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Motivation and overview

◦ Approach: exploring particle physics from cosmological considerations

◦ Cosmology provides

◦ evidences for the incompleteness of the Standard Model

◦ potential new signatures of BSM (phase transitions, gravitational waves,...)

This talk: a study of the electroweak phase transition in an extension of the
Standard Model with classical scale invariance.
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Standard Model with hidden scale invariance

◦ Scale invariant models are attractive to address the hierarchy problem

◦ Assume existence of UV complete scale invariant model (string theory,...)

◦ Focus on low-energy effective field theory:

◦ Standard Model Higgs potential at UV scale Λ

V(Φ†Φ) = V0(Λ) + λ(Λ)
[
Φ†Φ− v2

ew(Λ)
]2

+ ...

◦ spontaneously broken scale invariance manifests through dilaton field χ

Λ→ Λ χ
fχ
≡ αχ

v2
ew(Λ)→ v2

ew(αχ)
f 2
χ

χ2 ≡ ξ(αχ)
2 χ2

V0(Λ)→ V0(αχ)
f 4
χ

χ4 ≡ ρ(αχ)
4 χ4

We get an effective scale invariant potential:

V(Φ†Φ, χ) = λ(αχ)

[
Φ†Φ− ξ(αχ)

2
χ2
]2

+
ρ(αχ)

4
χ4
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Hierarchy and light dilaton

◦ Scale invariance is broken by quantum effects:

λ(i)(αχ) = λ(i)(µ) + βλ(i) (µ) ln (αχ/µ) + β′
λ(i) (µ) ln2 (αχ/µ) + ...

◦ Minimisation conditions and small vacuum energy density:

∂V
∂χ

∣∣∣∣
Φ=vew ,χ=vχ

= 0,
∂V
∂Φ

∣∣∣∣
Φ=vew ,χ=vχ

= 0, V(vew, vχ) = 0

◦ We obtain dimensional transmutation and hierarchy of VEVs (Λ ∼ vχ):

ρ(vχ) = 0, βρ(vχ) = 0, ξ(vχ) =
v2

ew
v2

χ

◦ ξ(vχ) can be hierarchically small (technical naturalness)

◦ Prediction of a light dilaton: m2
χ '

β′ρ(vχ)

4ξ(vχ)
v2

ew
mχ

mh
∼
√

ξ

4 / 11



Hierarchy and light dilaton

◦ Scale invariance is broken by quantum effects:

λ(i)(αχ) = λ(i)(µ) + βλ(i) (µ) ln (αχ/µ) + β′
λ(i) (µ) ln2 (αχ/µ) + ...

◦ Minimisation conditions and small vacuum energy density:

∂V
∂χ

∣∣∣∣
Φ=vew ,χ=vχ

= 0,
∂V
∂Φ

∣∣∣∣
Φ=vew ,χ=vχ

= 0, V(vew, vχ) = 0

◦ We obtain dimensional transmutation and hierarchy of VEVs (Λ ∼ vχ):

ρ(vχ) = 0, βρ(vχ) = 0, ξ(vχ) =
v2

ew
v2

χ

◦ ξ(vχ) can be hierarchically small (technical naturalness)

◦ Prediction of a light dilaton: m2
χ '

β′ρ(vχ)

4ξ(vχ)
v2

ew
mχ

mh
∼
√

ξ

4 / 11



Hierarchy and light dilaton

◦ Scale invariance is broken by quantum effects:

λ(i)(αχ) = λ(i)(µ) + βλ(i) (µ) ln (αχ/µ) + β′
λ(i) (µ) ln2 (αχ/µ) + ...

◦ Minimisation conditions and small vacuum energy density:

∂V
∂χ

∣∣∣∣
Φ=vew ,χ=vχ

= 0,
∂V
∂Φ

∣∣∣∣
Φ=vew ,χ=vχ

= 0, V(vew, vχ) = 0

◦ We obtain dimensional transmutation and hierarchy of VEVs (Λ ∼ vχ):

ρ(vχ) = 0, βρ(vχ) = 0, ξ(vχ) =
v2

ew
v2

χ

◦ ξ(vχ) can be hierarchically small (technical naturalness)

◦ Prediction of a light dilaton: m2
χ '

β′ρ(vχ)

4ξ(vχ)
v2

ew
mχ

mh
∼
√

ξ

4 / 11



Hierarchy and light dilaton

◦ Scale invariance is broken by quantum effects:

λ(i)(αχ) = λ(i)(µ) + βλ(i) (µ) ln (αχ/µ) + β′
λ(i) (µ) ln2 (αχ/µ) + ...

◦ Minimisation conditions and small vacuum energy density:

∂V
∂χ

∣∣∣∣
Φ=vew ,χ=vχ

= 0,
∂V
∂Φ

∣∣∣∣
Φ=vew ,χ=vχ

= 0, V(vew, vχ) = 0

◦ We obtain dimensional transmutation and hierarchy of VEVs (Λ ∼ vχ):

ρ(vχ) = 0, βρ(vχ) = 0, ξ(vχ) =
v2

ew
v2

χ

◦ ξ(vχ) can be hierarchically small (technical naturalness)

◦ Prediction of a light dilaton: m2
χ '

β′ρ(vχ)

4ξ(vχ)
v2

ew
mχ

mh
∼
√

ξ

4 / 11



Hierarchy and light dilaton

◦ Scale invariance is broken by quantum effects:

λ(i)(αχ) = λ(i)(µ) + βλ(i) (µ) ln (αχ/µ) + β′
λ(i) (µ) ln2 (αχ/µ) + ...

◦ Minimisation conditions and small vacuum energy density:

∂V
∂χ

∣∣∣∣
Φ=vew ,χ=vχ

= 0,
∂V
∂Φ

∣∣∣∣
Φ=vew ,χ=vχ

= 0, V(vew, vχ) = 0

◦ We obtain dimensional transmutation and hierarchy of VEVs (Λ ∼ vχ):

ρ(vχ) = 0, βρ(vχ) = 0, ξ(vχ) =
v2

ew
v2

χ

◦ ξ(vχ) can be hierarchically small (technical naturalness)

◦ Prediction of a light dilaton: m2
χ '

β′ρ(vχ)

4ξ(vχ)
v2

ew
mχ

mh
∼
√

ξ

4 / 11



Recovering the Standard Model at µ = vew

◦ Consider the running of parameters between vew and vχ ∼ Λ

◦ Require that m2
χ(vew) > 0

169 170 171 172 173 174 175

1019

1020

1021

mt/GeV

Λ
/G
eV

◦ Dilaton mass at vχ ∼ Λ ∼ MP: mχ ∼ 10−8 eV

◦ Indicative only and requires higher-loop corrections
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Early universe phase transitions

Hot Big Bang scenario:

◦ early Universe ∼ hot plasma (high T)

◦ scalar field(s) behaviour dictated by
their free energy density F (ρ, T)

◦ dynamics depend on the underlying
particle physics model

2nd-order transition / crossover:

◦ smooth dynamics

◦ no particular signatures
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Electroweak and QCD phase transitions

In the Standard Model, both electroweak and QCD PTs are crossover
[K. Kajantie et al., Phys. Rev. Lett. 77 (1996) 2887] [Y. Aoki et al, Nature 443 (2006) 675]

⇒ no stochastic GW background predicted in the SM

In the model with hidden scale invariance:

◦ flat direction in the Higgs-dilaton potential at tree level

◦ vacua are almost degenerate ⇒ no EWPT until T � TEW

QCD-induced electroweak phase transition:

◦ supercooling until T ∼ TQCD

◦ at TQCD: chiral phase transition with 6 massless quarks

◦ quark condensates reduce the barrier in the Higgs potential ⇒ EWPT

See also: [E. Witten Nucl.Pys.B177 (1981) 477] [W. Buchmuller, D. Wyler, PLB 249 (1990) 281 ] [S. Iso et al., PRL 119 (2017)

141301] [B. von Harling, G. Servant, JHEP 1801 (2018) 159]
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Thermal Higgs-dilaton potential + quark condensates

◦ Thermal contributions to the Higgs-dilaton potential ⇒ barrier along the
flat direction:

VT(h, χ(h)) ≈ AT4 +
1
48

[
4λ(Λ) + 6y2

t (Λ) +
9
2

g2(Λ) +
3
2

g′2(Λ)

]
h2T2 + . . .

◦ Quark-antiquark condensate with N massless quarks:

〈q̄q〉T = 〈q̄q〉
[

1− (N2 − 1)
T2

12N f 2
π
− 1

2
(N2 − 1)

(
T2

12N f 2
π

)2

+ . . .

]

◦ Quark-Higgs Yukawa interactions induce a linear term in the potential:

VT(h)→ VT(h) +
yq√

2
〈q̄q〉Th

◦ This linear term dominates over the barrier for small enough T
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Results and dynamics of the transitions

◦ For N = 6 and fπ ≈ 93 MeV, 〈q̄q〉Tc = 0 at Tc ≈ 132 MeV

◦ For T ≈ 127 MeV the barrier disappears and the EWPT completes

◦ The Higgs-dilaton rolls down the potential (smooth transition)

◦ However, SU(6)R × SU(6)L chiral symmetry breaking is 1st-order for
massless quarks [D. Pisarski, F. Wilczek, PRD 29 (1984) 338]

◦ Implicit assumption: chiral transition completes quickly

◦ More refined analysis currently under investigation:

◦ effective field theory for the Higgs, dilaton and pions

◦ U(6)×U(6) linear sigma model for the pions

L = Tr
(

∂µ ϕ†∂µ ϕ−m2 ϕ† ϕ
)
− λ1

[
Tr
(

ϕ† ϕ
)]2
− λ2Tr

(
ϕ† ϕ

)2
+ L(ϕ, φ, χ)
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◦ The Higgs-dilaton rolls down the potential (smooth transition)

◦ However, SU(6)R × SU(6)L chiral symmetry breaking is 1st-order for
massless quarks [D. Pisarski, F. Wilczek, PRD 29 (1984) 338]

◦ Implicit assumption: chiral transition completes quickly

◦ More refined analysis currently under investigation:

◦ effective field theory for the Higgs, dilaton and pions

◦ U(6)×U(6) linear sigma model for the pions
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Gravitational Waves

◦ 1st order chiral transition ⇒ stochastic background of GWs

◦ Peak frequency roughly given by size of bubbles at collision: fp ≈ R−1
c

◦ observed frequency today:

f0 = fp
a(tc)

a(t0)
≈ 1.65 · 10−8 1

Rc Hc

Tc

100 MeV
Hz ≈ 10−7 Hz

◦ possible detection with Pulsar Timing Arrays (EPTA, NANOGrav, SKA)
[C. Caprini et al., PRD 82 (2010) 063511] [A. Kobakhidze et al., EPJ C77 (2017) 570]

◦ precise spectrum and amplitude of the background currently under
computation
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Gravitational Waves

[From rhcole.com/apps/GWplotter/]
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Conclusion

◦ Scale invariant extensions of the SM motivated by the hierarchy problem

◦ Low energy effective formulation with a dilaton field

◦ Interesting predictions:

◦ small dilaton mass: mχ ≈ 10−8 eV

◦ low temperature QCD-induced electroweak transition

◦ GW signal in the range of Pulsar Timing Arrays
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