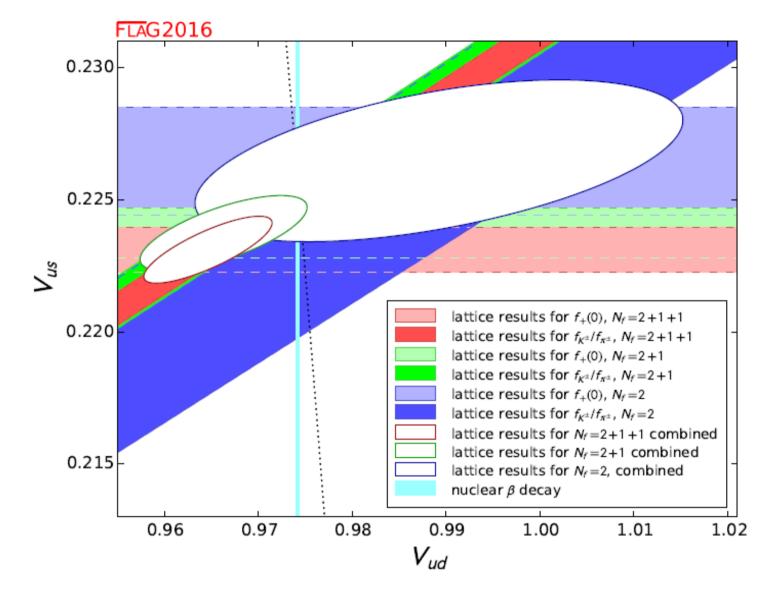

²⁷ PRISMA Cluster of Excellence, Institut für Kernphysik and Helmholtz Institute Mainz, University of Mainz, 55099 Mainz, Germany

²⁸ Present address: Department of Physics, Syracuse University, Syracuse, New York, USA

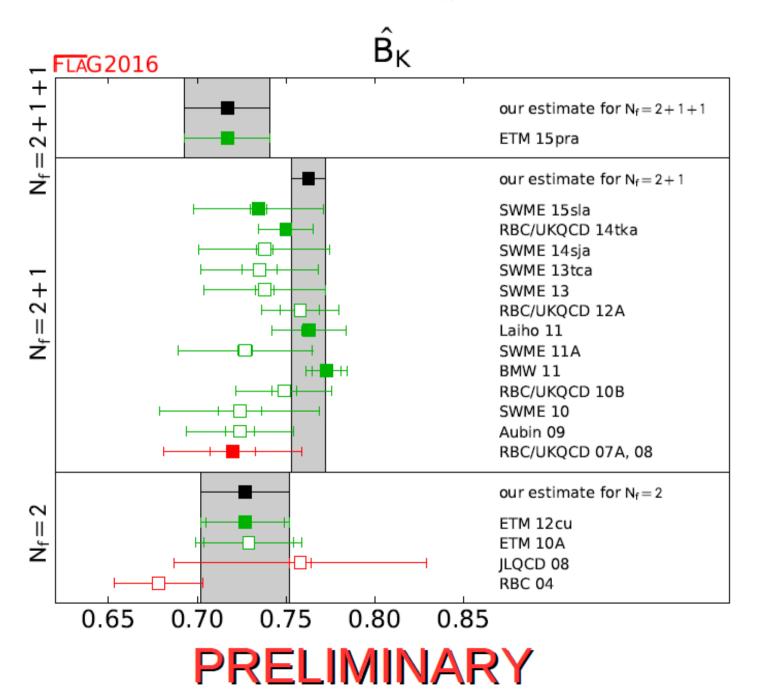
Criteria, as of now


- Chiral extrapolation:
 - $\star M_{\pi, \min} < 200 \text{ MeV}$
 - \circ 200 MeV $\leq M_{\pi, \text{min}} \leq 400 \text{ MeV}$
 - 400 MeV $< M_{\pi, \min}$
- Continuum extrapolation:
 - ★ at least 3 lattice spacings and at least 2 points below 0.1 fm and a range of lattice spacings satisfying $[a_{\text{max}}/a_{\text{min}}] \ge 2$
 - o at least 2 lattice spacings and at least 1 point below 0.1 fm and a range of lattice spacings satisfying $[a_{\text{max}}/a_{\text{min}}] \ge 1.4$
 - otherwise
- Finite-volume effects:
 - \star $[M_{\pi,\min}/M_{\pi,\text{fid}}]^2 \exp\{4 M_{\pi,\min}[L(M_{\pi,\min})]_{\max}\} < 1, \text{ or at least 3 volumes}$
 - $(M_{\pi,\min}/M_{\pi,\text{fid}})^2 \exp\{3 M_{\pi,\min}[L(M_{\pi,\min})]_{\max}\} < 1, \text{ or at least 2 volumes}$
 - otherwise
- Renormalization (where applicable):
 - ★ non-perturbative
 - 1-loop perturbation theory or higher with a reasonable estimate of truncation errors
 - otherwise


Light quark masses


 'Estimates' differ from 'averages'. For N_f=2+1 an error coming from quenching of the charm has been included

Leptonic and semileptonic Kaon and pion decays



PRELIMINARY

 $|V_u|^2$ =0.980(9) for N_f =2+1+1. The consistency among leptonic and semi-leptonic determinations of $|V_{us}|$ is a check of the equality of the Fermi constant describing interactions among leptons and the one describing interactions among leptons and quarks (may not be in BSM).

The hadronic parameter in $\epsilon_{_{\!\scriptscriptstyle K}}$ at LO in the EWH

New quantities in FLAG II and III

- For light flavors, lattice computations are quite precise, mature and advanced, to the point that isospin breaking and QED effects have to be included soon (see later).
- "Heavy quantities" included in FLAG-II an III are less advanced. Fewer computations (sometimes one only) passing the criteria.
- In FLAG III we have included lattice dterminations of heavy quark masses, charm and bottom. The latter is relevant for Higgs physics.

Largest Higgs BR is to b's

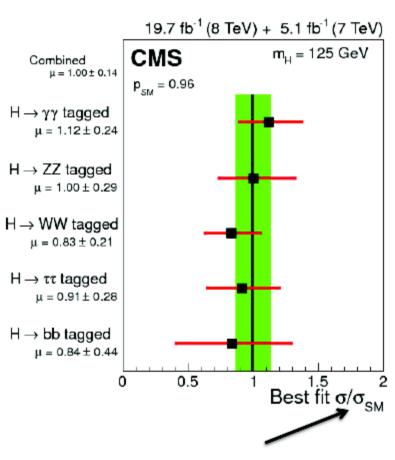
S. Dawson (BNL) CP3, May, 2015

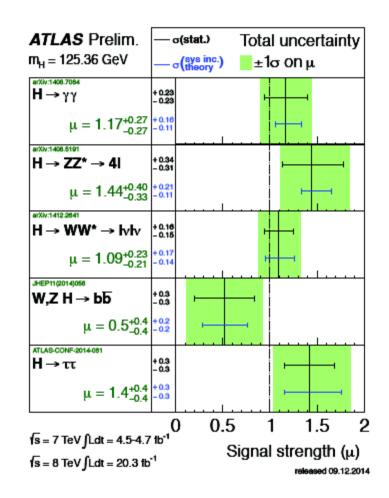
• Sensitive to m_b:
$$\Gamma(H \to b\overline{b}) = \frac{G_F N_c}{4\sqrt{2}\pi} m_H \beta^3 M_b^2$$

QCD included to N³LO for H→bb predictions

Input values for Higgs BR fits

Parameter	Central Value	Uncertainty
$\alpha_s(M_Z)$	0.119	±0.002 (90%CL)
m _b	4.49 GeV	±0.06 GeV
M_t	172.5 GeV	±2.5 GeV

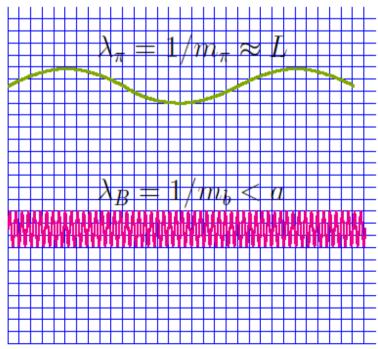

$$\frac{\delta\Gamma_b}{\Gamma_b} \sim \pm 3\%$$


 M_b is pole mass calculated with 1 loop running of $m_b(m_b)$ =4.16 GeV

Also, dominating uncertainty in:

$$\Gamma_H(m_H = 125 \; GeV) = 4 \; MeV \pm 4\%$$

Consistent with SM Hypothesis



Requires theory input!

Errors soon to be dominated by theory

Heavy quarks on the lattice

- finite volume effects are mainly triggered by the light degrees of freedom. The usual requirement is $m_{PS}L > 4$ and m_{PS} is now getting to the physical point $\Rightarrow L \simeq 7$ fm.
- cutoff effects are related to the heavy quark mass. $a << 1/m_b \simeq 0.03~{
 m fm}$.
- \Rightarrow $L/a \simeq 200$ is needed to have those systematics under control !! Integrating out the heavy quark mass in this case is useful !!

In addition the autocorrelation of observables grows as $1/a^n$ with $n \ge 2$ [Schäfer, Sommer and Virotta '10, Lüscher and Schäfer, '11]

Different methods have different systematics. It is crucial to compare results from a variety of them. Briefly:

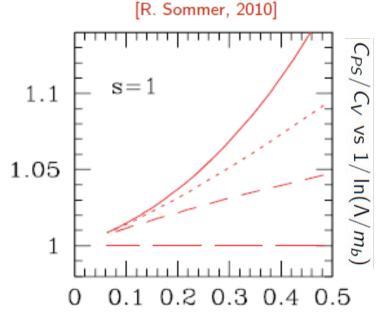
Most approaches directly apply some EFT (typically valid in a particular kinematic regime)

- NRQCD [Thacker, Lepage 1991]: Expansion in v_h and in $1/m_h$. Dim. 5 ops at leading order \Rightarrow non-renormalizable. One has to look for a window where cutoff effects $(O(a^n))$ and power divergences $(O(1/a^m))$ are both small. Typically $am_h \ge 1$.
- Combinations of HQET and Symanzik effective theory:
 - □ O(a) improved HQET [ALPHA ...]
 - □ First Symanzik EFT, then HQET (expand in $1/m_h$ the improvement coefficients) → Fermilab action [El-Khadra, Kronfeld, Mackenzie 1996], RHQ [Christ, Li, Lin 2007] and Tsukuba action [Aoki, Kuramashi, Tominaga 2003].

Having introduced operators of higher dimensions all these theories produce power divergences (also in the Fermilab approach when $m_h \to \infty$ at fixed a).

_

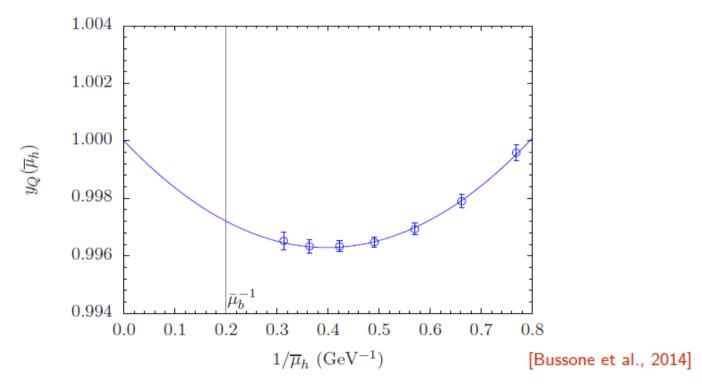
The continuum limit exists only if these divergences are subtracted non-perturbatively. At any order in g_0^2 :

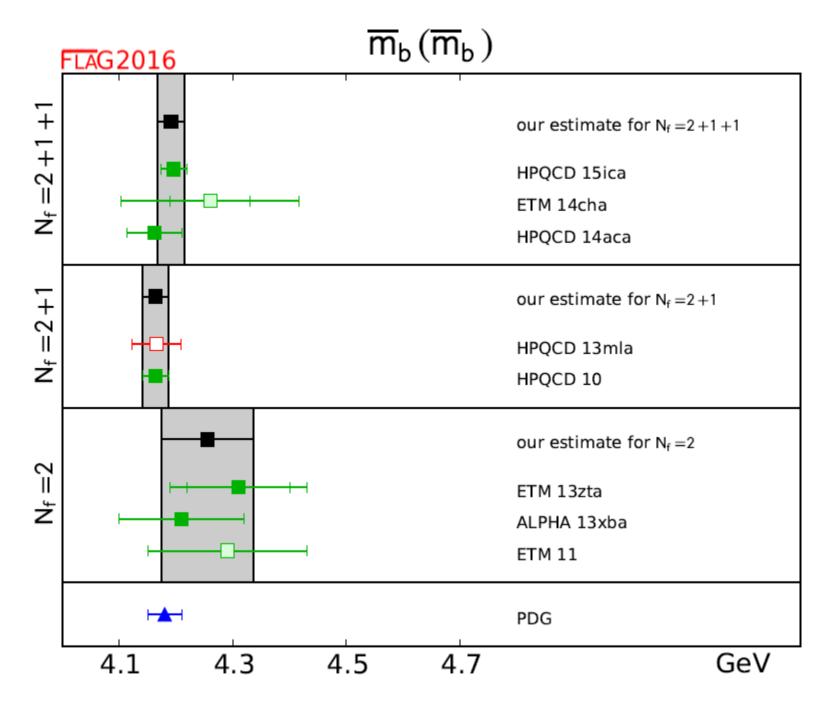

$$\frac{g_0^{2n}}{a} \approx \frac{1}{\ln(a)^n a} \to \infty \quad \text{as } a \to 0$$

We devised a completely non-perturbative setup for lattice HQET.

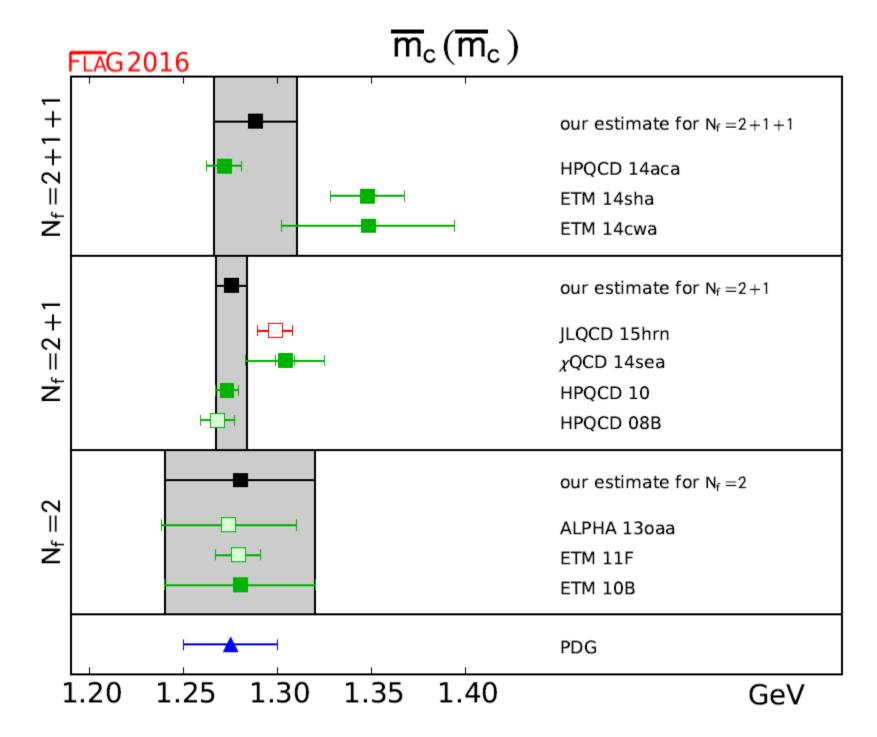
Non (directly) EFT based approaches

- HISQ [HPQCD 2011]: at lattice spacings of $a\approx 0.05$ fm and $L/a\approx 100$ as currently produced by MILC, $am_b\approx 1$ so one can simulate directly at $m_b/2$ and then extrapolate to the b (using HQET). Getting there but autocorrelations seem a severe problem ...
- Interpolation method [Guazzini, Sommer, Tantalo 2006, ...]: using data around the charm and results in the static limit + fits in powers of $1/m_h$.

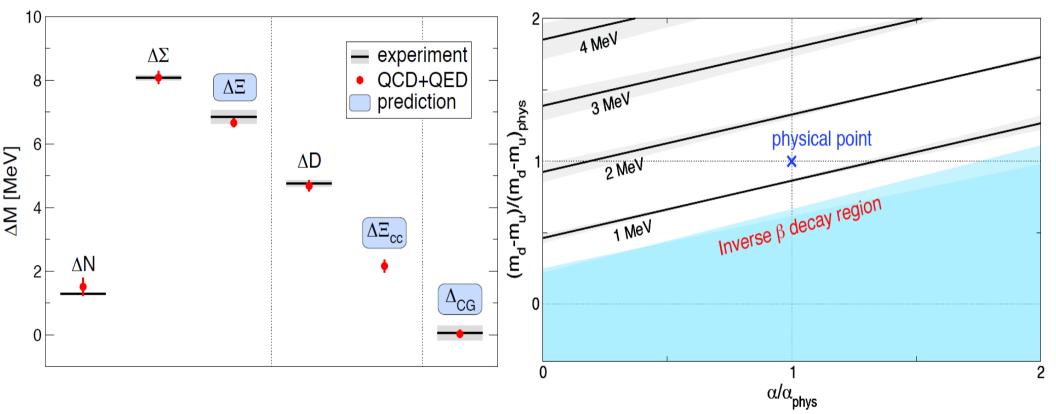

In both methods matching factors from PT are used to define obervables with the proper scaling (removing $ln(m_h)$).


Those factors mostly drop out in the Ratio Method [ETM 2010 ...]:

$$P(m_b) = P(m_c) \frac{P(\lambda m_c)}{P(m_c)} \frac{P(\lambda^2 m_c)}{P(\lambda m_c)} \dots$$


The ratios have static limit=1.

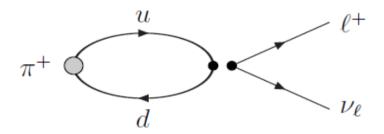
• At the masses explored the $1/m_h^2$ corrections seem to be as big as $1/m_h$.


PRELIMINARY

PRELIMINARY

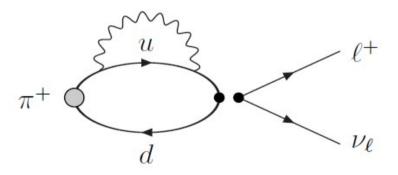
QED effects are becoming relevant for light quantities.

QCD + QED direct simulations [Borsanyi et al., BMW group, 2014]

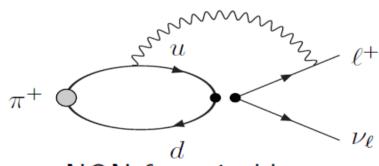


- Large volume 1+1+1+1 simulations of QCD + QED (at unphysical e due to noise to signal problem). 300 times more expensive than N_r=2 QCD. Pilot and benchmark computation concerning the setup.
- Separation of effects using $\Delta M_{r}^{QED}=0$

QED corrections to hadronic processes


Let's consider the leptonic decay at $O(\alpha)$ in the WEH [N. Carrasco et al., 1502.00257]

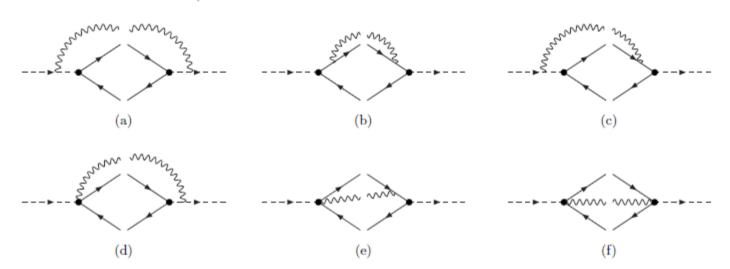
Pure QCD



Number external photons

factorizable. Hadronic part $\to f_P$. Then Γ_0 at $O(\alpha)$

Still factorizable.


NON factorizable.

Also, Γ₀ is infrared divergent, one needs to consider (one) real photon emission as well. No such problems for spectrum.

F.Bloch, A.Nordsieck Phys.Rev. 52 (1937)
T.D.Lee, M.Nauenberg Phys.Rev. 133 (1964)

→ Not much sense of QED corrections to a decay constant ...

$\Gamma_1(\Delta E)$ with $\Delta E = E_{\gamma}^{\max}$

The combination $\Gamma_0 + \Gamma_1(\Delta E)$ is free from IR divergencies at $O(\alpha)$. One can split it as

$$\Gamma(\Delta) = \left\{\Gamma_0 - \Gamma_0^{pt}\right\} + \left\{\Gamma_0^{pt} + \Gamma_1(\Delta)\right\} \quad = \quad \underbrace{\lim_{L \mapsto \infty} \left\{\Gamma_0(L) - \Gamma_0^{pt}(L)\right\}}_{L \mapsto \infty} \quad + \quad \underbrace{\left\{\Gamma_0^{pt} + \Gamma_1(\Delta)\right\}}_{L \mapsto \infty}$$

- pt=pointlike approximation (perturbative). OK for soft photons, they can't resolve the hadron structure. For K and π , $\Delta E \simeq 20$ MeV. Currently main limitation of the approach.
- Both terms are IR-safe and have a $L \to \infty$ limit.
- $\Gamma_0(L)$ is computed on the lattice. It requires rather involved Euclidean correlators, with lepton propagators in the numerical computation of the non-factorizable contributions.

Z. Bai, T. Blum, P. A. Boyle, N. H. Christ, J. Frison, N. Garron, T. Izubuchi and C. Jung et al., arXiv:1505.07863 [hep-lat].

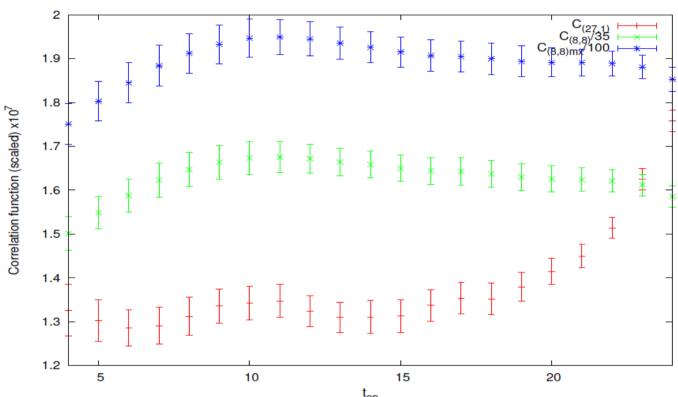
N. Ishizuka, K.-I. Ishikawa, A. Ukawa and T. Yoshi, arXiv:1505.05289 [hep-lat].

$$K \to (\pi\pi)_{I=2}$$

$$K \to (\pi\pi)_{I=0}$$

$$\frac{\operatorname{Re}(A_0)}{\operatorname{Re}(A_2)} \approx 22.5$$

This $\Delta I = 1/2$ rule is unexplained and must be of non-perturbative nature.


$$A_{2/0} = F\langle (\pi\pi)_{I=2/0} | H_W | K \rangle$$

- 3 (four-fermion) operators in the Weak Eff. Hamiltonian contribute.
- F is a factor relating the finite volume matrix elements to the infinite volume ones. It depends on the $\pi\pi$ phase shift [Lellouch and Lüscher, '01]
- Kinematics should be matched, i.e. $E_{\pi\pi} = m_K$. That is achieved using antiperiodic boundary conditions for the d, s.t. $p = \pm \pi/L$

$64^3 \text{ K} \rightarrow \pi\pi$ 3-point correlation functions

Kaon - 2 pion separation 26 $C_i^{K \to \pi\pi}(t) = N_{\pi\pi} N_K M_i e^{-(m_K - E_{\pi\pi})t_{op}} e^{-E_{\pi\pi}t_{\pi\pi}}$

Tadeusz Janowski

- ullet 2 ensembles of 2+1 DW fermions with L~5 fm and physical m₁.
- NP renormalization in RI-SMOM scheme. Matching to MS at 1-loop.
 Currently dominating error budget. (Wilson coeffs. at NLO)

 $\mathrm{Re}(A_2) = 1.50(4)_{\mathrm{stat}}(14)_{\mathrm{syst}} \times 10^{-8} \; \mathrm{GeV}; \quad \mathrm{Im}(A_2) = -6.99(20)_{\mathrm{stat}}(84)_{\mathrm{syst}} \times 10^{-13} \; \mathrm{GeV}.$

Hadronic decays. Multiple-channel generalization of the LL approach [Sharpe and Hansen, 2012, Briceno and Davoudi, 2012]

- The LL method, derived in Minkowski pace, first relates the finite volume dependence of the energy levels of two-particle states (accessible in Euclidean) to the (∞-L) S-matrix and phase shifts (not accessible, due to Maiani-Testa no-go theorem, '90).
- In a second step a new state (e.g. K) is introduced with a perturbative interaction term H_W with $\pi\pi$. Matching the kinematic and considering degenerate PT, the finite L correction to the energy levels is related to the ∞ -L scattering amplitude (i.e. the finite and ∞ L, matrix elements of $\langle K|H_W|\pi\pi\rangle$ are related).
- The explicit generalization includes several two-particle states $(\pi\pi \text{ and } \bar{K}K)$.
- Now the S-matrix does not only include phase shifts and different kinematics are needed to determine the parameters. Also, one gets a system of equations relating finite and infinite volumes matrix elements.
- This is a first step towards hadronic decays of e.g. D-mesons.

Conclusions

- I have given an incomplete review of (mostly) flavor physics on the lattice. Review of FLAG review ...
- Higgs less of a portal to New Physics than hoped.
 To establish that precise results in the b-sector are needed.
- If the keywords are precise and rare, we are getting there. Approaches to include sub-leading systematics being developed (QED, multi-hadron channels).