Single Top Production Cross Section Measurement at

Yun-Tse Tsai University of Rochester La Thuile 2013 Feb. 26th, 2013

EW Top Quark Production

- Measure the two important single top production modes at Tevatron:
 s and t channel
- Directly probe the CKM matrix element |Vtb|
- Measure the top decay width
- New physics can change σ_s and σ_t differently:
 - σ_s : New bosons
 - σ_t : FCNC, anomalous couplings

• σ_{s(SM)}≃5, σ_{t(SM)}≃65pb @LHC 7TeV

A Challenging Analysis

3

- Small cross section: ~3pb
- Background dominated
- Same final states as the background (e.g. W+jets)
- Observed after 14 years of top pair observation!

b

Event Selection

- 9.7 fb⁻¹ data (full Tevatron data)
- One high p_T isolated electron or muon: p_T > 20 GeV
- Large missing energy
- Two or three jets
 - $p_T > 20 \text{ GeV}, |\eta^{det}| < 2.5$
 - The leading jet $p_T > 25$ GeV
- Total transverse energy (H_T) cut to reject multijet background
- Require one or two identified b-jets (b-tagging)

Signal & Background Modeling

- Signals: CompHEP+Pythia
- W+jets & top pair: Alpgen+Pythia
- Multijet: Data with none-isolated lepton
- Normalize W+jets and Multijet to data
- s-ch: t-ch: Backgrounds = |:|.4:50

t-channel

W+jets

top pair

s-channel

Multijet

Z+jet, dibosons

ME Discriminant

• ME Processes:

	2 Jet	3 Jet
Single Top	tb, tq	tbg, tqb, tqg
Background	Wbb, Wcg, Wgg, top pair, WW, WZ, ggg	Wbbg, Wugg, top pair

- Discriminant: Likelihood ratio
 - *b*-ID output information included

$$D(x) = \frac{P_{sig}(x)}{P_{sig}(x) + P_{bkgd}(x)}$$

Discriminant Output

t-channel discriminant

DØ work in progress

Ensemble Test

- Bayesian approach
 - Binned likelihood
- Uniform, non-negative prior for signal cross section
- All the uncertainties and their correlations taken into account
- SM ensemble averages as the expected results:
 - s-ch: 1.05^{+0.38}-0.35 pb
 - *t*-ch: 2.26^{+0.58}-0.54 pb
- No calibration needed

Expected Significance

- Asymptotic approximation of the log-likelihood ratio (LLR)
- With a uniform prior, the asymptotic probabilities of B and S+B are Gaussians
- Expected p-values:
 - s-ch: 6.3e-04 (3.2 s.d.)
 - t-ch: 6.4e-07 (4.8 s.d.)
- Previous DØ t-ch: 5.5 s.d.

Summary

Measuring the s- and t-ch single top production cross section individually at DØ with the full Tevatron Run II data, 9.7 fb⁻¹

- A legacy measurement at a proton-antiproton collider with $\sqrt{s} = 1.96 \text{ TeV}$
- Two multivariate analyses, the Boosted Decision Trees and Bayesian Neural Network, ongoing
- Will combine the Matrix Element method and the two multivariate analyses

Will have the results with data soon

Backup Slides

12

ttbar: Missing Jets Modeling

- ttbar yields in 2jet & 3jet bins are comparable to single top
- Light-jets are more likely to be lost than b-jets
- Use MC to derive a prior of missing jet (3jet) or missing W (2jet)

Analysis Techniques

