

Search for the Standard Model <u>Higgs</u> boson at ATLAS

Junichi TanakaICEPP, The University of Tokyo

on the behalf of ATLAS collaboration

Content

- Introduction
- Higgs search at ATLAS
 - H->WW->|v|v
 - H->ZZ->IIII
 - H->ZZ-> $\|vv$
 - H->γγ
- Combination
- Summary and Prospect

Higgs production and decay at LHC

Today's talk

[Detail of the specific channels]

- H->WW->lyly with 2.1 fb⁻¹
 - 110-300GeV
- H->ZZ->IIII with 4.8 fb⁻¹
 - 110-600GeV
- H->ZZ->IIvv with 2.1 fb⁻¹
 - 200-600GeV
- H->γγ with 4.9 fb⁻¹
 - 110-150GeV

[Combination]

Additionally, we use the next;

- H->ZZ->llqq with 2.1 fb⁻¹
 - 200-600GeV
- H->WW-> l_Vqq with 1.0 fb⁻¹
 - 240-600GeV

$H->WW^*->I_VI_V$

I = electron or muon

Today talk -> $L=2.05 \text{ fb}^{-1}$

(Preliminary) results with ~4.8 fb⁻¹ will be shown in Moriond.

arXiv:1112.2577 (to PRL)

$H->WW^*->I_VI_V$

 $L=2.05 \text{ fb}^{-1}$

[1] cannot reconstruct Higgs mass due to 2 neutrinos
[2] "Δφ(II)->small" due to spin 0
-> low dilepton inv. mass

Event Selection

- Single lepton trigger
- 2 isolated leptons
 - 20GeV for elec, 15GeV for muon

6

- 25GeV for the leading lepton
- MET rel ($E_{T,rel}^{miss}$)>40GeV(SF), 25(DF)
- Jets $p_T > 25$ GeV, |eta| < 4.5
- Cuts on Δφ(II) and m(II)
 etc

2 March, 2012 La Thuile 2012

m_T distribution

$$m_{\mathrm{T}} = \sqrt{(E_{\mathrm{T}}^{\ell\ell} + E_{\mathrm{T}}^{\mathrm{miss}})^2 - (\mathbf{P}_{\mathrm{T}}^{\ell\ell} + \mathbf{P}_{\mathrm{T}}^{\mathrm{miss}})^2}$$

after $\Delta \phi(II) < 1.3$ cut

130GeV mass point still survives.

$H->WW^*->I_VI_V$

Event selection method is changed at 170GeV and 220GeV.

- Observed excluded = 145<m_H<206GeV (expected:134-200GeV)
- Maximum deviation = 1.9σ for $m_H \sim 130$ GeV

$H->ZZ^*->4I$

$H->ZZ^*->4I$

Clean but rare!

m _H [GeV]	σ·BR·4.8fb ⁻¹ [events]	Width [GeV]
130	15	0.005
150	22	0.017
200	33	1.4
400	13	29
600	2	120

- **Event Selection**
 - Single lepton trigger
 - 20-22GeV for elec, 18GeV for muon
 - 4lep p_T>20, 20, 7 and 7GeV
 - Isolated and small impact parameter
 - $|m_z m_{12}| < 15 GeV$

120	
• 4l mass res	solution (130Ge

- 1.98GeV for 4μ
- 2.18GeV for $2e2\mu$
- 2.53GeV for 4e

_	m ₃₄ <115GeV &&	$m_{4\ell}~({ m GeV})$	≤120	130	140	150	160	165	180	190	≥200
		m_{34} threshold (GeV)	15	20	25	30	30	35	40	50	60

Signal acceptance with eff is \sim 15% for m_H=125GeV. (\sim 48% for m_H=200GeV) Performance of low p_T lepton gets important for low mass Higgs search.

4lepton inv. mass

2elec+2muon candidate with m_{4l} =124.3GeV $m_{12(ee)}$ =76.8GeV, $m_{34(\mu\mu)}$ =45.7GeV

$H->ZZ^*->4I$

	550 600 [GeV]
200 250 300 350 400 450 500 9	
Excluded four (almost 3) regions at 95% CL: 134-156, 182-233, 256-265, 268-415GeV (Expected exclusion range 136-157GeV, 184-400GeV)	
Excluded four (almost 3) Excluded four (almost 3) Excluded four (almost 3) $ \begin{array}{c} $	CL _s

ATLAS

Local (global) p_o **Local significance Expected** m_H(GeV) 125 1.6% (~50%) 2.1σ 1.3σ 244 1.3% (~50%) 2.2σ 3.0σ 500 1.8% (~50%) 1.5σ 2.1σ

2 March, 2012

LEE(=look elsewhere effect) estimated over mass range: 110-600GeV

H->ZZ->IIvv

$H->ZZ->II_{VV}$

- Most sensitive channel for m_H > 300GeV
- Signature is Z→ II + large E_T miss
- Main backgrounds: ZZ (irreducible), top, Z+jets
 - reject with E_T miss cut, b-jet veto and topology
- m_T(Z,E_T^{miss}) discriminating variable

Excluded (95%CL): $310 < m_H < 470$ GeV

$H->\gamma\gamma$

- Event selection
 - Two photon trigger
 - E_T>40GeV and 25GeV
 - Isolated tight photon
- -> 22489 events in total $(100 < m_{yy} < 160 GeV)$
- Improve sensitivity by introducing categories.
 - -> "9" categories are defined by
 - Conversion status
 - Eta region
 - $p_{Tt}=40GeV$

Mass Reconstruction

- Pileup effect on mass resolution is small because ₹

 Tracks are used for converted photons.
 - Tracks are used for converted photons.
 - Layer structure of LAr EM calorimeter helps us to determine z-position of $\gamma\gamma$ production vertex. (we don't need primary vertex information, which is obtained from independent algorithm, for example, sum of track p_T associated to vertex.)

Category	σ_{CB}	FWHM	$N_{\rm S}$	N_{D}	S/B
Unconverted central, low p_{Tt}	1.4	3.4	9.1	1763	0.05
Unconverted central, high p_{Tt}	1.4	3.3	2.6	235	0.11
Unconverted rest, low p_{Tt}	1.7	4.0	17.7	6234	0.02
Unconverted rest, high p_{Tt}	1.6	3.9	4.7	1006	0.04
Converted central, low p_{Tt}	1.6	3.9	6.0	1318	0.03
Converted central, high p_{Tt}	1.5	3.6	1.7	184	0.08
Converted rest, low p_{Tt}	2.0	4.7	17.0	7311	0.01
Converted rest, high p_{Tt}	1.9	4.5	4.8	1072	0.03
Converted transition	2.3	5.9	8.5	3366	0.01
All categories	1.7	4.1	72.1	22489	0.02

 σ_{CB} (core width by crystal ball func) is 1.4-2.3GeV depending on categories.

S/B in **high** p_{Tt} is better than **low** p_{Tt} .

95% CL limit on σ/σ_{SM}

H->γγ

- Expected = 1.6-2.7 x SM Higgs
- Excluded = 113-115, 134.5-136GeV LEP limit (114.4GeV)

 $m_H=126.5GeV$

- Local p-value = 0.17% -> **2.8**σ (expected 8.7%)
- **1.5** σ (after LEE 110-150GeV)

Combination

Individual channel

• Low mass region = $H->\gamma\gamma$, H->WW->|v|v, H->ZZ->4|

High mass region = H->ZZ->IIvv, H->ZZ->IIqq, H->WW->Ivqq

2 March, 2012 La Thuile 2012 21

Exclusion Limit

- Expected limit: 124 < m_H < 519GeV
- Observed limit
 - -95%: 112.9 < m_H < 115.5GeV, 131 < m_H < 238GeV , 251 < m_H < 466GeV
 - -99%: 133 < m_H < 230GeV, 260 < m_H < 437GeV

Excess at 126GeV

Local p_0 -value (126GeV)

- H-> $\gamma\gamma$ 2.8 σ
- H->ZZ->4 1.1σ
- $H->WW->|_{V}|_{V} 1.4\sigma$

 m_H [GeV]

126GeV Local p₀-value: $0.019\% -> 3.5\sigma$ (with energy scale) (expected $\sim 2.5\sigma$)

Global p_0 -value: $0.6\% -> 2.5\sigma$ with LEE over 114-146GeV Global p_0 -value: $1.4\% -> 2.2\sigma$ with LEE over 110-600GeV

Best "μ" for **SM** Higgs

Consistency with SM Higgs. (If μ ~1, our observed events would be consistent with SM Higgs.)

Summary & Prospect

- Higgs search at LHC/ATLAS is very exciting now!
 - ATLAS still have several channels (WW/ $\tau\tau$ /bb etc) to be updated.
 - -> Wait for new results until Morinod conf.
- In the low mass region, we have a small un-excluded mass window of 115.5-131GeV.
- Small excess around 126GeV is real? -> No conclusion at the moment
 - -> Still ~2-3 sigma level with the look elsewhere effect.
 - -> We need more data in this year.
- "Additional ~15 fb-1" with 8TeV in 2012 per one experiment
 - -> <u>5σ discovery for 120-131GeV!</u>
 - -> Exclusion of the remaining low mass region (115.5-131GeV)!

Backup

Excess at 126GeV

126GeV Local p₀-value: $0.019\% -> 3.5\sigma$ (with energy scale) (expected $\sim 2.5\sigma$)

Global p_0 -value: $0.6\% -> 2.5\sigma$ with LEE over 114-146GeV Global p_0 -value: $1.4\% -> 2.2\sigma$ with LEE over 110-600GeV

LEE=look elsewhere effect (important for channels having a good resolution $\gamma\gamma$,41)

Look elsewhere effect

When we search for a new particle ("unknown" mass), we could have local excesses due to stat. fluctuation in a search mass range. Such possibility should be taken into account properly to claim the observation. This effect is important in searches for a narrow resonance in a wide mass range.

$$p_{global} = p_{local} + Ne^{-(Z^2 - Z_0^2)/2}$$

E. Gross and O. Vitells (Eur. Phys. J. C70 525, 2010)

$m_H=150Ge$	/
-------------	---

Electron Performance

- J/Ψ ->ee, W->ev and Z->ee
 - Challenging->Low pT electrons

2 March, 2012

La Thuile 2012

Muon Performance

- Z->μμ
- Muon rec eff > 95% ($4 < p_T < 100 GeV$)

2 March, 2012

La Thuile 2012

							_
	$\mu^+\mu^-$	$\mu^+\mu^-$	e^+e^-	$-\mu^{+}\mu^{-}$	e^+e^-	$-e^{+}e^{-}$	-
	Low- $m_{4\ell}$	High- $m_{4\ell}$	Low- $m_{4\ell}$	High- $m_{4\ell}$	Low- $m_{4\ell}$	High- $m_{4\ell}$ (>	180GeV)
Int. Luminosity	4.8	fb^{-1}	4.8	$ m fb^{-1}$	4.9	$\mathrm{fb^{-1}}$	_
$ZZ^{(*)}$	2.1 ± 0.3	16.3 ± 2.4	2.8 ± 0.6	25.2 ± 3.8	1.2 ± 0.3	10.4 ± 1.5	
$Z + \text{ jets and } t\bar{t}$	0.16 ± 0.06	0.02 ± 0.01	1.4 ± 0.5	0.17 ± 0.08	1.6 ± 0.7	0.18 ± 0.08	
Total Background	2.2 ± 0.3	16.3 ± 2.4	4.3 ± 0.8	25.4 ± 3.8	2.8 ± 0.8	10.6 ± 1.5	-
Data	3	21	3	27	2	15	-
$m_H = 130 \text{ GeV}$	1.00 =	± 0.17	1.22	± 0.21	0.43	± 0.08	-
$m_H = 150 \text{ GeV}$	2.1 =	± 0.4	2.9	± 0.4	1.12	± 0.18	
$m_H = 200 \text{ GeV}$	4.9	± 0.7	7.7	$\pm \ 1.0$	3.1	± 0.4	
$m_H = 400 \text{ GeV}$	2.0 =	± 0.3	3.3	± 0.5	1.49	± 0.21	
$m_H = 600 \text{ GeV}$	0.34	± 0.04	0.62	± 0.10	0.30	± 0.06	

BG check

Z+jets, where jets fakes leptons.

- 2 OS same-flavor with m_z+-15GeV
- 2 additional SF leptons passing all cuts except for isolation and impact param.

Jet -> e
$$(\pi^{+-}+\pi^0)$$

b -> e

H->ZZ->4I

10¹

10¹⁰

10⁹

10⁸

107

10°

10⁵

104

10³

10²

10⁻¹

10'2

10⁻³

Data

η-strips

Drell-Yan

 165 ± 8

35

jj

 $(23 \pm 4)\%$ $(5 \pm 3)\%$ $(0.7 \pm 0.1)\%$

Fake photon jet-> π^0

• $1/\sim 10^4$ (gluon>quark)(MC)

 γj

 $16000 \pm 1100 5230 \pm 890 1130 \pm 600$

		_		
R	~	0	(80	00)

 $H \rightarrow \gamma\gamma$

TOT

jj

 \mathbb{R}^2

γj

R

~ 500 µb

~ 200 nb

~ 30 pb

~ 40 fb

 $\gamma\gamma$

 $(71 \pm 5) \%$

Events

Fraction

$m_H \; [{ m GeV}]$	110	115	120	125	130	135	140	145	150
$\sigma \times BR$ [fb]	45	44	43	40	36	32	27	22	16
Signal events	69	72	72	69	65	58	50	41	31
Efficiency $[\%]$	31	33	34	35	37	37	38	38	39

2 March, 2012

La Thuile 2012

Energy Calibration

- Z->ee, J/Ψ->ee, W->ev and MC
 - Energy scale at $m_7 \sim 0.5\%$
 - Linearity < 1%
 - Uniformity (constant term) ~1% for barrel and ~1.7% for endcap
- "Electron -> photon" by using MC

- Single exponential function with mass range of 100-160GeV
 - Limits are obtained for 110-150GeV.
- Assign systematics for the choice of BG modeling

Category	Events
Unconverted central, low p_{Tt}	± 2.8
Unconverted central, high p_{Tt}	± 0.1
Unconverted rest, low p_{Tt}	± 5.9
Unconverted rest, high p_{Tt}	± 0.7
Converted central, low p_{Tt}	± 1.8
Converted central, high p_{Tt}	± 0.1
Converted rest, low p_{Tt}	± 7.9
Converted rest, high p_{Tt}	± 0.8
Converted transition	± 1.7

Signal event yield	
Photon reconstruction and identification	$\pm 11\%$
Effect of pileup on photon identification	$\pm 4\%$
Isolation cut efficiency	$\pm 5\%$
Trigger efficiency	$\pm 1\%$
Higgs boson cross section (scales)	$^{+12}_{-8}\%$
Higgs boson cross section (PDF+ α_s)	±8%
Higgs boson $p_{\rm T}$ modeling	$\pm 1\%$
Luminosity	$\pm 3.9\%$
Signal mass resolution	
Calorimeter energy resolution	$\pm 12\%$
Photon energy calibration	$\pm 6\%$
Effect of pileup on energy resolution	$\pm 3\%$
Photon angular resolution	$\pm 1\%$
Signal mass position	
Photon energy scale	$\pm 0.7~{\rm GeV}$
Signal category migration	
Higgs boson $p_{\rm T}$ modeling	$\pm 8\%$
Conversion rate	$\pm 4.5\%$
Background model	$\pm (0.1 - 7.9)$ events

$$N\left[(1-t)^2 + p_0 2t(1-t) + p_1 t^2 \right], \text{ with } t = (m_{\gamma\gamma} - 100)/60 \in [0, 1].$$

(Higgs x-sec 7->8TeV \sim 30% up)