

SPS Proton Bunch Compression Studies for AWAKE

Theodoros Argyropoulos, Hannes Bartosik, Thomas Bohl, Juan Esteban Müller, Alexey Petrenko, Elena Shaposhnikova, <u>Helga Timkó</u> CERN (BE Department)

Outline

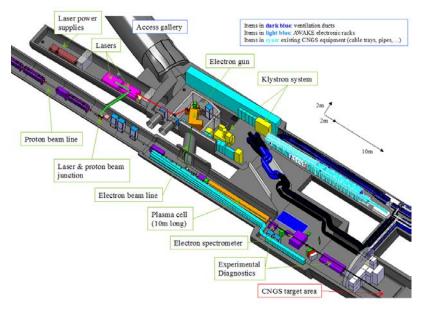
Introduction & motivation

Measurements

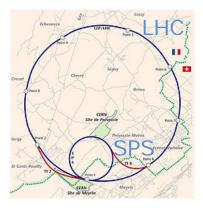
Conditions in the CERN SPS

Results

Simulations


Expected maximum peak current

Summary


AWAKE is a proton-bunch driven plasma wakefield acceleration experiment

LocationCERN SPS, extraction at CNGS siteProton bunch300-400 GeV, high-brightness beam

← Layout of the AWAKE experimental area at the SPS CNGS site

SPS and LHC rings at CERN \rightarrow

Studies & their motivation

Experimental studies

Measurements of the SPS proton bunch parameter space

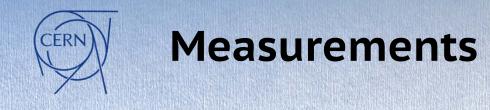
AWAKE 'Wish list'

Design parameters

Highest possible peak current, smallest possible transverse emittance

 $N_b = 3 \times 10^{11} \text{ p}, \sigma_z = 12 \text{ cm} = 0.4 \text{ ns},$ $\sigma_r = 0.02 \text{ cm}, \epsilon_{bn} = 3.5 \text{ mm mrad}$

First simulation studies


How much can the peak current be improved?

RF voltage upgradeMore voltage, shorter bunches**LLRF upgrade**Enables a jump to the unstable phase

MEASUREMENT CONDITIONS

EXPERIMENTAL STUDIES:

Measurement conditions

Energy450 GeV (SPS flat top)Main RF V_{200MHz} = 8 MV maximum (12 MV in ~2019)4th harm. RF V_{800MHz} = 0.8 MV maximum (1.2 MV in 2015)used for longitudinal stability

Tested two optics with different transition energies

Q20 optics $\gamma_T = 18$

Q26 optics $\gamma_T = 22.8$

Q20 is better for stability, but for the same emittance and same RF voltage the bunches are longer

Limitations and cures

Main limitations to increase the brightness

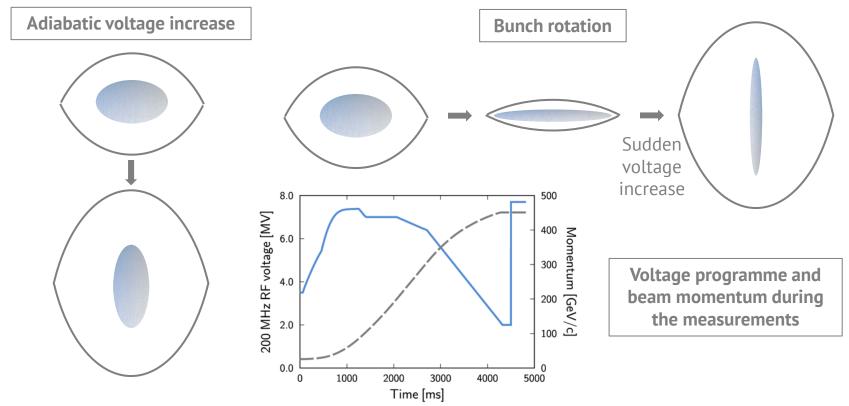
Limited RF voltage

Intensity effects that occur at the high intensities demanded by AWAKE

Potential-well distortion

Beam instabilities

Space-charge effect


Beam-induced voltage (~ N) \rightarrow reduced V_{eff} \rightarrow longer bunches Uncontrolled emittance blow-up *Cures: lower* γ_T , 800 MHz RF, controlled ε_L blow-up

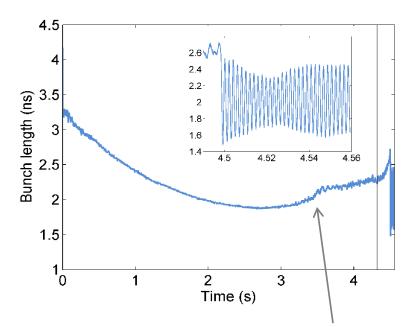
In the SPS injectors & SPS flat bottom \rightarrow Transverse emittance blow-up *Cures investigated in the LIU project*

Bunch rotation

During the measurements, we used bunch rotation in longitudinal phase-space to shorten the bunches

RESULTS OBTAINED WITH THE Q20 OPTICS

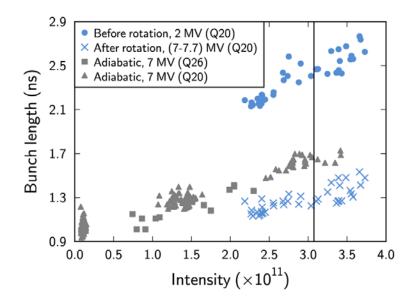
EXPERIMENTAL STUDIES:



Longitudinal stability

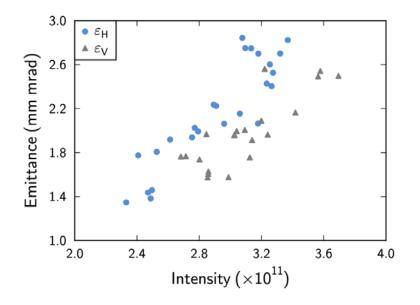
Even in the Q20 optics:

Beam instabilities $\gtrsim 3 \times 10^{11} \text{ p}$


- A small controlled ϵ_L blow-up could help to stabilise the beam
- \rightarrow Better reproducibility
- \rightarrow But: longer bunches

Bunch length increase due to uncontrolled emittance blow-up

Bunch length and peak current


Bunch length (4 sigma Gaussian fit) achieved adiabatically or using bunch rotation

Vertical line: threshold of stability Rotation reduces τ by ~20 %

Peak current At the design intensity 3×10^{11} $1.3 \text{ ns} (\sigma = 10 \text{ cm})$ Average $\tau_{4\sigma}$ Average I_{peak} $(59 \pm 4) A$ At higher intensity, ~3.7×10¹¹ $1.4 \text{ ns} (\sigma = 11 \text{ cm})$ Shortest $\tau_{4\sigma}$ Highest I_{peak} $(67 \pm 7) \text{ A}$ **Bunch length vs. intensity** Strong increase of τ with N Probably a large portion is due to microwave instability

Transverse emittance

Horizontal and vertical normalised rms emittances

Measurement accuracy: \pm 20 % The beam is expected to be round

Transverse emittance vs. intensity The increase is roughly linear The slope is determined by: Space charge in the injectors Injection losses ∝ intensity

At the design intensity 3×10^{11} Smallest $\varepsilon_{H,V}$ 1.9 mm mrad

Scaling of intensity thresholds of stabilityTransverse-mode coupling instability $\propto \eta \epsilon_L$ Loss of Landau damping $\propto \eta \epsilon_L^{5/2}$ Where $\eta = \gamma_T^{-2} - \gamma^{-2}$ is the slippage factor

Performance of the Q20 compared to the Q26 optics

Better transverse and longitudinal beam stability

Transverse size	Smaller
Bunch length	Similar
	less blow-up but longer τ for the same $V \propto \eta$

MAXIMISING THE PEAK CURRENT

SIMULATION STUDIES WITHOUT INTENSITY EFFECTS:

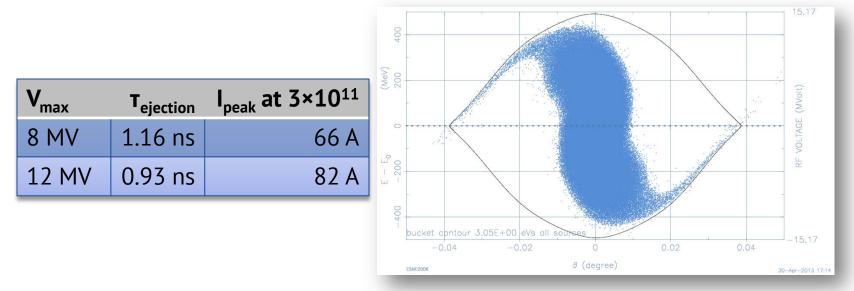
Adiabatic bunch shortening

About the simulations

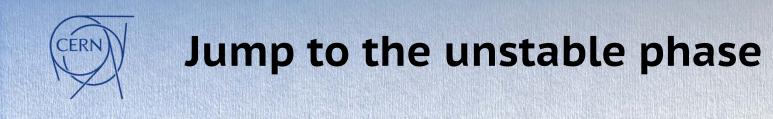
No intensity effects were taken into account

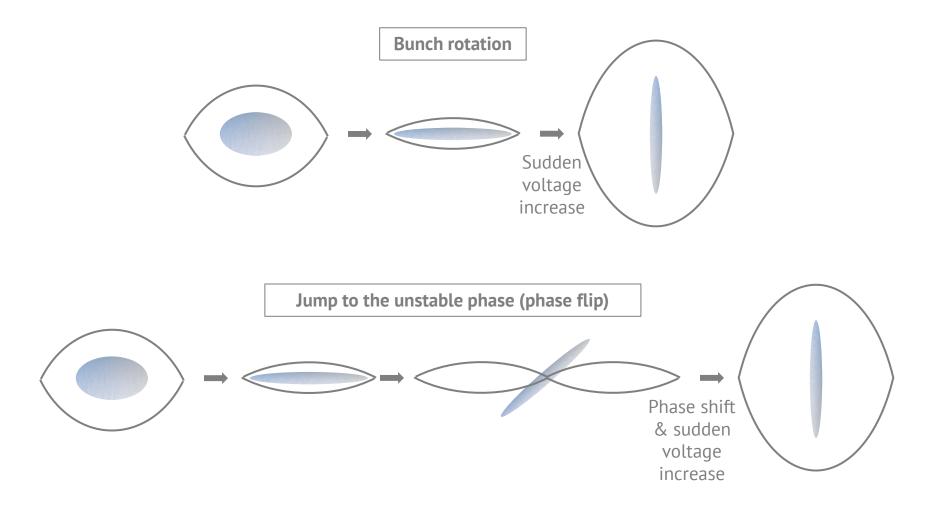
Adiabatic voltage increase

V _{max}	T _{ejection}	I _{peak} at 3×10 ¹¹	
8 MV	1.50 ns	51 A	
12 MV	1.35 ns	57 A	


The peak current assumes that the same bunch length can be achieved with intensity effects (implicitly included in
$$\epsilon_L$$
)

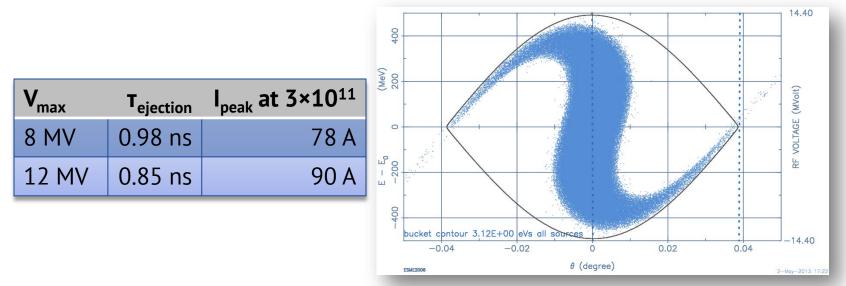
 $\tau \sim V^{-1/4}$


Bunch compression (1)


Bunch rotation in longitudinal phase space

800 MHz RF doesn't affect much

Can gain ~100 ps with a fast V rise (100 µs instead of 1 ms)



Bunch compression (2)

Jump to the unstable phase (phase flip)

Effect of 800 MHz RF

single RF and double RF w/ 180° rel. phase give the same results; double RF in-phase: +100 ps

Summary

Short, high-intensity SPS proton bunches for AWAKE

Reliably achieved59 A ($\tau_{4\sigma} = 1.3 \text{ ns}, \sigma = 10 \text{ cm}$) at $3 \times 10^{11} \text{ p}$ Design parameters48 A ($\tau_{4\sigma} = 1.6 \text{ ns}, \sigma = 12 \text{ cm}$) at $3 \times 10^{11} \text{ p}$

Achievable with future upgrades

Up to 50 % more peak current (more V, better bunch compression)

Main limitations for higher brightness

Longitudinal beam instabilities Steep increase in bunch length as a function of intensity If the impedance source of this growth could be eliminated, further significant improvement in brightness should be possible

Summary

Short, high-intensity SPS proton bunches for AWAKE

Reliably achieved59 A ($\tau_{4\sigma} = 1.3 \text{ ns}, \sigma = 10 \text{ cm}$) at $3 \times 10^{11} \text{ p}$ Design parameters48 A ($\tau_{4\sigma} = 1.6 \text{ ns}, \sigma = 12 \text{ cm}$) at $3 \times 10^{11} \text{ p}$

Achievable with future upgrades

Up to 50 % more peak current (more V, better bunch compression)

Main limitations for higher brightness

Longitudinal beam instabilities Steep increase in bunch length as a function of intensity If the impedance source of this growth could be eliminated, further significant improvement in brightness should be possible

THANK YOU!