

The research of large area ⁿMCP detector *@ Tsinghua University*

CPHS

Yigang Yang, Yiming Wang, Ren Liu, Xuewu Wang, Zhi Zhang, Yuanjign Li

Department of Engineering Physics / Tsinghua University

12-15 May 2015 INFN Laboratori Nazionali di Legnaro UCANS V 5th International Meeting of Union for Compact Accelerator - Driven Neutron Sources

outline

- ✓ 1. Why MCP?
 - 2. MCP ➡ ⁿMCP
 - 3. Setup of the ⁿMCP neutron detector
 - 4. Experimental evaluation
 - 5. Summary

Why MCP?

Gaseous detector : ¹⁰BF₃ or ³He

? Number density: 10^{19} /cm³ per atm

? efficiency

- ✓ Increasing volume
- ✓ Increasing pressure
 - ? ${}^{10}\text{BF}_3 < 1\text{bar}$, eletronegativity
- **Spatial resolution**
 - **?** Range_{charged particles@gas}: 1~10mm

Solid detector:

 \checkmark

 \checkmark

Number density: 10^{21~22}/cm³

✓ efficiency

- ? Charged particles production
- **?** Escape of charged particles

Spatial resolution

Range_{charged particles@solid}: 1~10µm

Micro Channel Plate

The common MCP

outline

- 1. Why MCP?
- ✓ 2. MCP ➡ ⁿMCP
 - 3. Setup of the ⁿMCP neutron detector
 - 4. Experimental evaluation
 - 5. Summary

MCP ⁿMCP

- ? There is no neutron sensitive nuclide in common MCP
 - Cross section: barns @ 25.3meV
 - ²⁸Si: 2.2
 ²³Na: 3.9
 - ¹³⁷Ba: 9.8
 - ¹³⁸Ba: 4.5
 - ²⁰⁷Pb: 11.5
 - ²⁰⁸Pb: 11.4
 - ²⁰⁹Bi: 9.4
 - ³⁹K: 4.38

- Neutron sensitive material should be introduced into the glass of MCP at first.
 - ✓ Large neutron absorption cross section
 - ✓ Energetic charged particles emission
 - ✓ High abundance or easily to be enriched
 - Cross section: barns @ 25.3meV
 - ³He: **5333**
 - ⁶Li: 940
 - ¹⁰B: 3842
 - ¹⁵⁵Gd: **60740**
 - ¹⁵⁷Gd: **252928**

^{155,157}Gd(n,γe) ^{156,158}Gd

ⁿMCP: The neutron sensitive MCP

outline

- 1. Why MCP?
- 2. MCP ➡ nMCP
- 3. Setup of the ⁿMCP neutron detector
 - 4. Experimental evaluation
 - 5. Summary

The geometry of the MCP detector

Anode:

WSA

•

- **Good for small MCP**
- **?** Spatial resolution is bad for large MCP
- Delay line

Neutron IC e electron cloud signals

...........

Details of the delay-line readout

13 /35

The sequence of time signals

outline

- 1. Why MCP?
- 2. MCP ➡ ⁿMCP
- 3. Setup of the ⁿMCP neutron detector
- ✓ 4. Experimental evaluation
 - 5. Summary

Gd mask: USAF 1951

106mm MCP detector with delayline readout

ⁿMCP+MCP

15kV X-ray image

15 kV X-ray image in detail

 $FWHM_{det_y} = 63.7 \,\mu m$

23 /35

Neutron experiments @ CPHS

neutron image @ CPHS

Neutron image in detail

26 /35

The spatial resolution of neutron image

$$FWHM_{\text{det}\,ector} = \sqrt{180.95^2 - 157.7^2} = 88.7\,\mu m$$

$$FWHM_{det\,ector} = \sqrt{153.01^2 - 125^2} = 88.2\,\mu m$$

27 /35

The detection efficiency

TOF: ⁶LiF/ZnS & MCP

Count

The efficiency

The throughput analysis

The time signals after CFD

The dead time of the "four-signal-

group" is <160ns</pre>

624kcps with <10% count loss</p>

the "monitor" signal before CFD

5.Summary

- The ^{nat}Gd doped ⁿMCP neutron detector has been realized @ Tsinghua:
 - Sensitive Area:

100mm diameter

- Spatial resolution:

<100microns

- Detection efficiency:

>30%@1.8Å

- Throughput : 0.64~2.5Mcps
- The efficiency could be enhanced with ^{nat}Gd coating

WSA

The range of Ic e- in MCP

A neutron can penetrates several pores

Neutron absorption by ¹⁵⁷Gd

0.5887, 0.5887, 0.5889, 0.5887 Gd 157

Neutron absorption by ¹⁵⁵Gd

Neutron absorption by ¹³³ Cs

Neutron experiment@CIAE

Detector assembly

