A Future Lead-based Supernova Detector at LNGS

LNGS future, 2020 and beyond April 28, 2015

Clarence J. Virtue

A Perceived Opportunity...

Two elements:

- The availability of ~1kt of OPERA lead for new experiments
- HALO at SNOLAB, an operating lead-based supernova detector with 80 tonnes of lead

motivate us to fully explore the possibility of combining resources to create a significantly more capable lead-based supernova detector at LNGS

- Science Motivation
- Lead as a Supernova Neutrino Target
- Event Rates / kt of Lead
- The HALO Detector
- "HALO" at LNGS
- Technical Challenges and Risks
- Costs and Space Requirements
- Infrastructure Requests
- Safety Issues and Timescales

Science Motivation

- While the probability of a galactic SN in a lifetime are good, most supernova-sensitive detectors have other primary objectives necessitating down-time; extensive calibration; reconfiguration; and end of life
- So.... there's a niche for low cost, low maintenance, long lifetime, dedicated supernova detectors
- Also for next generation neutrino detectors costs go up as the energy threshold goes down and there is a risk that supernova sensitivity will be degraded in order to save costs
- Water Cherenkov and liquid scintillator detectors have dominant \overline{v}_e sensitivity but, valuable information is present in other channels too
- Lead will provide a dominant v_e sensitivity

Supernova Neutrinos – First Order Expectations

- Approximate equipartition of neutrino fluxes
- Several characteristic timescales for the phases of the explosion (collapse, burst, accretion, cooling)
- Time-evolving v_e , \overline{v}_e , v_x luminosities reflecting aspects of SN dynamics
 - Presence of neutronization pulse
 - Hardening of spectra through accretion phase then cooling
- Fermi-Dirac thermal energy distributions characterized by a temperature, T_{v} , and pinching parameter, η_v

$$\phi_{FD}(E_{\nu}) = \frac{1}{T_{\nu}^{3}F_{2}(\eta_{\nu})} \frac{E_{\nu}^{2}}{\exp\left(E_{\nu}/T_{\nu} - \eta_{\nu}\right) + 1}$$

• Hierarchy and time-evolution of average energies at the neutrinosphere

$$T(v_x) > T(\overline{v_e}) > T(v_e)$$

 v-v scattering collective effects and MSW oscillations further imprint physics on the FD distributions

What is to be Learned?

• Astrophysics

- Explosion mechanism
- Accretion process
- Black hole formation (cutoff)
- Presence of Spherical accretion shock instabilities (3D effect)
- Proto-neutron star EOS
- Microphysics and neutrino transport (neutrino temperatures and pinch parameters)
- Nucleosynthesis of heavy elements
- Particle Physics
 - Normal or Inverted neutrino mass hierarchy
 - Presence of axions, exotic physics, or extra large dimensions (cooling rate)
 - Etc.

Lead as a Supernova Neutrino Target

- CC and NC cross-sections are the largest of any reasonable material though thresholds are high
- Neutron excess (N > Z) Pauli blocks

$\overline{\nu}_e + p \rightarrow e^+ + n$

- High Z increases ν_e CC cross-sections relative to $\overline{\nu}_e$ CC and NC due to Coulomb enhancement further suppressing the $\overline{\nu}_e$ CC channel
- Results in mainly $\nu_{\rm e}$ sensitivity complementary to water Cerenkov and liquid scintillator detectors
- de-excitation of nucleus following CC or NC interactions is by 1n or 2n emission

Other Advantages

- High Coulomb barrier \rightarrow no (α , n)
- Low neutron absorption cross-section (one of the lowest in the table of the isotopes) → a good medium

for moderating neutrons down to epithermal energies

p n

Comparative v-nuclear Cross-sections

 $CC: \nu_e + {}^{208} \text{Pb} \rightarrow {}^{207}\text{Bi} + n + e^ \nu_e + {}^{208} \text{Pb} \rightarrow {}^{206}\text{Bi} + 2n + e^ NC: \nu_x + {}^{208} \text{Pb} \rightarrow {}^{207}\text{Pb} + n$ $\nu_x + {}^{208} \text{Pb} \rightarrow {}^{206}\text{Pb} + 2n$

Thresholds CC 1n 10.7 MeV CC 2n 18.6 MeV NC 1n 7.4 MeV NC 2n 14.4 MeV

2n cross-sections don't appear on plot

K. Scholberg, Annu. Rev. Nucl. Part. Sci. 2012. 62:81–103.

Event Rates / kt of Lead (100% capture efficiency)

$\langle E_{\nu_x}^0 \rangle [\text{MeV}]$	13		1	8		25	
MH (and θ_{13})	$\begin{array}{c} \text{NMH} \\ \text{small} \ \theta_{13} \end{array}$	IMH		$\begin{array}{c} \text{NMH} \\ \text{small} \ \theta_{13} \end{array}$		IMH	f
$\alpha_{ u_x}$	7	2	7	2	7	2	from
N_{1n}	90	390	285	300	225	570	JCAF
N_{2n}	< 3	150	30	105	24	390	
neutrons emitted	~ 90	690	345	510	273	1350	

Väänänen and Volpe, **1110** (2011) 019.

Table 6. Total numbers of events during the explosion (assuming 100 % detection efficiency, distance to the supernova 10 kpc and target mass 1 kton of ²⁰⁸Pb). As in table 4 but assuming equal neutrino luminosities throughout the whole neutrino emission and the total time integrated luminosity $3 \times$ 10⁵³ erg.

Earlier work, in 1kt of lead for a SN @ 10kpc[†],

- Assuming FD distribution with T=8 MeV for M_{x} .
- 860 neutrons through \mathbb{M}_{e} charged current channels
 - 380 single neutrons

- 240 double neutrons (480 total)
- 250 neutrons through \mathbb{W}_{x} neutral current channels
 - 100 single neutrons
 - 75 double neutrons (150 total)

cross-sections from Engel, McLaughlin, Volpe,

Phys. Rev. D 67, 013005 (2003)

ε = 40%,60%,80%

March 2012 APS, K. Scholberg.

HALO - a Helium and Lead Observatory

A "SN detector of opportunity" / An evolution of LAND – the Lead Astronomical Neutrino Detector, C.K. Hargrove et al., Astropart. Phys. 5 183, 1996.

"Helium" – because of the availability of the ³He neutron detectors from the final phase of SNO

+

"Lead" – because of high
→Pb crosssections, low n-capture cross-sections, complementary sensitivity to water Cerenkov and liquid scintillator SN detectors

HALO is using lead blocks from a decommissioned cosmic ray monitoring station

HALO at SNOLAB

The HALO Collaboration

C Bruulsema¹, C A Duba², F Duncan^{3,1}, J Farine¹, A Habig⁴, A Hime⁵, A Kielbik¹, M Howe⁶, C Kraus¹, S Luoma¹, R G H Robertson⁷, K Scholberg⁸, M Schumaker¹, J Secrest⁹, T Shantz¹, J Vasel⁴, C J Virtue¹, B von Krosigk¹⁰, R Wendell¹¹, J F Wilkerson⁶, S Yen¹² and K Zuber¹⁰

¹ Laurentian University, Sudbury, ON P3E 2C6, Canada
 ² Digipen Institute of Technology, Redmond, WA 98052, USA
 ³ SNOLAB, Sudbury, ON P3Y 1M3, Canada
 ⁴ University of Minnesota Duluth, Duluth, MN 55812 USA
 ⁵ Pacific Northwest National Laboratory, Richland, WA 99352, USA
 ⁶ University of North Carolina, Chapel Hill, NC 27599, USA
 ⁷ University of Washington, Seattle, WA 98195, USA
 ⁸ Duke University, Durham, NC 27708, USA
 ⁹ Armstrong State University, Savannah, GA 31419, USA
 ¹⁰ TU Dresden, D-01062 Dresden, Germany
 ¹¹ ICCR, University of Tokyo, Kamioka Observatory, Japan
 ¹² TRIUMF, Vancouver, BC V6T 2A3, Canada

April 28, 2015

LNGS future, 2020 and beyond

Neutron detection in HALO

- Re-using SNO's "NCD" ³He proportional counters
- 5 cm diameter x 3m and 2.5m in length, ultra-pure CVD Ni tube (600 micron wall thickness)
- 2.5 atm (85% ³He, 15% CF₄, by pressure)
- Four detectors with HDPE moderator tubes in each of 32 columns of lead rings
- 128 counters (~370 m) paired for 64 channels of readout
- an additional ~200m of ³He proportional counters are also available

Neutron detection in HALO

• Neutron detection via

³He + n → p + t + 764 keV

- 764 keV FE peak plus LE tail due to wall effects
- α's present at rate of ~20 events per day for the entire array
- Compton and beta events at low energies
- Background n in room at level of 4000 fast plus 4000 thermal per m² per day.
- Cosmic muons < 2 per day
- Intrinsic tritium rate (18.6 keV endpoint) above 12 keV threshold ~10 Hz but running at threshold of ~25 keV for total rate of 4 Hz with partial shielding
- Current neutron rate in HALO with incomplete shielding ~0.1 Hz

Status today

HALO

- HV on all channels and full detector being readout since May 8th 2012.
- Daily shift-taking since July 27th 2012.
- Event GPS timestamping implemented
- Remote control, monitoring and alarm capability being finalized
- Final Calibration proceeding before shielding completion
- Burst trigger being tested with SNEWS

"HALO" at LNGS

- concepts are preliminary
 - have ~600 m of ³He counters (very quiet... ~40 /day)
 - plus 120 m of ¹⁰BF₃ counters
 - likely more is desirable and/or an alternative technology (could be less quiet if not used in trigger)
 - cosmic muon rate ~x100 higher in LNGS
 - veto desirable, not absolutely necessary
 - modest (water) shielding should reduce ambient neutrons to negligible level, isolate and define the target volume

"HALO" at LNGS

available 2 – 3 m long. These could be arranged in a 14 x 14 array in the lead matrix (on a ~28 cm grid)

LNGS future, 2020 and beyond

"HALO" at LNGS

- increasing density of neutron detection will increase capture efficiency / scientific reach of detector AND costs
- needs full exploration with detailed simulations
- backgrounds in ³He counters are lower than required for setting a low threshold SN trigger → central volume of detector instrumented with these and surrounding volume with alternative technology... to be explored

Technical Challenges

Technical challenges

- optimizing neutron capture efficiency
 - control of neutron absorbing and moderating materials in the target volume while meeting general engineering and seismic requirements
 - oreep an issue with pure lead; PbCa alloy?
 - identifying additional cost-effective neutron detection
- CC sensitivity?
 - if achievable, a significant enhancement

Technical Risks

- transport of the ³He detectors
 - have rough concepts... to be engineered
 - would evaluate in engineering runs with instrumented shipping container
- aging / lifetime of ³He detectors
 - can be evaluated in running HALO detector

23

modest on the scale of many projects

reforming lead

Costs

- structural support for lead
- increased readout
- muon veto, shielding, reflector?
- additional neutron detection

Space Requirements

- detector is potentially quite compact, as small as 5m x 5 m x 5 m, depending on:
 - need for neutron shielding
 - need for muon veto system
- even then ~50 m² floor space may be adequate; more required during construction

Requests for technical and technological infrastructures

- local assistance with structural engineering aspects makes sense
- any reforming of the INFN lead would also be done in Italy (led by local collaborators?)
- otherwise potentially a small impact

Safety Issues and Timescales

Safety issues

- lead handling
- BF₃ hazards if used
- Time scale for proposal
 - could proceed on a shorter timescale than "2020"
 - LOI for Fall 2015?
 - Proposal Fall 2017?

To help in the development of the LOI and Full Proposal please contact

Clarence Virtue cjv@snolab.ca