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Introduction

Study the thermo-electric transport properties of a strongly
correlated (2+1)-D system immersed in an external magnetic field
perpendicular to the plane
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Introduction

Response to an external electric field Ei and thermal gradient
∇iT (

Ji
Qi

)
=

(
σij αij

Tαij κ̄ij

)(
Ej

−∇jT

)
transport coefficients are now matrices

σxx = σyy , σxy = σyx

There are six independent transport coefficients

4 of 22



Motivations

Measurements on strange metals are commonly performed at
non-zero magnetic field to suppress Tc (and phonons)

Almost all the transport properties deviate from the Fermi
liquid behaviour

Fermi Liquid Strange Metals

ρ T 2 T e.g. Hussey review, ’08

s ≡ αxy

αxx
T s ∼ A− BT Orbetelli et al. ’92

tan θH ≡ σxy

σxx

1
T 2

1
T 2 e.g. Hussey review, ’08

Kohler’s rule ∆ρ
ρ ∼

B2

ρ2
∆ρ
ρ ∼ tan2 θH Harris ’92
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Motivations

??

What can be said in the holographic framework?

see also Blake & Donos ’14 Hartnoll & Karch ’15 Blake, Donos &
Lohitsiri ’15
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Outline

1 Momentum dissipation in holography

2 Magneto-transport: massive gravity as a paradigm

3 Holographic phenomenology: strange metals

4 Conclusions
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Momentum dissipation in holography

1 Inhomogeneous lattices: Horowitz, Santos & Tong ’12...

2 Breaking translations to a helical Bianchi VII subgroup Donos
& Gauntlett ’12...

3 Random-field disorder Hartnoll & Herzog ’08...

4 Breaking diffeomorphism in the bulk: Q-Lattices, axions and
massive gravity Donos & Gauntlett ’13, Vegh ’13, Andrade &
Withers ’13...

We use massive gravity

simple to solve

we can obtain general physical statements
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Massive gravity and momentum dissipation

Breaking diffeomorphisms in the bulk by adding a mass term
for the graviton

S =

∫
d4x
√
−g
[
R − Λ− 1

4
F 2 + β

(
[K]2 −

[
K2
])]

where K2 ν
µ ≡ fµρg

ρν , K ≡
√
K2

the fixed metric fµν controls how diffeomorphisms are broken

Holographic dictionary ⇒ ∂µT
µν 6= 0

we want to dissipate momentum but to conserve energy
(elastic processes)

fxx = fyy = 1 , and zero otherwise
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B = 0 and momentum dissipation

In the hydrodynamic regime (|β| � T 2) a dissipation rate τ−1

can be defined Davison, ’13

∂tT
tt = 0, ∂tT

ti = τ−1T ti

τ−1 ≡ − Sβ
2π(E + P)

At sufficiently low |β| there is a Drude peak in the electric
conductivity σ(ω) Vegh, ’13
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B = 0 and momentum dissipation

The DC electric conductivity σDC splits into two parts Blake
& Tong, ’13

σDC = σccs +
ρ2τ

E + P

The thermal κ̄DC and thermoelectric αDC DC conductivity are
affected only by the Drude part A.A. et al., ’14

αDC =
Sρτ
E + P

κ̄DC =
S2T τ

E + P
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Switch on B

modify the gauge field A in order to introduce a magnetic
field perpendicular to the xy plane

A = (µ− ρz) dt + Bx dy

a background black-brane solution can be found and
consequently the thermodynamics can be defined in terms of
the horizon radius zh (gtt(zh) = 0):

T = −
z2
h

(
B2z2

h + µ2
)
− 2

(
βz2

h + 3
)

8πzh
, S =

2π

z2
h

ρ =
µ

zh
, E + P = TS + µρ
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DC thermo-electric response

in a system with a U(1) gauge field A and a killing vector ∂t
you can define two radially conserved quantities (independent
on the radial AdS coordinate z) Donos & Gauntlett, ’14

concerning the DC response, these two quantities can be
identified with the electric current J i and the heat current
Q i ≡ T ti − µJ i at the conformal boundary z = 0

due to their radial independence we can express these
quantities in terms of horizon data (thermodynamics)
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DC thermo-electric response

having J i (zh) and Q i (zh) we can compute the DC transport(
Ji
Qi

)
=

(
σij αij

Tαij κ̄ij

)(
Ej

−∇jT

)

four quantities determine the six transport coefficients

σccs , ρ
τ

E + P
, S
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σxx =
E + P

τ

ρ2 + σccs

(
B2σccs + E+P

τ

)
B2ρ2 +

(
B2σccs + E+P

τ

)2

σxy = ρB
ρ2 + σccs

(
B2σccs + 2 E+P

τ

)
B2ρ2 +

(
B2σccs + E+P

τ

)2

αxx = ρS E + P

τ

1

B2ρ2 +
(
B2σccs + E+P

τ

)2

αxy = SB
ρ2 + σccs

(
B2σccs + E+P

τ

)
B2ρ2 +

(
B2σccs + E+P

τ

)2

κ̄xx =
S2T

(
B2σccs + E+P

τ

)
B2ρ2 +

(
B2σccs + E+P

τ

)2

κ̄xy =
BρS2T

B2ρ2 +
(
B2σccs + E+P

τ

)2
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DC thermo-electric response

The dissipation rate τ−1 can be rigorously defined only in the
hydro regime [Davison & Gouteraux, ’15] (β � T 2, B � ρ2,
ρ� T 2) and has the same form as in the B = 0 case

τ = − Sβ
2π(E + P)

The transport coefficients are compatible with Q-lattices
Blake, Donos & Lohitsiri ’15

With some assumptions the transport coefficients can be
obtained from the memory matrix formalism Lucas &
Sachdev, ’15
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Holography and hydrodynamic

Contrary to σij , αij and κ̄ij are not equivalent to the hydro
analysis of Hartnoll et al. ’07

Exact self duality: ρ↔ B, σccs ↔ 1/σccs

σxx , σxy , αxx , αxy , κxx , κxy

l
ρxx ,−ρxy ,−ϑxy ,−ϑxx , κxx ,−κxy

where ρ̂ = σ̂−1 is the resistivity matrix, θ̂ ≡ −ρ̂ · α̂ is the
Nernst coefficient matrix and κ̂ = ˆ̄κ− T α̂ · ρ̂ · α̂

17 of 22



Holographic strange metals phenomenology

Phenomenological temperature scalings in strange metals

We need 4 phenomenological inputs to predict the scalings of all
the 6 transport coefficients

Blake & Donos, ’14:

σccs ∼
σ0

ccs

T
, σD ≡

ρ2τ

E + P
∼
σ0
D

T 2

and σ0
D � σ0

ccs, reproduces the correct scaling for the
resistivity and the hall angle:

ρxx ∼ T , tan θH ≡
σxy
σxx
∼ 1

T 2
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Holographic strange metals phenomenology

What about the other transport coefficients?

Proposal

σccs ∼ σ0
ccs
T , σD ∼

σ0
D

T 2 , ρ ∼ ρ0, σ0
D � σ0

ccs, S ∼ S0T
δ

To fix the scaling exponent δ we need phenomenological inputs
which are free form spurious interactions (phonons effects):
transverse conductivities do the game!

κxy ∼ 1
T Zhang et al., ’00, Matusiak et al., ’09

⇒ S ∼ S0T , and Lxy ≡
σxy
Tκxy

∼ T

in accordance with calorimetric measurements Loram et al.,
’93 and with Zhang et al., ’00 for Lxy
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Holographic strange metals phenomenology

Magneto-resistance

∆ρ
ρ ≡∼ σ

0
ccs σ

0
D

(
B
ρ0

)2 (√ρ0

T

)3
− 2σ0 2

D

(
B
ρ0

)2 (√ρ0

T

)4

Experiments: T−n with n ∼ 3.5− 3.9 Harris ’92

Seebeck coefficient

s ≡ αxy

αxx
∼ S0 σ

0
D

ρ0 σ0
ccs
− S0σ

0 2
D

ρ0σ0 2
ccs

√
ρ0

T

Experiments: A− BT Orbetelli et al., ’92
Possible 1/T correction at high-T? Kim et al., ’04 What about
phonon drag?
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Conclusions

The six thermoelectric transport coefficients are functions of
four quantities: possibility to be predictive!

Discrepancies between holography, hydrodynamic and memory
matrix: can self-duality do the game?

At finite density thermodynamics and transport are intimately
related

To get phenomenological insight we need data clean from
spurious effects: working directly with experimentalists!

Does the magnetic field play a role in criticality?
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