

Longitudinally segmented shashlik calorimeters with embedded SiPM readout for the ENUBET Project

M. Pozzato (INFN-Bologna) on behalf of ENUBET collaboration

ENUBET (Enhanced NeUtrino BEams from kaon Tagging) is a ERC Consolidator Grant-2015 project (n° 681647, P.I. A. Longhin) with a 2 MEUR funding started on 1/6/2016 w. a 5 years duration

A new-concept v_e source based on tagging of e^+ from $K^+ \rightarrow e^+\pi^0 v_e$ decays

The goal of the project is to demonstrate the **feasibility of real time monitoring of the positrons produced at high angle in the decay tunnel of conventional neutrino beam** to obtain a x 10 reduction in the systematics on the neutrino flux \rightarrow Highly beneficial for the **leptonic CP violation** international program at long baselines $(v_u \rightarrow v_e)$.

- Hadron beam-line: collects, focuses, transports K⁺ to the e⁺ tagger
- e⁺ tagger: real-time, "inclusive" monitoring of produced e⁺

Tagger challenges

- particle rates: > 200 kHz/cm²
- backgrounds: pions from K⁺ decays
- extended source of ~ 50 m
- spread in the initial direction

Technological challenges

- Radiation hard components: harsh environment
- Readout system: embedded in the calorimeter bulk
- Recovery time: O(10ns)
- Readout in triggerless mode: long extraction (10 ms)
- Degassing: detector inside the beam-pipe
- Scalable /cheap technology: up to $\sim 2 \cdot 10^5$ channels

t_o - Layer

The Ultra-Compact Module (UCM)

- 1 SiPM \leftrightarrow WLS fiber
- 9 SiPM signals are added
- No WLS bundling
- Optimal homogenity in longitudinal sampling

Testbeams @ CERN-PS T9 July/November 2016: SCENTT

Shashlik Calorimeters for Electron Neutrino Tagging and Tracing

56 e.m. + 18 adronic UCMs $\rightarrow \sim 30 \text{ X}_0 \rightarrow \text{e}/\pi$ separation study

- Sensitivity to M.I.P → UCM auto-calibration viable
- No saturation effect for e.m. showers up to 5 GeV

Linearity

t₀ layer R&D

Uniformity first test: direct coupling SiPM-scintillator

Time response SiPM SenSL 30020 Series J Directly pulsed with Picosecond Laser (λ = 405 nm)

Polysiloxane scintillator R&D: INFN-PD and LNL (S. Carturan)

- No drilling/molding of tiles
- First time Test in HEP
 @T9 November 16th

New prototype under development:

- Light Yield maximization
- Collection efficiency improvement

References

- [1] "A novel technique for the measurement of the electron neutrino cross section" A. Longhin, L. Ludovici, F. Terranova Eur. Phys. J. C (2015) 75:155
- [2] "Enabling precise measurements of flux in accelerator neutrino beams: the ENUBET project" The ENUBET collaboration CERN-SPSC-2016-036; SPSC-EOI-014
- [3] "A compact light readout system for longitudinally segmented shashlik calorimeters" A. Berra et al. N.I.M. A, 2016.05.123 arXiv:1605:09630

http://enubet.pd.infn.it