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A broad perspective from CMT

m Motivation: study of compressible quantum states of matter

- Quantum: T =0 orvery low T (T << p)

- Compressible [Huise-Sachdev'1 1][Sachdev'12]:
continuum, translationally invariant, with a global charge Q;
Ground state of H — uQ is characterised by (Q) a smooth non-constant function of
I

- Known examples:
Il Solids (translational symmetry is broken);
Superfluids (U (1) is broken);

Fermi liquids
Non-Fermi liquids

m Zoom in: Non-Fermi liquids



Fermi liquids vs non-Fermi liquids:

Fermi liquids (FL)
m resistivity p ~ T2
m Fermi surfaces
B quasi-particles

m perturbative field theory

Non-Fermi liquids (NFL)
| resistivity p ~ T
m Fermi surfaces
m NO quasi-particles

m strongly interacting

mos

- Left: Doping-temperature phase diagram of the hole-doped cuprate superconductors [groun '08]

- Right: Magnetic field-Temperature in heavy-fermions metals [Gegenwart et al '08]

m Quantum critical point behind NFL



A more specific perspective from CMT

Magnetic oscillations in finite density systems
m quantum oscillations in the magnetization as a function of 1/B, present in metals at low
temperature T and strong magnetic field B
m standard tool to diagnostic and analyse Fermi surfaces
® in ordinary metals (Fermi liquids): Landau-Kosevich-Lifshitz formula

m in “exotic phases”: some surprises:

P%

Figure: phase diagram from under-doped to over-doped high-T, SC [sebastian-Harrison-Lozarich'12]

In NFL: Magnetic oscillations and ARPES suggest gapless excitations and no quasi-particle

descriptions [sebastian-Harrison-Lozarich’ 12, Sebastian-Harrison-Lozarich’l 1]



Prelude: Magnetic oscillations in Fermi liquids

m Apply a magnetic field to a gas of electrons in (3 4 1)-dimensions:

- Landau levels + Zeeman splitting:
€& =k>4+m?+ (20 +1)yB+ 4B, £=0,1,...

- Bis parallel along z-axis and k = k;

- 7y is proportional to the gyromagnetic ratio

® What happens?

- closed quantized orbits in the plane perpendicular to k
- separation between two orbits: Ay o1 ~ B
- degeneracy: 6 ~ B

m Recall: Free energy

~ TBZ/de log <1+exp%(k)>



Prelude: Magnetic oscillations in 2 + 1-d Fermi liquids

m Increasing B: what happens? (2 4 1)-d example

€l
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m Increasing B: then Ay 41 increases but also the degeneracy (area enclosed) §
increases



Prelude: Magnetic oscillations in 3 + 1-d Fermi liquids

m Increasing B: what happens? (3 4 1)-d example

ss
ok

m extra degeneracy in k: the crossing of Fermi surface is maximized when this
degeneracy is minimal: extremal cross-sectional Fermi surface!

m period is controlled by the (extremal) Fermi surface: Ar



Prelude: Magnetic oscillations in Fermi liquids: Summary

m Increasing B: what happens?

- continuous jump of free energy (€2) <= oscillations of magnetization M = —
(crossing of FS by highest occupied Landau level)

- conditions

Il Low T (thermal effects suppressed by oscillations) and strong B: T < B << p
(pure metal)

m For FL: Landau-Kosevich-Lifshitz formula in 3 + 1-d

Mose ~ VB m'T/8 cos (Ar(/B)
; V/sinh (# fm*T/B)

m For FL: Landau-Kosevich-Lifshitz formula in 2 + 1-d

1 m*T/B

Mose ~ B — {sinh (#m~*T/B)

sin (Ar¢/B)

one

with m* the effective mass, m* ~ 5



stions, goals, and methods

m Questions
- Can gauge/gravity duality give an alternative prediction and description for magnetic
oscillations in strongly correlated systems?
- Can we attack the problem from a different point of view?
m Our goals
- Magnetic oscillations in systems at finite density and strongly correlated via
gauge/gravity duality
- bottom-up approach without introducing probe fermions
m Our approach
- Extension of electron star/cloud model [Hartoll-Silverstein-Polchinski-Tong '10][Hartnoll-Tavanfar

*10][VGMP-Nowling-Thorlacius-Zingg' 10][Hartnoll-Pecrov'10] See also previous related works:

[deBoer-Papadodi linde’ | 0] [Arsiwalla-deBoer-Papadodimas-Verlinde’10]

- Previous work on magnetic effects in holographic metals within probe approx [penet-
Hartnoll-Sachdev'09][Hartnoll-Hofman’09][Hartnoll-Hofman-Tavanfar’ | 0][Gubankova-Brill-Cubrovic-Schalm-Schijven-Zaanen’| 1]
[Blake-Bolognesi-Tong-Wong’ 12] [Albash-Johnson-MacDonald 12][Gubankova-Brill-Cubrovic-Schalm-Schijven-Zaanen' 3]
[Hartnoll-Hofman-Vegh'I I]



The bulk model: Electron cloud at B =0

m Action

S = SEH +Sm+ Sp
= d*x/—g(R—2A) — — /d4x\/ gFu FHY — /d4x\/fg Lo
where on-shell Lﬂ = P [Schutz’ 70][Brown '93][Bombelli-Torrence '90][de Ritis-Lavorgna-Platania-Stornaiolo '85]

m Ingredients

degenerate charged perfect fluid of non-interacting fermions of mass m in
4-dimensions
coupled to

Maxwell-Einstein theory with A = — L% (asymptotically AdS4, with L the AdS radius)

we search finite T configurations

m k2 = 87Gy is the gravitational coupling, e Maxwell coupling constant, here: % <1
(classical gravity regime)

m Dual: strongly correlated fermions at finite density ;1 = lim,— o A; and at finite
temperature T = Ty



The electron cloud at B =0

fluid local
Lorentz frame

m fermions are treated in 2 Thomas-Fermi approximation (or
Tolman-Oppenheimer-Volkoff) Hartol-Tavanfar 1012

mL>>1, and e2~%<<1 )

| | aCtUa”y it works beyond (I) [Allais-McGreevy’ 1 3][Gubankova-Brill-Cubrovic-Schalm-Schijven-Zaanen’| 3]

m fermions are characterised by a local chemical potential

foc(r) = A (r)u” (r) = Ar)eb(r)
(static fluid: 4-velocity u* = (e, 0,0, 0), with e the tetrad)



The electron cloud at B =0

m Eq. of state for the fermions in the rest frame: ¢ = k? + m?

m density of states

1
n(e) = Ber/e2 —m? electrons: = —

™
m fluid is described by pressure p(r), energy density p(r), and charge density o(r)

p=p(oc(r)) , p=p(ec(r)) , =0 (toc(r))

for example

H1oc ()
”:5/ eV = D () - m?)

3

m fluid is supported if

Mloc(r) >m



The electron cloud at B = 0: Geometry

m Ansatz
L &n? 5 el ¢(rya(r
ds2:f2(,A( )2dt2+dx2+dy2+g(r)2drz g e
r D 5 r&0)
m Then
€.
Hloc(r) = —a(r)
K
where ~ denotes dimensionless quantities
m Solutions at finite temperature
exterior
interior AdS charged
AdS charged Electron black brane
black brane  cloud
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Figure: Left: fluid profile at finite T [VGMP-Nowling-Thorlacius-Zingg 10]. Right: Cartoon of the geometry



The electron cloud at B = 0: Thermodynamics

m Free energy

F=E—pnQ—sT

m The electron cloud geometry is the preferred solution for T < T, compared to
AdS charged black brane vaMp-Nowling-Thoriacius-Zingg 10].
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m 3rd order Phase transition [VGMP-Nowling-Thorlacius-Zingg'10][Hartnoll-Petrov’ 1 0]



The anisotropic electron cloud: B # 0

m Now: we add a magnetic field B supported by the black brane, B is constant and pointing
along the radial direction

m Action
S = SEH +Sm+Sp
= dix/—g(R—2A) — — /ar‘*x\ﬁlf,wlfW /d4x\/jg£ﬂ
where on-shell Eﬂ =p
m we search for finite T and B configurations

m charged perfect fluid of non- |nteract|n§ fermions of mass m in 4-dimensions coupled to
Maxwell-Einstein theory with A = — 5
m Spin fluid models known since 70’s
[Schutz’70][Ray'72] [Bailey-lsrael'75][deOliveira-Salim’9 1 ][Brown'93][deOliveira-Salim'95]

m Dual: strongly correlated fermions at finite density p = lim,— o A;, at finite temperature
T = Th and at finite magnetic field B = lim,_,q Fy.



The anisotropic electron cloud: B # 0

m degenerate gas of electrons experience
(o]
:uloc(r) = AIJ‘UH ) Hloc(r) =€) €& F[J.V

m Fluid equation of state: Landau levels and Zeeman splitting

€2 =m? 4 k% 4 (20 + 1) YHioe £ YHioc

m Density of states

/ I3
n(s) = 6’7Hlocz 9(52 - m2 - 2Z7Hloc)

>0 VE2 —m? — 20yH)oc ’

fluid is described by thermodynamic variables

p=p (,U'loc(r) > Hloc(r)) )
same for p(r) , o(r), and the magnetization 7)(r). For example
Hloc
o(r) = / n(e)de
Vm2+20vHioc

/
Brhhoe 3 Bt — m? — 2yHioe) /i, — m? — 23Hioc ,
£>0




The anisotropic electron cloud: some details

m Ansatz
L2 &(r)2
2 _ L7 2 2 2 | A2 2
ds® = = < g(r)th +dx” +dy” +8(r)°dr
Ao = cenal) o, ehg,
Kk rg(r) K
m Then
_ €. _ €2
Proc(r) = —a(r),  Hioc(r) = —Br

m Solve for ¢(r), g(r) , a(r).



The anisotropic electron cloud: Geometry

m Solution
exterior
interior ) ~ AdS dyonic
s AdS dyonic Anisotropic - black brane
black brane ~ Flecton |

cITud

m fluid is supported when

2 2

Hioe —M
g = | Ploc =M1 5
filled \‘ 27 Hioe J_



Results: boundary magnetization M

Mm=1.10" 7.=63610" =5.10", 7 =745.107 Mm=9.10" 7.=28.107

3 150 25

Figure: The labels denote temperatures 7 /7 = 0.9 (a), 0.3 (b), 3- 1073 (c)

m The magnetization of the electron cloud (solid lines) is lower than that of a dyonic black
brane (dashed lines) with the same parameters

m only one Fermi surface: the extremal (with respect to the radial direction)
[Hartnoll-Hofman-Tavanfar’ | 0] [Hartnoll-Hofman-Vegh'I 1] 7= observations

m overall amplitude of the magnetization M is linear in B: # from Landau-Fermi theory
and F([Hartnoll-Hofman-Tavanfar’ 1 0]] [Blake-Bolognesi-Tong-Wong 12]: We have back-reaction now!

m # Friedel oscillations, which were not observed in the electron cloud
[VGMP-Nowling-Thorlacius-Zingg' 1 11: continuum of bulk Fermi surfaces



Period of oscillations

m period of oscillations versus T:

A1/ B)

. n : T
o o 0?

independent of the temperature T as expected at low T



The anisotropic electron cloud: Thermodynamics

m Free energy and thermodynamics relation
3
F=E—sT —uQ, §5=ST+,LLQ7MB

m free energy: 2nd order phase transition between anisotropic electron cloud and dyonic

black hole
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m Compare with B = 0: third order phase transition [VGMP-Nowling-Thorlacius-ZinggI 0][Hartnoll-Petrov'10]
Expected to be first order taking into account quantum corrections as in B = 0

[Medvedyeva-Gubankova-Cubrovic-Schalm-Zaanen’13]



The anisotropic electron cloud: Phase transition

m Phase transitions can be studied numerically and analytically close to the critical point

[Hartnoll-Petrov’10]
AF ~ /5p ~ 832 Ar ~ (AN ~ AT?
m Analytically: They match with numerics up to the third digit

- vs T (at fixed B)

- vs B (fixed T)



Summary and Outlook

m Summary

a holographic model for a 2+ dimensional system of strongly correlated electrons
in a magnetic field

The system shows magnetic oscillations dominated by a single sharp Fermi surface

The oscillation amplitude has a non-Fermi liquid character and it is different from
earlier probe fermion computations

The model: 3+ dimensional bulk fermions treated in a Thomas - Fermi approx in
an asymptotically AdS dyonic black brane background with gravitational and
electromagnetic back-reaction

our results confirmed later also by [Carney-Edalaci'15]

m Oulook

beyond Thomas-Fermi approx: WKB along the lines of

[Medvedyeva-Gubankova-Cubrovic-Schalm-Zaanen'|3][Carney-Edalaci'15] OF approach of [Aliis-McGreevy'13]
Other systems

Thermalisation effects



