

Betatron radiation as emittance diagnostics for plasma acceleration experiments

Alessandro Curcio

INFN LNF

On behalf of the SPARC_LAB collaboration

Motivations

Method and Experiment

Results and Conclusions

Motivations and Goals

- Design/conceivement of a non-intercepting diagnostics for plasma accelerated electron beams
- Infer information about the electrons when they are still inside the plasma accelerating structure
- Measurement of the rms emittance, comprising the correlation term

LWFA Setup at FLAME

First step: beam profile retrievement/1

For details on the matrix S, see Ref. Curcio, A., et al. "Trace-space reconstruction of low-emittance electron beams through betatron radiation in laser-plasma accelerators." *Physical Review Accelerators and Beams* 20.1 (2017): 012801.

First step: beam profile retrievement/2

Electron beam radial profile detected (red curve) and simulated (black curve). The blue dashed curves delimit the error region (light green-shadowed).

Beam rms size 0.25±0.04 um

For discussions on the profile monitor resolution, see Ref. Curcio, A., et al. "Single-shot non-intercepting profile monitor of plasma-accelerated electron beams with nanometric resolution." To be published on *Applied Physics Letters* (2017).

Second step: angular distribution retrievement/1

$$\theta_d = \sqrt{\frac{\sqrt{1 + \frac{1}{2}\gamma_0^2 r_\beta^2 k_{\beta 0}^2}}{4\gamma_0}} r_\beta k_p$$

Correlation function between the angle and the position of a single electron of the beam in the bubble

$$r_{\beta} = \sqrt{2}r$$

Relation between the betatron radius and the average electron radial position along the acceleration path

The angular distribution inside the bubble is retrieved starting from the retrieved beam profile!

Second step: angular distribution retrievement/2

Angular distribution of the electron beam detected inside the bubble (red curve). The blue dashed curves delimit the error region (light green-shadowed). Beam rms divergence 13±2 mrad.

Final step: Phase space recontruction

$$\epsilon_{r_{\beta}N} = \gamma_0 \sqrt{(\sigma_{\gamma}/\gamma_0)^2 \sigma_r^2 \sigma_{\theta}^2 + \epsilon_{r_{\beta}}^2}$$

Normalized rms emittance (correlated): 0.6 mm mrad

Normalized rms emittance (non correlated, upper limit): 1.6 mm mrad

Thanks for your attention