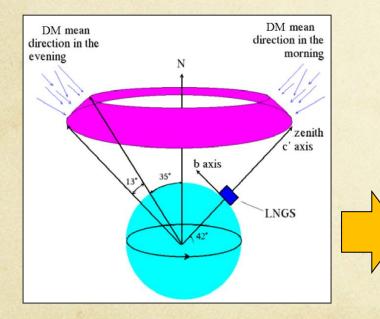
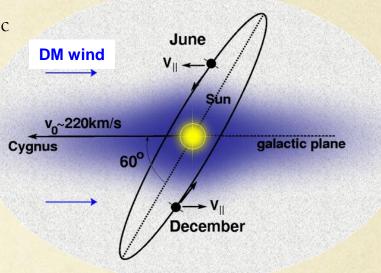

Perspectives on the use of ZnWO₄ anisotropic scintillator to investigate Dark Matter particles




INFN What Next DM GdL See Vogh meeting 4 July 10, 2014

The directionality approach

Based on the study of the correlation between the Earth motion in the galactic rest frame and the arrival direction of those Dark Matter (DM) candidate particles able to induce just nuclear recoils

The dynamics of the rotation of the Milky Way galactic disc through the halo of DM causes the Earth to experience a wind of DM particles apparently flowing along a direction opposite to that of solar motion relative to the DM halo

... but because of the Earth's rotation around its axis, the DM particles average direction with respect to an observer fixed on the Earth changes during the sidereal day

The direction of the induced nuclear recoils can offer a way for pointing out the presence of those candidate particles; in fact the nuclear recoils are expected to be strongly correlated with their impinging direction, while the background events are not

Directionality sensitive detectors: TPC

- Detection of the tracks' directions
 - \Rightarrow Low Pressure Time Projection Chamber might be suitable; in fact the range of recoiling nuclei is of the order of mm (while it is $\sim \mu m$ in solid detectors)

In order to reach a significant sensitivity, a realistic TPC experiment needs e.g.:

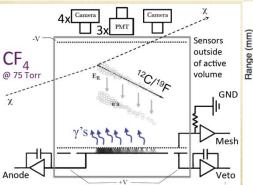
- 1. extreme operational stability
- 2. high radiopurity
- 3. extremely large detector size
- 4. great spatial resolution
- 5. low energy threshold

DRIFT-IId

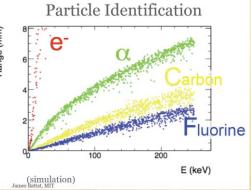
The DRIFT-IId detector in the Boulby Mine

Not yet competitive sensitivity

Backgroud dominated by Radon Progeny Recoils (decay of ²²²Rn daughter nuclei, present in the chamber)


	эори			
	Current	Plan		
Detection Volume	$30 \times 30 \times 31 \text{cm}^3$	>1m ³		
Gas	CF ₄ 152Torr	CF ₄ 30 Torr		
Energy threshold	100keV	35keV		
Energy resolution(@ threshold)	70%(FWHM)	50%(FWHM)		
Gamma-ray rejection(@threshold)	8×10-6	1 × 10-7		
Angular resolution (@ threshold)	55° (RMS)	30° (RMS)		

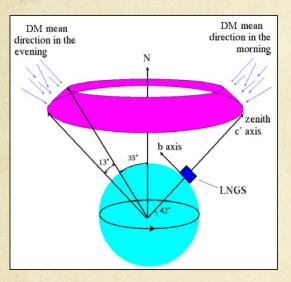
NEWAGE


μ-PIC(Micro Pixel Chamber) is a two dimensional position sensitive gaseous detector

Internal radioactive BG
 restricts the sensitivities
 We are working on to
 reduce the backgrounds!

DM-TPC

The detector volume is divided by the central cathode, each half has its



- The "4-Shooter" 18L (6.6 gm) TPC 4xCCD, Sea-level@MIT
- moving to WIPP
- Cubic meter funded, design underway

Directionality sensitive detectors overcoming the track measurement difficulties: anisotropic scintillators

• Study of the variation in the response of anisotropic scintillation detectors during sidereal day. In fact, the light output and the pulse shape of these detectors depend on the direction of the impinging particles with respect to the crystal axes

o The use of anisotropic scintillators to study the directionality signature was proposed for the first time in refs. P. Belli et al., Il Nuovo Cim. C 15 (1992) 475 and revisited in R. Bernabei et al., Eur. Phys. J. C 28 (2003) 203, where the case of anthracene detector was preliminarily analysed; some preliminary activities have been carried out [N.J.C. Spooner et al, IDM1997 Workshop; Y. Shimizu et al., NIMA496(2003)347]

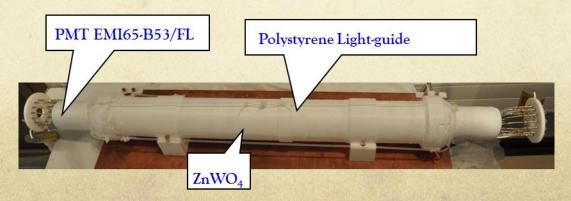
o In the comparison with the anthracene the ZnWO₄ anisotropic scintillator offers a higher atomic weight and the possibility to realize crystals with masses of some kg, with high level of radio-purity, with threshold at few keV feasible (Eur. Phys. J. C 73 (2013) 2276)

ZnWO₄ crystal scintillators

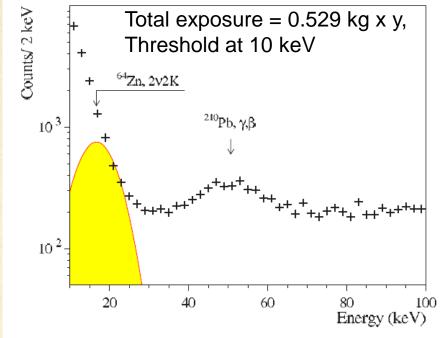
- Low background ZnWO₄ crystal scintillators with large volume and good scintillation properties realized
- Various detectors with mass 0.1-0.7 kg realized by exploiting different materials and techniques
- Detectors installed in a cavity (filled up with high-pure silicon oil) ϕ 47 x 59 mm in central part of a polystyrene light-guide 66 mm in diameter and 312 mm in length. The light-guides was faced by 2 low-background PMTs

• Main aim of the measurements was the study of the properties of ZnWO₄ and the search for 2β processes in Zinc and Tungsten isotopes.

PLB658(2008)193, NPA826(2009)256 NIMA626-627(2011)31, JP38(2011)115107


Crystal	Size (mm)	Mass (g)
scintillator		
ZWO-1	$20 \times 19 \times 40$	117
ZWO-2	$\bigcirc 44 \times 55$	699
ZWO-2a	$\oslash 44 \times 14$	168

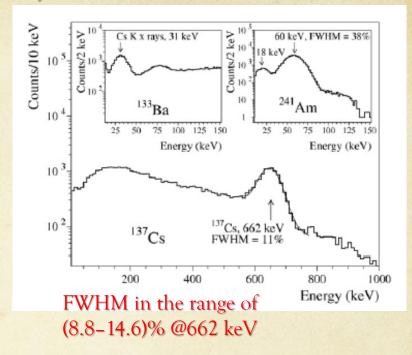
Achieved results on ββ decay modes in Zn and W isotopes with (0.1 – 0.7 kg) low background ZnWO₄

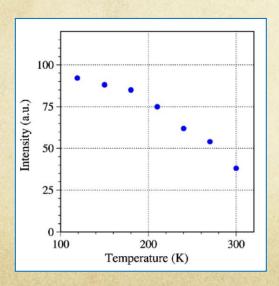

J. Phys. G: Nucl. Part. Phys. 38 (2011) 115107

Obtained limits on the $\beta\beta$ decay modes of ⁶⁴Zn, ⁷⁰Zn, ¹⁸⁰W and ¹⁸⁶W:

$$T_{1/2} \sim 10^{18} - 10^{21} \text{ yr.}$$

• up to now only 5 nuclides (40 Ca, 78 Kr, 112 Sn, 120 Te and 106 Cd) over 34 candidates to 2ϵ , $\epsilon\beta^+$, $2\beta^+$ processes have been studied at this level of sensitivity in direct experiments


- 1) A possible positive hint of the $(2\nu+0\nu)EC\beta^+$ decay in ^{64}Zn with $T_{1/2}$ = $(1.1 \pm 0.9) \times 10^{19}$ yr [I. Bikit et al., Appl. Radiat. Isot. 46(1995)455] excluded
- 2) 0v2EC in ¹⁸⁰W is of particular interest due to the possibility of the resonant process;
- 3) the rare α decay of the ¹⁸⁰W with $T_{1/2} = (1.3^{+0.6}_{-0.5}) \times 10^{18}$ yr observed and new limit on the $T_{1/2}$ of the α transition of the ¹⁸³W to the metastable level $1/2^{-}$ at 375 keV of ¹⁷⁹Hf has been set: $T_{1/2} > 6.7 \times 10^{20}$ yr.


▶ Main characteristics

Density (g/cm³)	7.87
Melting point (°C)	1200
Structural type	Wolframite
Cleavage plane	Marked (010)
Hardness (Mohs)	4–4.5
Wavelength of emission maximum (nm)	480
Refractive index	2.1–2.2
Effective average decay time (µs)	24

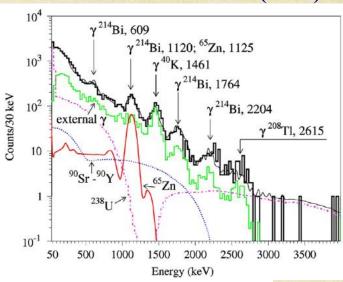
➤ Light yield and energy threshold

An energy threshold of 10 keV has been used in a past experiment not optimized for the low energy region

A competitive experiment for the DM investigation needs a low energy threshold, that is:

- Suitable light output (photoelectron/keV)
- Efficient reduction of the residual noise near threshold

Improvement of the energy threshold can be obtained e.g. by:

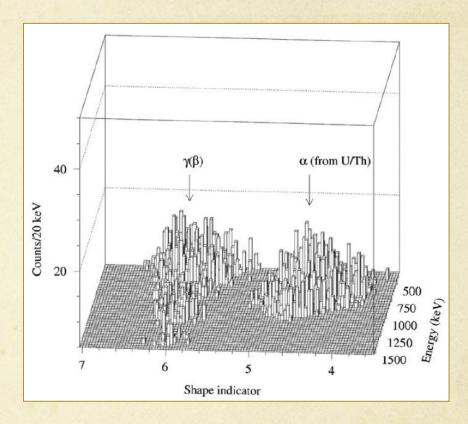

- ✓ coupling 2 PMTs in coincidence at single ph.e. level;
- ✓ placing the crystal in silicone oil (light collection improvement ~40%);
- ✓ using silicon photodiodes, APD, SiPM, etc.
- ✓ decreasing the operational temperature of the ZnWO₄ scintillator;
- ✓ or with a combination of the previous points

Radiopurity

The measured radioactive contamination of ZnWO₄ approaches that of specially developed low background NaI(Tl):

- ~ 0.5 ppt for ²³²Th;
- ~ 0.2 ppt for ²³⁸U;
- < $0.02 \text{ mBq/kg for } ^{40}\text{K};$
- total α activity of 0.18 mBq/kg

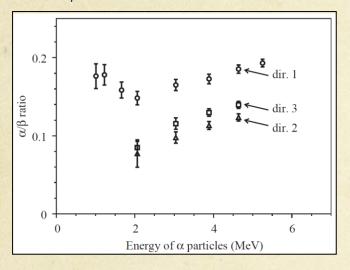
NIMA 626(2011)31

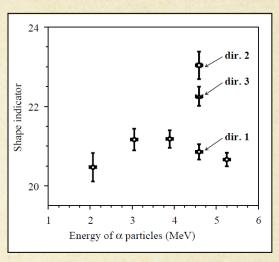


Run	Crystal	Size mass producer	t (h)	FWHM (%)	Background counting rate in counts/(day keV kg) in the energy intervals (MeV)		
					0.2-0.4	0.8-1.0	2.0-2.9
1	ZW0-1	20 × 19 × 40 mm 117 g ISMA ^a	2906	12.6	1.71(2)	0.25(1)	0.0072(7)
2	ZW0-2	Ø 44 × 55 mm 699 g ISMA	2130	14.6	1.07(1)	0.149(3)	0.0072(4)
3	ZW0-3	Ø 27 × 33 mm 141 g ISMA (re-crystallization of ZWO-2)	994	18.2	1.54(4)	0.208(13)	0.0049(10)
4	ZW0-4	Ø 41 × 27 mm	834	14.2	2.38(4)	0.464(17)	0.0112(12)
5		239 g NIIC ^b	4305	13,3	1.06(1)	0.418(7)	0.0049(4)

Developments is still ongoing: ⇒ future ZnWO₄ crystals with higher radiopurity expected

> Pulse shape analysis


The dependence of the pulse shapes on the type of irradiation in the ZnWO₄ scintillator allows one to discriminate $\beta(\gamma)$ events from those induced by α particles and to identify the α background


Anisotropic features in ZnWO₄

The reachable sensitivity of the directionality approach depend on the anisotropic features of the detectors in response to the low energy nuclear recoils induced by the DM particles

Measurements with α particles have shown that the **light response** and the **pulse shape** of a ZnWO₄ depend on the impinging direction of α particles with respect to the crystal axes

Such effects are absent in case of electron excitation

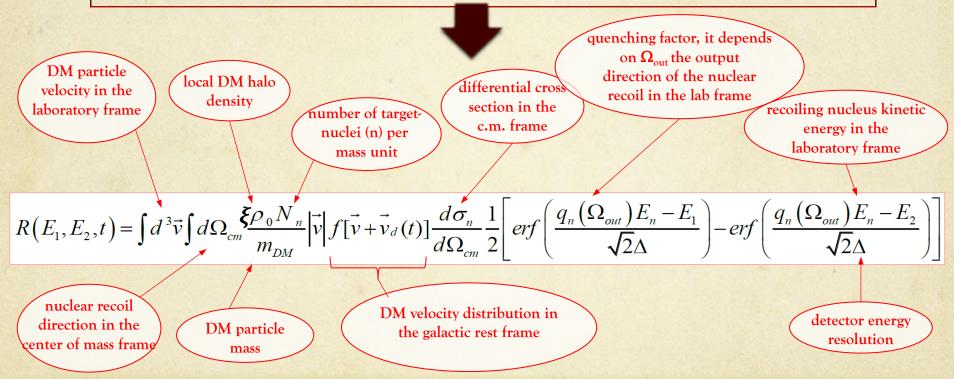
These anisotropic effects are ascribed to preferred directions of the excitons' propagation in the crystal lattice affecting the dynamics of the scintillation mechanism

Similar effect is expected in the case of low energy nuclear recoils

⇒ <u>Dedicated measurements are in preparation</u>

Both the anisotropic features of the ZnWO4 detectors can provide two independent ways to exploit the directionality approach

> Summarizing


- ✓ Large mass crystals
- ✓ High level of radiopurity
- ✓ Suitable light output
- ✓ keV energy threshold
- ✓ Pulse shape discrimination
- ✓ Sensitivity to different DM masses (with Zn, W and O)
- ✓ High stability of the running conditions
- ✓ Suitable anisotropic features

Signal rate in a given scenario

Eur. Phys. J. C 73 (2013) 2276

As a consequence of the *light response anisotropy*, recoil nuclei induced by the considered DM candidates could be discriminated from the background thanks to the expected variation of their low energy distribution along the day

The expected signal counting rate in the energy window (E1,E2) is a function of the time t (i.e. of Type equation here. $v_d(t)$ the detector velocity in the galactic rest frame)

NB: Many quantities are model dependent and a model framework has to be fixed
In this example, for simplicity, a set of assumptions and of values have been fixed, without considering the effect of
the existing uncertainties on each one of them

... some about a model framework

Model description:

- a simple spherical isothermal DM halo model with Maxwellian velocity distribution, 220 km/s local velocity, 0.3 GeV/cm³ local density (ρ_0) and 650 km/s escape velocity;
- DM with dominant spin-independent coupling and the following scaling law (DM-nucleus elastic cross section, σ_n , in terms of the DM elastic cross section on a nucleon, σ_p):

$$\sigma_{n} = \sigma_{p} \left(\frac{M_{n}^{red}}{M_{p}^{red}} \cdot A \right)^{2} = \sigma_{p} \left(\frac{m_{p} + m_{DM}}{m_{n} + m_{DM}} \cdot \frac{m_{n}}{m_{p}} \cdot A \right)^{2}$$

• a simple exponential form factor:

$$F_n^2(E_n) = e^{-\frac{E_n}{E_0}}$$
 $E_0 = \frac{3(\hbar c)^2}{2m_n r_o^2}$ $r_0 = 0.3 + 0.91\sqrt[3]{m_n}$

Quenching factor:

$$q_n(\Omega_{out}) = q_{n,x} \sin^2 \gamma \cos^2 \phi + q_{n,y} \sin^2 \gamma \sin^2 \phi + q_{n,z} \cos^2 \gamma$$

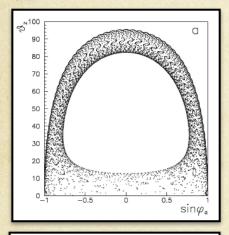
where $q_{n,i}$ is the quenching factor value for a given nucleus, n, with respect to the i-th axis of the anisotropic crystal and $\Omega_{out} = (\gamma, \phi)$ is the output direction of the nuclear recoil in the laboratory frame $q_{n,i}$ have been calculated following ref. [V.I. Tretyak, Astropart. Phys. 33 (2010) 40] considering the data of the anisotropy to α particles of the ZnWO₄ crystal

Energy resolution: $FWHM = 2.4\sqrt{E(keV)}$

Detector velocity in the Galactic rest frame:

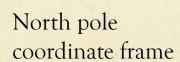
$$v_d(t) = v_{rot} + v_{LSR} + v_E(t)$$

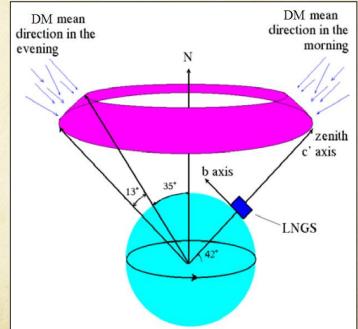
v_{rot}: rotational vel of Milky Way

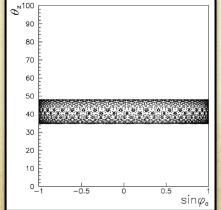

v_{LSR}: solar system's vel with respect to

the Local Standard of Rest

v_E(t): Earth's vel around the Sun


horizontal coordinate frame described by the "polar-zenith", θ_z , and by the "polar-azimuth", ϕ_a


The various directions, in the sky, of the detector Galactic velocity $v_d(t)$ calculated for the next three years as viewed from LNGS (42°27N latitude and 13°10'50" E longitude)



local horizontal coordinate frame

 \Rightarrow the area described in the sky by the direction of the detector velocity, \vec{v}_d , is only a strip

At LNGS latitude at a certain time of the day the DM particles come mainly from the top, while 12 h later they come near the horizon and from North

Since θ_{τ} is always near 40°, it is convenient to consider:

✓ ZnWO₄ crystals with the axis having the largest q.f. in the vertical direction, and with the axis having the smallest q.f. towards the North

Expected counting rate as a function of \vec{v}_d in the given model framework for $\sigma_0=5\times10^{-5}$ pb

- Strong dependence on the "polar-azimuth" ϕ_a that induces a diurnal variation of the rate
- Diurnal variation of the energy spectrum expected
- ✓ Diurnal variation of the nuclear recoils induced by DM interaction

Conclusions

- Anisotropic ZnWO₄ detectors is a promising detector to investigate the directionality for those DM candidate particle inducing just nuclear recoils
- These detectors could permit to reach in some scenarios sensitivity comparable with that of the DAMA/LIBRA positive result
- Such an experiment can obtain, with a completely different new approach, a new evidence in case of the considered candidates and provide some complementary information wrt DAMA/LIBRA on the nature and interaction type of the DM candidate
- It would represent a first realistic attempt to investigate the directionality approach through the use of anisotropic scintillators