Low temperature electroweak phase transition with hidden scale invariance

Cyril Lagger

S. Arunasalam, A. Kobakhidze, CL, S. Liang, A. Zhou, PLB 776 (2018) 48-53

Les Rencontres de Physique - La Thuile - February 26, 2018

Motivation and overview

o Approach: exploring particle physics from cosmological considerations

Motivation and overview

- o Approach: exploring particle physics from cosmological considerations
- Cosmology provides
 - evidences for the incompleteness of the Standard Model
 - o potential new signatures of BSM (phase transitions, gravitational waves,...)

Motivation and overview

- Approach: exploring particle physics from cosmological considerations
- Cosmology provides
 - o evidences for the incompleteness of the Standard Model
 - o potential new signatures of BSM (phase transitions, gravitational waves,...)

This talk: a study of the electroweak phase transition in an extension of the Standard Model with classical scale invariance.

• Scale invariant models are attractive to address the hierarchy problem

- Scale invariant models are attractive to address the hierarchy problem
- Assume existence of UV complete scale invariant model (string theory,...)

- Scale invariant models are attractive to address the hierarchy problem
- Assume existence of UV complete scale invariant model (string theory,...)
- o Focus on low-energy effective field theory:
 - Standard Model Higgs potential at UV scale Λ

$$V(\Phi^\dagger\Phi) = V_0(\Lambda) + \lambda(\Lambda) \left[\Phi^\dagger\Phi - v_{ew}^2(\Lambda)\right]^2 + \dots$$

o spontaneously broken scale invariance manifests through dilaton field χ

$$\begin{array}{l} \Lambda \to \Lambda \frac{\chi}{f_\chi} \equiv \alpha \chi \\ v_{ew}^2(\Lambda) \to \frac{v_{ew}^2(\alpha \chi)}{f_\chi^2} \chi^2 \equiv \frac{\xi(\alpha \chi)}{2} \chi^2 \\ V_0(\Lambda) \to \frac{V_0(\alpha \chi)}{f_\chi^4} \chi^4 \equiv \frac{\rho(\alpha \chi)}{4} \chi^4 \end{array}$$

- Scale invariant models are attractive to address the hierarchy problem
- Assume existence of UV complete scale invariant model (string theory,...)
- Focus on low-energy effective field theory:
 - Standard Model Higgs potential at UV scale Λ

$$V(\Phi^{\dagger}\Phi) = V_0(\Lambda) + \lambda(\Lambda) \left[\Phi^{\dagger}\Phi - v_{ew}^2(\Lambda)\right]^2 + \dots$$

o spontaneously broken scale invariance manifests through dilaton field χ

$$\begin{array}{l} \Lambda \rightarrow \Lambda \frac{\chi}{f_{\chi}} \equiv \alpha \chi \\ v_{ew}^2(\Lambda) \rightarrow \frac{v_{ew}^2(\alpha \chi)}{f_{\chi}^2} \chi^2 \equiv \frac{\xi(\alpha \chi)}{2} \chi^2 \\ V_0(\Lambda) \rightarrow \frac{V_0(\alpha \chi)}{f_{\chi}^4} \chi^4 \equiv \frac{\rho(\alpha \chi)}{4} \chi^4 \end{array}$$

We get an effective scale invariant potential:

$$V(\Phi^{\dagger}\Phi,\chi) = \lambda(\alpha\chi) \left[\Phi^{\dagger}\Phi - \frac{\xi(\alpha\chi)}{2}\chi^{2} \right]^{2} + \frac{\rho(\alpha\chi)}{4}\chi^{4}$$

Scale invariance is broken by quantum effects:

$$\lambda^{(i)}(\alpha \chi) = \lambda^{(i)}(\mu) + \beta_{\lambda^{(i)}}(\mu) \ln (\alpha \chi/\mu) + \beta'_{\lambda^{(i)}}(\mu) \ln^2 (\alpha \chi/\mu) + \dots$$

Scale invariance is broken by quantum effects:

$$\lambda^{(i)}(\alpha \chi) = \lambda^{(i)}(\mu) + \beta_{\lambda^{(i)}}(\mu) \ln (\alpha \chi / \mu) + \beta'_{\lambda^{(i)}}(\mu) \ln^2 (\alpha \chi / \mu) + \dots$$

Minimisation conditions and small vacuum energy density:

$$\left. \frac{\partial V}{\partial \chi} \right|_{\Phi = v_{ew}, \chi = v_\chi} = 0, \quad \left. \frac{\partial V}{\partial \Phi} \right|_{\Phi = v_{ew}, \chi = v_\chi} = 0, \quad V(v_{ew}, v_\chi) = 0$$

Scale invariance is broken by quantum effects:

$$\lambda^{(i)}(\alpha \chi) = \lambda^{(i)}(\mu) + \beta_{\lambda^{(i)}}(\mu) \ln(\alpha \chi/\mu) + \beta'_{\lambda^{(i)}}(\mu) \ln^2(\alpha \chi/\mu) + \dots$$

o Minimisation conditions and small vacuum energy density:

$$\left. \frac{\partial V}{\partial \chi} \right|_{\Phi = v_{ew}, \chi = v_{\chi}} = 0, \quad \left. \frac{\partial V}{\partial \Phi} \right|_{\Phi = v_{ew}, \chi = v_{\chi}} = 0, \quad V(v_{ew}, v_{\chi}) = 0$$

• We obtain dimensional transmutation and hierarchy of VEVs ($\Lambda \sim v_{\chi}$):

$$ho(v_\chi)=0,\quad eta_
ho(v_\chi)=0,\quad \xi(v_\chi)=rac{v_{ew}^2}{v_\chi^2}$$

Scale invariance is broken by quantum effects:

$$\lambda^{(i)}(\alpha \chi) = \lambda^{(i)}(\mu) + \beta_{\lambda^{(i)}}(\mu) \ln(\alpha \chi/\mu) + \beta'_{\lambda^{(i)}}(\mu) \ln^2(\alpha \chi/\mu) + \dots$$

Minimisation conditions and small vacuum energy density:

$$\left. \frac{\partial V}{\partial \chi} \right|_{\Phi = v_{ew}, \chi = v_{\chi}} = 0, \quad \left. \frac{\partial V}{\partial \Phi} \right|_{\Phi = v_{ew}, \chi = v_{\chi}} = 0, \quad V(v_{ew}, v_{\chi}) = 0$$

 \circ We obtain dimensional transmutation and hierarchy of VEVs ($\Lambda \sim v_\chi$):

$$ho(v_\chi)=0,\quad eta_
ho(v_\chi)=0,\quad \xi(v_\chi)=rac{v_{ev}^2}{v_\chi^2}$$

 \circ $\xi(v_{\chi})$ can be hierarchically small (technical naturalness)

Scale invariance is broken by quantum effects:

$$\lambda^{(i)}(\alpha \chi) = \lambda^{(i)}(\mu) + \beta_{\lambda^{(i)}}(\mu) \ln(\alpha \chi/\mu) + \beta'_{\lambda^{(i)}}(\mu) \ln^2(\alpha \chi/\mu) + \dots$$

Minimisation conditions and small vacuum energy density:

$$\left. \frac{\partial V}{\partial \chi} \right|_{\Phi = v_{ew}, \chi = v_{\chi}} = 0, \quad \left. \frac{\partial V}{\partial \Phi} \right|_{\Phi = v_{ew}, \chi = v_{\chi}} = 0, \quad V(v_{ew}, v_{\chi}) = 0$$

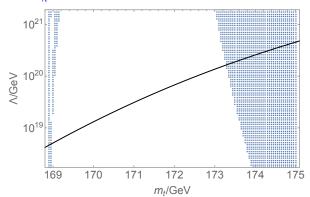
• We obtain dimensional transmutation and hierarchy of VEVs ($\Lambda \sim v_{\chi}$):

$$ho(v_\chi)=0,\quad eta_
ho(v_\chi)=0,\quad \xi(v_\chi)=rac{v_{ew}^2}{v_\chi^2}$$

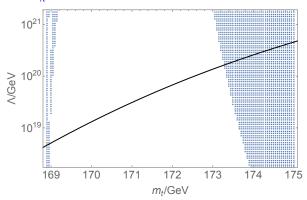
- \circ $\xi(v_\chi)$ can be hierarchically small (technical naturalness)
- Prediction of a light dilaton: $m_\chi^2 \simeq rac{eta_{/\!\!/}^\prime(v_\chi)}{4 \xi(v_\chi)} v_{ew}^2$ $rac{m_\chi}{m_h} \sim \sqrt{\xi}$

 $\circ\,$ Consider the running of parameters between v_{ew} and $v_{\chi} \sim \Lambda$

- \circ Consider the running of parameters between v_{ew} and $v_\chi \sim \Lambda$
- Require that $m_\chi^2(v_{ew}) > 0$

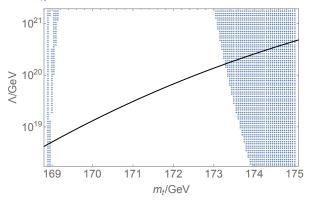


- \circ Consider the running of parameters between v_{ew} and $v_\chi \sim \Lambda$
- Require that $m_{\chi}^2(v_{ew}) > 0$



o Dilaton mass at $v_\chi \sim \Lambda \sim M_P$: $m_\chi \sim 10^{-8}$ eV

- \circ Consider the running of parameters between v_{ew} and $v_{\chi} \sim \Lambda$
- Require that $m_{\chi}^2(v_{ew}) > 0$

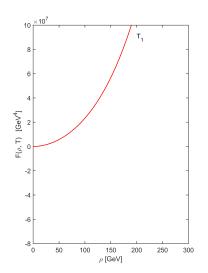


- \circ Dilaton mass at $v_\chi \sim \Lambda \sim M_P$: $m_\chi \sim 10^{-8}$ eV
- o Indicative only and requires higher-loop corrections

Hot Big Bang scenario:

- early Universe \sim hot plasma (high T)
- o scalar field(s) behaviour dictated by their free energy density $\mathcal{F}(\rho,T)$
- dynamics depend on the underlying particle physics model

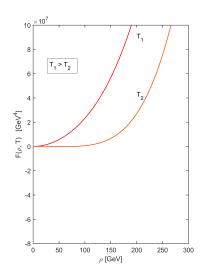
- o smooth dynamics
- o no particular signatures



Hot Big Bang scenario:

- early Universe \sim hot plasma (high T)
- o scalar field(s) behaviour dictated by their free energy density $\mathcal{F}(\rho, T)$
- dynamics depend on the underlying particle physics model

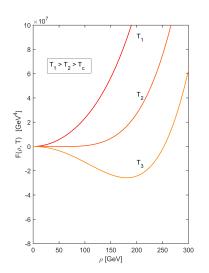
- o smooth dynamics
- o no particular signatures



Hot Big Bang scenario:

- early Universe \sim hot plasma (high T)
- o scalar field(s) behaviour dictated by their free energy density $\mathcal{F}(\rho,T)$
- dynamics depend on the underlying particle physics model

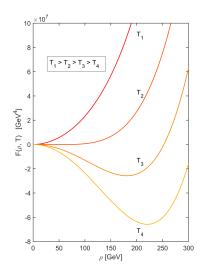
- o smooth dynamics
- o no particular signatures



Hot Big Bang scenario:

- early Universe \sim hot plasma (high T)
- o scalar field(s) behaviour dictated by their free energy density $\mathcal{F}(\rho,T)$
- dynamics depend on the underlying particle physics model

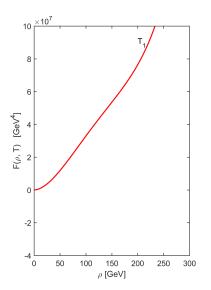
- o smooth dynamics
- o no particular signatures



Hot Big Bang scenario:

- early Universe \sim hot plasma (high T)
- scalar field(s) behaviour dictated by their free energy density $\mathcal{F}(\rho, T)$
- dynamics depend on the underlying particle physics model

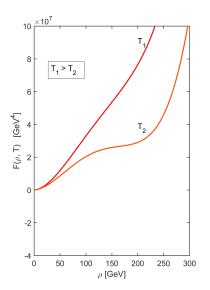
- bubble nucleation/collision
- stochastic GW background



Hot Big Bang scenario:

- early Universe \sim hot plasma (high T)
- o scalar field(s) behaviour dictated by their free energy density $\mathcal{F}(\rho,T)$
- dynamics depend on the underlying particle physics model

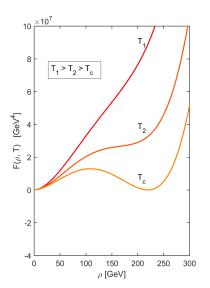
- bubble nucleation/collision
- stochastic GW background



Hot Big Bang scenario:

- early Universe \sim hot plasma (high T)
- scalar field(s) behaviour dictated by their free energy density $\mathcal{F}(\rho, T)$
- dynamics depend on the underlying particle physics model

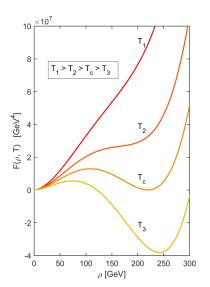
- bubble nucleation/collision
- stochastic GW background



Hot Big Bang scenario:

- early Universe \sim hot plasma (high T)
- scalar field(s) behaviour dictated by their free energy density $\mathcal{F}(\rho, T)$
- dynamics depend on the underlying particle physics model

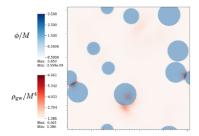
- bubble nucleation/collision
- stochastic GW background

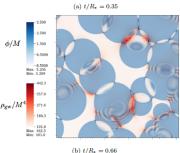


Hot Big Bang scenario:

- early Universe \sim hot plasma (high T)
- o scalar field(s) behaviour dictated by their free energy density $\mathcal{F}(\rho, T)$
- dynamics depend on the underlying particle physics model

- bubble nucleation/collision
- stochastic GW background





[D. Cutting, M. Hindmarsh, D. Weir, arXiv:1802.05712]

In the Standard Model, both electroweak and QCD PTs are crossover

[K. Kajantie et al., Phys. Rev. Lett. 77 (1996) 2887] [Y. Aoki et al, Nature 443 (2006) 675]

⇒ no stochastic GW background predicted in the SM

In the Standard Model, both electroweak and QCD PTs are crossover

[K. Kajantie et al., Phys. Rev. Lett. 77 (1996) 2887] [Y. Aoki et al, Nature 443 (2006) 675]

⇒ no stochastic GW background predicted in the SM

In the model with hidden scale invariance:

- o flat direction in the Higgs-dilaton potential at tree level
- \circ vacua are almost degenerate \Rightarrow no EWPT until $T \ll T_{EW}$

In the Standard Model, both electroweak and QCD PTs are crossover

[K. Kajantie et al., Phys. Rev. Lett. 77 (1996) 2887] [Y. Aoki et al, Nature 443 (2006) 675]

⇒ no stochastic GW background predicted in the SM

In the model with hidden scale invariance:

- o flat direction in the Higgs-dilaton potential at tree level
- \circ vacua are almost degenerate \Rightarrow no EWPT until $T \ll T_{EW}$

QCD-induced electroweak phase transition:

- supercooling until $T \sim T_{OCD}$
- \circ at T_{OCD} : chiral phase transition with 6 massless quarks
- quark condensates reduce the barrier in the Higgs potential ⇒ EWPT

In the Standard Model, both electroweak and QCD PTs are crossover

[K. Kajantie et al., Phys. Rev. Lett. 77 (1996) 2887] [Y. Aoki et al, Nature 443 (2006) 675]

⇒ no stochastic GW background predicted in the SM

In the model with hidden scale invariance:

- o flat direction in the Higgs-dilaton potential at tree level
- \circ vacua are almost degenerate \Rightarrow no EWPT until $T \ll T_{EW}$

QCD-induced electroweak phase transition:

- supercooling until $T \sim T_{OCD}$
- at T_{QCD}: chiral phase transition with 6 massless quarks
- quark condensates reduce the barrier in the Higgs potential ⇒ EWPT

See also: [E. Witten Nucl.Pys.B177 (1981) 477] [W. Buchmuller, D. Wyler, PLB 249 (1990) 281] [S. Iso et al., PRL 119 (2017) 141301] [B. von Harling, G. Servant, JHEP 1801 (2018) 159]

 \circ Thermal contributions to the Higgs-dilaton potential \Rightarrow barrier along the flat direction:

$$V_T(h,\chi(h)) \approx AT^4 + \frac{1}{48} \left[4\lambda(\Lambda) + 6y_t^2(\Lambda) + \frac{9}{2}g^2(\Lambda) + \frac{3}{2}g'^2(\Lambda) \right] h^2T^2 + \dots$$

 Thermal contributions to the Higgs-dilaton potential ⇒ barrier along the flat direction:

$$V_T(h,\chi(h)) \approx AT^4 + \frac{1}{48} \left[4\lambda(\Lambda) + 6y_t^2(\Lambda) + \frac{9}{2}g^2(\Lambda) + \frac{3}{2}g'^2(\Lambda) \right] h^2T^2 + \dots$$

 \circ Quark-antiquark condensate with N massless quarks:

$$\langle \bar{q}q \rangle_T = \langle \bar{q}q \rangle \left[1 - (N^2 - 1) \frac{T^2}{12Nf_{\pi}^2} - \frac{1}{2}(N^2 - 1) \left(\frac{T^2}{12Nf_{\pi}^2} \right)^2 + \dots \right]$$

 Thermal contributions to the Higgs-dilaton potential ⇒ barrier along the flat direction:

$$V_T(h,\chi(h)) \approx AT^4 + \frac{1}{48} \left[4\lambda(\Lambda) + 6y_t^2(\Lambda) + \frac{9}{2}g^2(\Lambda) + \frac{3}{2}g'^2(\Lambda) \right] h^2T^2 + \dots$$

 \circ Quark-antiquark condensate with N massless quarks:

$$\langle \bar{q}q \rangle_T = \langle \bar{q}q \rangle \left[1 - (N^2 - 1) \frac{T^2}{12Nf_{\pi}^2} - \frac{1}{2}(N^2 - 1) \left(\frac{T^2}{12Nf_{\pi}^2} \right)^2 + \ldots \right]$$

• Quark-Higgs Yukawa interactions induce a linear term in the potential:

$$V_T(h) \rightarrow V_T(h) + \frac{y_q}{\sqrt{2}} \langle \bar{q}q \rangle_T h$$

 Thermal contributions to the Higgs-dilaton potential ⇒ barrier along the flat direction:

$$V_T(h,\chi(h)) \approx AT^4 + \frac{1}{48} \left[4\lambda(\Lambda) + 6y_t^2(\Lambda) + \frac{9}{2}g^2(\Lambda) + \frac{3}{2}g'^2(\Lambda) \right] h^2T^2 + \dots$$

 \circ Quark-antiquark condensate with N massless quarks:

$$\langle \bar{q}q \rangle_T = \langle \bar{q}q \rangle \left[1 - (N^2 - 1) \frac{T^2}{12Nf_{\pi}^2} - \frac{1}{2}(N^2 - 1) \left(\frac{T^2}{12Nf_{\pi}^2} \right)^2 + \ldots \right]$$

Quark-Higgs Yukawa interactions induce a linear term in the potential:

$$V_T(h) o V_T(h) + rac{y_q}{\sqrt{2}} \langle ar{q}q \rangle_T h$$

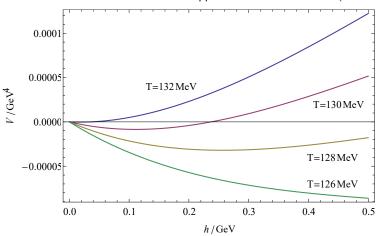
This linear term dominates over the barrier for small enough T

Results and dynamics of the transitions

 \circ For N=6 and $f_\pi pprox 93$ MeV, $\langle \bar{q}q \rangle_{T_c} = 0$ at $T_c pprox 132$ MeV

Results and dynamics of the transitions

- \circ For N=6 and $f_\pi pprox 93$ MeV, $\langle \bar{q}q \rangle_{T_c} = 0$ at $T_c pprox 132$ MeV
- \circ For $T \approx 127$ MeV the barrier disappears and the EWPT completes



- \circ For N=6 and $f_\pi pprox 93$ MeV, $\langle \bar{q}q \rangle_{T_c} = 0$ at $T_c pprox 132$ MeV
- \circ For $T \approx 127$ MeV the barrier disappears and the EWPT completes
- The Higgs-dilaton rolls down the potential (smooth transition)

- \circ For N=6 and $f_{\pi} \approx 93$ MeV, $\langle \bar{q}q \rangle_{T_c} = 0$ at $T_c \approx 132$ MeV
- For $T \approx 127$ MeV the barrier disappears and the EWPT completes
- The Higgs-dilaton rolls down the potential (smooth transition)
- However, $SU(6)_R \times SU(6)_L$ chiral symmetry breaking is 1st-order for massless quarks [D. Pisarski, F. Wilczek, PRD 29 (1984) 338]

- \circ For N=6 and $f_{\pi}\approx 93$ MeV, $\langle \bar{q}q\rangle_{T_c}=0$ at $T_c\approx 132$ MeV
- \circ For $T \approx 127$ MeV the barrier disappears and the EWPT completes
- The Higgs-dilaton rolls down the potential (smooth transition)
- However, $SU(6)_R \times SU(6)_L$ chiral symmetry breaking is 1st-order for massless quarks [D. Pisarski, F. Wilczek, PRD 29 (1984) 338]
- o Implicit assumption: chiral transition completes quickly

- \circ For N=6 and $f_{\pi}\approx 93$ MeV, $\langle \bar{q}q\rangle_{T_c}=0$ at $T_c\approx 132$ MeV
- For $T \approx 127$ MeV the barrier disappears and the EWPT completes
- The Higgs-dilaton rolls down the potential (smooth transition)
- However, $SU(6)_R \times SU(6)_L$ chiral symmetry breaking is 1st-order for massless quarks [D. Písarski, F. Wilczek, PRD 29 (1984) 338]
- o Implicit assumption: chiral transition completes quickly
- More refined analysis currently under investigation:
 - o effective field theory for the Higgs, dilaton and pions
 - o $U(6) \times U(6)$ linear sigma model for the pions

$$\mathcal{L} = \mathsf{Tr} \left(\partial_{\mu} \phi^{\dagger} \partial^{\mu} \phi - m^2 \phi^{\dagger} \phi \right) - \lambda_1 \left[\mathsf{Tr} \left(\phi^{\dagger} \phi \right) \right]^2 - \lambda_2 \mathsf{Tr} \left(\phi^{\dagger} \phi \right)^2 + \mathcal{L} (\phi, \phi, \chi)$$

 \circ 1st order chiral transition \Rightarrow stochastic background of GWs

- 1st order chiral transition ⇒ stochastic background of GWs
- $\circ~$ Peak frequency roughly given by size of bubbles at collision: $f_p \approx R_c^{-1}$

- 1st order chiral transition ⇒ stochastic background of GWs
- $\circ~$ Peak frequency roughly given by size of bubbles at collision: $f_{p}\approx R_{c}^{-1}$
- observed frequency today:

$$f_0 = f_p \frac{a(t_c)}{a(t_0)} \approx 1.65 \cdot 10^{-8} \frac{1}{R_c H_c} \frac{T_c}{100 \text{ MeV}} \text{ Hz} \approx 10^{-7} \text{ Hz}$$

- 1st order chiral transition ⇒ stochastic background of GWs
- o Peak frequency roughly given by size of bubbles at collision: $f_p \approx R_c^{-1}$
- observed frequency today:

$$f_0 = f_p \frac{a(t_c)}{a(t_0)} \approx 1.65 \cdot 10^{-8} \frac{1}{R_c H_c} \frac{T_c}{100 \text{ MeV}} \text{ Hz} \approx 10^{-7} \text{ Hz}$$

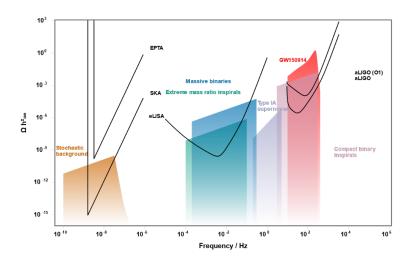
o possible detection with Pulsar Timing Arrays (EPTA, NANOGrav, SKA)

[C. Caprini et al., PRD 82 (2010) 063511] [A. Kobakhidze et al., EPJ C77 (2017) 570]

- 1st order chiral transition ⇒ stochastic background of GWs
- Peak frequency roughly given by size of bubbles at collision: $f_p \approx R_c^{-1}$
- observed frequency today:

$$f_0 = f_p \frac{a(t_c)}{a(t_0)} \approx 1.65 \cdot 10^{-8} \frac{1}{R_c H_c} \frac{T_c}{100 \text{ MeV}} \text{ Hz} \approx 10^{-7} \text{ Hz}$$

- possible detection with Pulsar Timing Arrays (EPTA, NANOGrav, SKA)
 [C. Caprini et al., PRD 82 (2010) 063511] [A. Kobakhidze et al., EPJ C77 (2017) 570]
- precise spectrum and amplitude of the background currently under computation



[From rhcole.com/apps/GWplotter/]

Conclusion

o Scale invariant extensions of the SM motivated by the hierarchy problem

Conclusion

- o Scale invariant extensions of the SM motivated by the hierarchy problem
- Low energy effective formulation with a dilaton field

Conclusion

- o Scale invariant extensions of the SM motivated by the hierarchy problem
- Low energy effective formulation with a dilaton field
- Interesting predictions:
 - \circ small dilaton mass: $m_\chi pprox 10^{-8} \ {
 m eV}$
 - o low temperature QCD-induced electroweak transition
 - GW signal in the range of Pulsar Timing Arrays