
A. Aleksejevs PAVI11, September 5-9, 2011

High precision calculations of electroweak radiative 
corrections for polarized Møller scattering 

at one loop and beyond  

Aleksandrs Aleksejevs
Memorial University, Grenfell Campus, Canada
 
Svetlana Barkanova
Acadia University, Canada
 
Yury Kolomensky
University of California, USA

Eduard Kuraev
JINR, Russia
 
Vladimir Zykunov
Belarusian State University of Transport, Belarus

1

Friday, 9 September, 11



A. Aleksejevs PAVI11, September 5-9, 2011

Møller scattering at the tree level  
3
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FIG. 1: Diagrams describing nonradiative Møller scattering in the (1) t- and (2) u-channels.

A useful structure in the present study is

Dil =
1

l −m2
i

(i = γ, Z; l = t, u), (5)

which depends on the Z-boson massmZ and on the photon mass mγ . The photon mass is set to zero everywhere
with the exception of specially indicated cases where the photon mass is taken to be an infinitesimal parameter
that regularizes an infrared divergence. Another set of useful functions is

λ±
i,k = λ1

i,k
B λ1

i,k
T ± λ2

i,k
B λ2

i,k
T , (6)

which are combinations of coupling constants and pB(T ), where pB(T ) are the degrees of polarizations of electrons
with 4-momentum k1 (p1). Specifically, they are given by

λ1
i,j
B(T ) = λi,j

V − pB(T )λ
i,j
A , λ2

i,j
B(T ) = λi,j

A − pB(T )λ
i,j
V ,

λi,j
V = vivj + aiaj , λi,j

A = viaj + aivj , (7)

where

vγ = 1, aγ = 0, vZ = (I3e + 2s2W )/(2sW cW ), aZ = I3e /(2sW cW ). (8)

It should be recalled that I3e = −1/2 and sW (cW ) are the sine (cosine) of the Weinberg angle expressed in
terms of the Z- and W -boson masses according to the rules of the Standard Model:

cW = mW /mZ , sW =
√

1− c2W . (9)

The electron polarization degrees pB(T ) in the cross sections are labeled here as follows: the subscripts L
and R on the cross sections correspond to pB(T ) = −1 and pB(T ) = +1, where the first subscript indicates the
degree of polarization for the 4-momentum k1, while the second one indicates the degree of polarization for
the 4-momentum p1. By combining the degrees of electron beam polarizations, we can obtain four measurable
cross sections, but, by virtue of the rotational invariance, the two of them will be identical: σLR = σRL. From
the three cross sections we can construct three independent asymmetries [23] (which are very close at large
scattering angles), and the two of them (mainly A1) are main subject of our investigation:

A1 =
σLL + σLR − σRL − σRR

σLL + σLR + σRL + σRR
=

σLL − σRR

σLL + 2σLR + σRR
, (10)

A2 =
σLL − σRR

σLL + σRR
. (11)

All of the asymmetries are proportional to the combination 1− 4s2W (by virtue of the proportionality of the
cross-section difference σLL − σRR) and are therefore highly sensitive to small changes in sW . This is precisely
the reason why the asymmetry A1, which, at moderately low energies, is given by

A1 =
s

2m2
W

y(1− y)

1 + y4 + (1 − y)4
1− 4s2W

s2W
, y = −t/s, (12)

• Straightforward process!

The process of electron–electron scattering (Møller process)
C. Møller, Annalen der Physik 406, 531 (1932)
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21], and compare the results. Our second goal is to
present comparison and analysis of the various con-
tributions to the cross-section asymmetry calculated
within the HRC and DRC renormalization conditions.
Our third aim is to calculate the total NLO corrections
in the CDR scheme and estimate the importance of
the NNLO corrections for such high-precision experi-
ments as MOLLER.

The rest of the paper is organized as follows. In
Section II we provide details of the basic notation,
the lowest-order (Born or Leading Order (LO)) and
NLO contributions to Møller scattering. The same
section gives a short description of photon emission
which is essential for removal of nonphysical parame-
ters from regularized infrared divergent cross section.
The details of the HRC and DRC renormalization con-
ditions and a discussion of gauge invariance can be
found in Section III. Analysis of analytical and nu-
merical results in the on-shell RS using HRC and DRC
renormalization conditions is given in the beginning of
Section IV. Later, in the same section, the CDR re-
sults are discussed. Section V includes the analysis of
possible effects of an additional new-physics massive
neutral boson on the observable asymmetry. Our con-
clusions and future plans are discussed in Section VI.

II. DEFINITIONS AND FRAMEWORK

In the Standard Model, the Born cross section
for Møller scattering with the longitudinally-polarized
electrons

e−(k1) + e−(p1) → e−(k2) + e−(p2) (1)

can be represented in the form

σ0 =
πα2

s

∑

i,j=γ,Z

[λi,j
− (u2DitDjt + t2DiuDju)

+λi,j
+ s2(Dit +Diu)(Djt +Dju)], (2)

where σ ≡ dσ/d cos θ and θ is the scattering angle
of the detected electron with momentum k2 in the
center of mass system of the initial electrons. The set
of momenta of initial (k1 and p1) and final (k2 and
p2) electrons (see Fig. 1) generates the standard set
of Mandelstam variables,

s = (k1 + p1)
2, t = (k1 − k2)

2, u = (k2 − p1)
2. (3)

We neglect the electron mass m whenever possible and
in particular when m2 $ s,−t,−u.

A useful structure we employ in this paper is

Dir =
1

r −m2
i

(i = γ, Z; r = t, u), (4)
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FIG. 1: Diagrams describing nonradiative Møller scatter-
ing in the (a) t- and (b) u-channels.

which depends on the Z-boson mass mZ or on the
photon mass mγ ≡ λ. The photon mass is set to
zero everywhere with the exception of specially indi-
cated cases where the photon mass is taken to be an
infinitesimal parameter that regularizes an infrared di-
vergence. In addition, we use the functions

λ±
i,k = λ1

i,k
B λ1

i,k
T ± λ2

i,k
B λ2

i,k
T , (5)

which are combinations of coupling constants and the
degrees of polarizations pB(T ) of the electrons with
momentum k1 (p1) given by

λ1
i,j
B(T ) = λi,j

V − pB(T )λ
i,j
A , λ2

i,j
B(T ) = λi,j

A − pB(T )λ
i,j
V ,

λi,j
V = vivj + aiaj , λi,j

A = viaj + aivj . (6)

Here, vector and axial-vector parts of the couplings
have the following structure

vγ = 1, aγ = 0,

vZ = (I3e + 2s2W )/(2sW cW ), aZ = I3e /(2sW cW ). (7)

It should be recalled that I3e = −1/2 and sW (cW ) are
the sine (cosine) of the Weinberg mixing angle which
is defined in terms of mZ and mW according to the
rules of the Standard Model (SM): cW = m2

Z/m
2
W

and sW =
√

1− c2W . The electron degrees of polar-
ization pB(T ) are labeled such that the subscripts L
and R correspond to the values of pB(T ) = −1 and
pB(T ) = +1 respectively. Here, the first subscript in-
dicates the degree of polarization for the momentum
k1, while the second indicates the degree of polariza-
tion for the momentum p1. Combining the degrees
of electron beam polarizations, we can obtain four
measurable cross sections. However by the virtue of
the rotational invariance, two of them are identical:
σLR = σRL. The three polarization cross sections can
be used to construct three independent asymmetries
[22]. Of particular interest to us is the parity-violating
asymmetry ALR which is defined as follows

ALR =
σLL + σLR − σRL − σRR

σLL + σLR + σRL + σRR
=

σLL − σRR

σLL + 2σLR + σRR
.(8)

This single-polarization asymmetry corresponding to
the scattering of longitudinally polarized electrons on
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unpolarized electrons is proportional to the combina-
tion 1−4s2W , and is therefore highly sensitive to small
changes in sW . That is why the asymmetry ALR was
used as the observable in E-158 and will be measured
in the future MOLLER experiment. At low energies
and at Born level, the PV asymmetry A0

LR is given by

A0
LR =

s

2m2
W

y(1− y)

1 + y4 + (1− y)4
1− 4s2W

s2W
, y = −t/s.(9)

The contribution of virtual particles (V -
contribution) to the cross section of Møller scattering
is described by the three classes of diagrams: boson
self-energies (BSE) (they include γγ, γZ and ZZ
self-energies and are shown symbolically in Fig. 2(a)),
vertex functions (Fig. 2(b) and 2(c)), and two-boson
exchange diagrams (boxes) shown in Fig. 2(d, e). In
the on-shell and CDR renormalization schemes there
is no contribution from the electron self-energies. The
corresponding cross section is given by the sum

σV = σBSE + σVer + σBox. (10)

The detailed expressions for all the terms in this sum
were given in our recent paper [8].

Contributions coming from the vertex correction
graphs (with a photon in the loop), as well as the
γγ and γZ boxes suffer from the well-known infrared
divergence. Regularization of this divergence can be
done by giving the photon a small unphysical mass
λ. Obviously, the final result should be free of un-
physical parameters and hence such dependence has
to be removed. That can be done if we consider ad-
ditional contributions associated with photon emis-
sion diagrams (bremsstrahlung). The detailed de-
scription of this contribution is also given in [8]. The
bremsstrahlung cross section can be broken down into
two parts (soft and hard) as

σR = σR
IR + σR

H (11)

by separating the integration domain according to
k0 < ω and k0 > ω, where k0 is the photon energy
(in the reference frame co-moving with the center of
mass of the primary electrons). The parameter ω cor-
responds to the maximum of the emitted soft-photon
energy. First, we follow the methods of paper [23] to
get a well-known result (see also [19–21, 24, 25]) for
the soft-photon cross section (where e is the base of
the natural logarithm):

σR
IR =

α

π
(4 log

2ω

λ
log

tu

em2s
− log2

s

em2

+1−
π2

3
+ log2

u

t
)σ0. (12)

Next, we sum the IR-terms of V - and R-

contributions,

σC = σV
IR + σR

IR =
α

π
(4 log

2ω√
s
log

tu

em2s

− log2
s

em2
+ 1−

π2

3
+ log2

u

t
)σ0. (13)

and get a result which is free of regularization param-
eter λ.

At this point let us continue with the discussion of
the details of renormalization conditions we use in our
calculations.

III. RENORMALIZATION CONDITIONS

AND GAUGE INVARIANCE

To obtain the ultraviolet-finite result and render
the parameters of the Standard Model real, we have
to apply a renormalization procedure. For a gauge-
invariant set, physical results should be invariant un-
der different renormalization conditions. That is, al-
though the contributions of the different types of dia-
grams can vary strongly for different renormalization
conditions, the total impact of all one-loop virtual ef-
fects on observable quantities must remain indepen-
dent. In other words, the contributions of separate
self-energies and vertex correction functions strongly
depend on the details of the renormalization con-
ditions, and to properly account of the EWC they
should be taken as one gauge-independent set. We
will illustrate this for the case of the observable ALR,
which is especially sensitive to the renormalization
conditions. In addition, we can verify that our results
are correct by comparing the computer-based (DRC)
and "by hand" (HRC) calculations. We now briefly
describe our two chosen renormalization conditions,
DRC and HRC, within the on-shell renormalization
scheme.

Both use multiplicative renormalization constants,
and as a result the electroweak Lagrangian, origi-
nally written in terms of bare parameters, is sepa-
rated into a basic Lagrangian and a counterterm La-
grangian. The basic Lagrangian has the same form as
the bare one, but depends on renormalized parame-
ters and fields. The counterterm Lagrangian depends
on renormalization constants of masses, charges and
fields. Renormalization constants are fixed by the
renormalization conditions, which are separated into
two classes: the first determines the renormalization
of the parameters, and the second fixes the renormal-
ization of fields. The first class is related to physical
observables at a given order of perturbation theory,
and the second one is related to the Green’s functions
and has no effect on calculations of S-matrix elements.
Both approaches use essentially the same renormaliza-
tion conditions to fix the parameters of the SM in the
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The first observation of Parity Violation in Møller scattering was made by E-158 
experiment at SLAC

Motivation  

sin2(✓̂W ) = 0.2403± 0.0013 in MS

MOLLER, planned at JLab following the 11 GeV 
upgrade, will offer a new level of sensitivity and 
measure the parity-violating asymmetry in the 
scattering of longitudinally polarized electrons off 
unpolarized target to a precision of 0.73 ppb. 

That would allow a determination of the weak 
mixing angle with an uncertainty of about 0.1%, a 
factor of five improvement in fractional precision 
over the measurement by E-158.

Q2 = 0.026GeV 2, ALR = (1.31± 0.14(stat.)± 0.10(syst.))⇥ 10�7

3

J. Benesch et al., MOLLER Proposal to PAC34,  2008
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Motivation  
Although PV asymmetry ( ALR ∼ 10-7) is very small, the accuracy of modern 
experiments exceeds the accuracy of the theoretical result in Born approximation. 
One–loop contribution was found to be rather big in the previous works:

A. Czarnecki, W. J. Marciano, Phys. Rev. D53, 1066 (1996);
A. Denner, S. Pozzorini, Eur. Phys. J. C7, 185 (1999); 
A. Aleksejevs, S. Barkanova, A. Ilyichev, V. Zykunov, Phys. Rev. D82, 093013 (2010). 

• Theoretical approach to control precision:

• Make sure that everything is correct for the given level of perturbation (start with one loop)
• For that we choose and compare two approaches: “by hand” and computer based 
using on-shell renormalization and using two different renormalization conditions (RC). 

• Determine if higher order effects (two-loops) are important
• For that we compare results in two renormalization schemes (RS): on-shell and 
constrained differential renormalization (CDR). Size of the difference between RS will 
point out importance of higher order effects:
W. Hollik and H.-J. Timme, Z. Phys. C. 33, 125  (1986). 
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One-loop  5

FIG. 2: One-loop t-channel diagrams for the Møller process. The circles represent the contributions of self-energies and
vertex functions. The u-channel diagrams are obtained via the interchange k2 $ p2.

We can present the one-loop amplitude M
1

as a sum of boson self-energy (BSE), vertex (Ver)
and box diagrams:

M
1

= M
1,t �M

1,u, M
1,u = M

1,t(k2 $ p
2

),

M
1,t = M

BSE,t +M
Ver,t +M

Box,t. (12)

We use the on-shell renormalization scheme from [21, 22], so there is no contributions from
the electron self-energies. A question of dependence of EWC on renormalization schemes and
renormalization conditions (within the same scheme) was addressed in our earlier paper [19].
The infrared-finite BSE term can be easily expressed as:

M
BSE,t = i

↵

⇡

X

i,j=�,Z

I iµD
ijt
S Jµ,j, (13)

with

Dijr
S = �Dir⌃̂ij

T (r)D
jr, (14)

where ⌃̂ij
T (r) is the transverse part of the renormalized photon, Z-boson and �Z self-energies.

The longitudinal parts of the boson self-energy make contributions that are proportional to
m2/r so they are very small and not considered here.
In order to get the electron vertex amplitude (2nd and 3rd diagrams in Fig. 2), we use the

form factors �F je
V,A in the manner of paper [21], replacing the coupling constants vj, aj with

form factors v�(Z) ! �F
�(Z)e
V , a�(Z) ! �F

�(Z)e
A . Then,

M
Ver,t =

X

j=�,Z

⇣
Mj/B,t +Mj/H,t

⌘
, Mj/B,t = i

↵

⇡
Bj

µD
jtJµ,j, Mj/H,t = i

↵

⇡
IjµD

jtHµ,j, (15)
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FIG. 2: One-loop t-channel diagrams for the Møller process. The circles represent the contributions of self-energies and
vertex functions. The u-channel diagrams are obtained via the interchange k2 $ p2.
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A . Then,
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/ ↵2 / ↵3 / ↵4

� =
⇡3

2s
|M0 +M1|2 =

⇡3

2s
(M0M

+
0 + 2ReM1M

+
0 +M1M

+
1 ) = �0 + �1 + �Q

�1 = �BSE

1 + �V er

1 + �Box

1

•Calculated in on-shell renormalization using:
• Computer based using Feynarts, FormCalc, LoopTools and Form 
T. Hahn, Comput. Phys. Commun. 140 418 (2001);
T. Hahn, M. Perez-Victoria, Comput. Phys. Commun. 118, 153 (1999); 
J. Vermaseren, (2000) [arXiv:math-ph/0010025]

• “By hand” using approximations in small energy region                 , for                          and
high energy approximation for 

5

{t, u}
m2

Z,W

⌧ 1
p
s ⌧ 30 GeVp

s � 500 GeV
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One-loop: renormalization conditions  
• For a gauge invariant set, physical results should be invariant under different 
renormalization conditions.
• Renormalization constants are fixed by the renormalization conditions. 
• Consider two classes: 

1. The first determines the renormalization of the parameters and  is related to physical 
observables at a given order of perturbation theory. These conditions are identical in 
both Hollik RC (HRC) and Denner RC (DRC).

2. The second class fixes the renormalization of fields and is related to the Green’s 
functions and has no effect on calculations of S-matrix elements.

5
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FIG. 2: One-loop t-channel diagrams for the Møller process. The circles represent the contributions of self-energies and
vertex functions. The u-channel diagrams are obtained via the interchange k2 ↔ p2.

following way:

ReΣ̂W
T (m2

W ) = ReΣ̂Z
T (m

2
Z) = ReΣ̂f (m2

f ) = 0,

Γ̂eeγ
µ

(

k2 = 0, p2 = m2
)

= ieγµ. (14)

Here, ReΣ̂Z,W
T

(

m2
Z,W

)

and Γ̂eeγ
µ

(

k2 = 0, p2 = m2
)

are the real parts of the truncated, transverse renor-
malized boson self-energy and electron vertex correc-
tion graphs, respectively. The longitudinal parts of
the boson self-energy make very small contributions
and are not considered here. The first condition of
Eq. (14) fixes the mass renormalization of the W -,
Z-bosons and fermions without quark mixing. The
second condition fixes the renormalization of electric
charge, and is derived from the Thomson limit when
momentum transfer k2 = 0 and external electrons are
on their mass shell. As for the renormalization con-
ditions of the fields, both approaches are quite dif-
ferent. In HRC, field renormalization constants are
determined from the following conditions:

Σ̂γZ
T (0) = 0, ∂

∂k2 Σ̂
γ
T (0) = 0. (15)

However, in the DRC renormalization conditions, the
field renormalization is defined on-shell, as it was done
for renormalization of the SM parameters. This ex-
plicitly introduces an additional set of conditions, be-
sides Eq. (14) and Eq. (15), which read:

ReΣ̂γZ
T

(

m2
Z

)

= 0, Re
∂

∂k2
Σ̂Z

T

(

m2
Z

)

= 0,

Re
∂

∂k2
Σ̂W

T

(

m2
W

)

= 0. (16)

As a result, in DRC, renormalization constants for
the fields of vector bosons are calculated in a rela-
tively simple way, without the mass-renormalization

constants:

δZ(D)
W = −Re

∂

∂k2
ΣW

T

(

m2
W

)

,

δZ(D)
Z = −Re

∂

∂k2
ΣZ

T

(

m2
Z

)

,

δZ(D)
Zγ =

2

m2
Z

ReΣγZ
T (0) , δZ(D)

γZ = −
2

m2
Z

ReΣγZ
T

(

m2
Z

)

,

δZ(D)
γ = −

∂

∂k2
Σγ

T (0) . (17)

They can be presented through truncated and non-
renormalized self-energy graphs. In comparison
with HRC, where the renormalization conditions of
Eq. (16) are not present, field renormalization con-
stants are defined in a different way and depend on
the mass-renormalization constants:

δZ(H)
γ = −

∂

∂k2
Σγ

T (0) ,

δZ(H)
Z =

∂

∂k2
Σγ

T (0)− 2
c2W − s2W
sW cW

ΣγZ
T (0)

m2
Z

+2
c2W − s2W

s2W

(

δm2
Z

m2
Z

−
δm2

W

m2
W

)

,

δZ(H)
W =

∂

∂k2
Σγ

T (0)− 2
cW
sW

ΣγZ
T (0)

m2
Z

+
c2W
s2W

(

δm2
Z

m2
Z

−
δm2

W

m2
W

)

,

δZ(H)
Zγ =

cW sW
c2W − s2W

(

δZ(H)
Z − δZ(H)

γ

)

. (18)

The presence of the mass renormalization constants
in the field-renormalization Eq. (18) increases the val-
ues of the truncated and renormalized self-energy di-
agrams, and the dominant NLO contributions to the
observable cross section come from these diagrams.
In DRC, the mass renormalization constants appear
in renormalization constants of the electroweak cou-
plings, and hence we observe comparable contribu-
tions coming from both self-energies and vertex cor-
rections. Of course, such a comparison has no physical
meaning since neither self-energies nor vertex correc-
tions represent a gauge-invariant set on their own. As
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and are not considered here. The first condition of
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charge, and is derived from the Thomson limit when
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momentum transfer k2 = 0 and external electrons are
on their mass shell. As for the renormalization con-
ditions of the fields, both approaches are quite dif-
ferent. In HRC, field renormalization constants are
determined from the following conditions:

Σ̂γZ
T (0) = 0, ∂

∂k2 Σ̂
γ
T (0) = 0. (15)

However, in the DRC renormalization conditions, the
field renormalization is defined on-shell, as it was done
for renormalization of the SM parameters. This ex-
plicitly introduces an additional set of conditions, be-
sides Eq. (14) and Eq. (15), which read:

ReΣ̂γZ
T

(

m2
Z

)

= 0, Re
∂

∂k2
Σ̂Z

T

(

m2
Z

)

= 0,

Re
∂

∂k2
Σ̂W

T

(

m2
W

)

= 0. (16)

As a result, in DRC, renormalization constants for
the fields of vector bosons are calculated in a rela-
tively simple way, without the mass-renormalization

constants:

δZ(D)
W = −Re

∂

∂k2
ΣW

T

(

m2
W

)

,

δZ(D)
Z = −Re

∂

∂k2
ΣZ

T

(

m2
Z

)

,

δZ(D)
Zγ =

2

m2
Z

ReΣγZ
T (0) , δZ(D)

γZ = −
2

m2
Z

ReΣγZ
T

(

m2
Z

)

,

δZ(D)
γ = −

∂

∂k2
Σγ

T (0) . (17)

They can be presented through truncated and non-
renormalized self-energy graphs. In comparison
with HRC, where the renormalization conditions of
Eq. (16) are not present, field renormalization con-
stants are defined in a different way and depend on
the mass-renormalization constants:

δZ(H)
γ = −

∂

∂k2
Σγ

T (0) ,

δZ(H)
Z =

∂

∂k2
Σγ

T (0)− 2
c2W − s2W
sW cW

ΣγZ
T (0)

m2
Z

+2
c2W − s2W

s2W

(

δm2
Z

m2
Z

−
δm2

W

m2
W

)

,

δZ(H)
W =

∂

∂k2
Σγ

T (0)− 2
cW
sW

ΣγZ
T (0)

m2
Z

+
c2W
s2W

(

δm2
Z

m2
Z

−
δm2

W

m2
W

)

,

δZ(H)
Zγ =

cW sW
c2W − s2W

(

δZ(H)
Z − δZ(H)

γ

)

. (18)

The presence of the mass renormalization constants
in the field-renormalization Eq. (18) increases the val-
ues of the truncated and renormalized self-energy di-
agrams, and the dominant NLO contributions to the
observable cross section come from these diagrams.
In DRC, the mass renormalization constants appear
in renormalization constants of the electroweak cou-
plings, and hence we observe comparable contribu-
tions coming from both self-energies and vertex cor-
rections. Of course, such a comparison has no physical
meaning since neither self-energies nor vertex correc-
tions represent a gauge-invariant set on their own. As

W. Hollik, Fortschr. Phys. 38, 165 (1990). A. Denner, Fortsch. Phys. 41, 307 (1993).
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FIG. 3: Truncated and renormalized γγ self-energies in both sets of renormalization conditions. The right graph shows
the low-energy domain.

With simplifications, the numerator of Eq. (20) is

σZSE|LL−RR ≈
πα2

s
DZZt

S (DγtMZγZγ
ev

−DγuMZγZγ
od )|LL−RR + (t ↔ u)

≈ −16πα2vZaZ
s

m4
Z

(Dγt +Dγu)

×(Σ̂Z
T (t) + Σ̂Z

T (u)). (22)

Finally,

δZSE
A ≈

Σ̂Z
T (t) + Σ̂Z

T (u)

2m2
Z

. (23)

At small r (Eq. (4) ) corresponding to Elab = 11 GeV
and θ = 90◦, the corrections are δZSE

A (HRC) ≈ 0.0309
vs. δZSE

A (DRC) ≈ −0.0105.
Similarly, for γZSE-contribution

σγZSE|LL−RR ≈
πα2

s
DγZt

S [Dγt(MγγZγ
ev +MZγγγ

ev )

−Dγu(MγγZγ
od +MZγγγ

od )]|LL−RR + (t ↔ u) ≈

≈ 16πα2aZ
s

m2
Z

(Dγt +Dγu)
( Σ̂γZ

T (t)

t
+

Σ̂γZ
T (u)

u

)

.(24)

and

δγZSE
A ≈ −

1

2vZ

( Σ̂γZ
T (t)

t
+

Σ̂γZ
T (u)

u

)

. (25)

For γZSE at Elab = 11 GeV and θ = 90◦, the correc-
tions are δγZSE

A (HRC) ≈ −0.6028 vs. δγZSE
A (DRC)

≈ −0.2909. It is important to note that the deviation
in Σ̂γZ

T has a dramatic impact on such a sensitive ob-

servable as ALR. For example, the uncertainty in Σ̂γZ
T

of 1% will result in a change in δγZSE
A of up to 0.05.

All terms with properties of Eq. (20) contribute ad-
ditively to the total correction, for example,

δγZSE+ZSE
A ≈ δγZSE

A + δZSE
A . (26)

We call such contributions additive. γSE gives a non-

additive and small contribution that we consider later.

2. Analysis of HV and box contribution to PV
asymmetry

Starting with the Λ2-contribution, which comes
from the triangle diagrams with an additional mas-
sive boson, Z or W , we get

δΛ2

A ≈
σΛ2 |LL−RR

σ0|LL−RR
. (27)

The numerator, with some approximations, is

σΛ2 |LL−RR ≈ 8α3vZaZs(Dγt +Dγu)

×
(Λ2(t,mZ)

t
+

Λ2(u,mZ)

u

)

, (28)
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FIG. 4: Truncated and renormalized ZZ and WW self-energies in both sets of renormalization conditions.

so the correction is proportional to Λ2 in the following
way:

δΛ2

A ≈ −
αm2

Z

4π

(Λ2(t,mZ)

t
+

Λ2(u,mZ)

u

)

. (29)

In HRC, we can simplify the result by using series
expansion of Λ2 at small t:

Λ2(t,mZ) = −
t

3m2
Z

(

2 log
−t

m2
Z

−
23

6

)

+O(
t

m2
Z

),(30)

which gives

δΛ2

A ≈
α

6π
(log

tu

m4
Z

−
23

6
). (31)

The numerical value obtained from above at Elab =
11 GeV and θ = 90◦ gives δΛ2

A ≈ −0.0125, which is in
agreement with the exact (semi-automatic) numerical
calculations.

The Λ3-contribution, which represents the triangle
diagrams with a 3-boson vertex, WWγ or WWZ, is
calculated in a similar way, so we present only the
final result:

δΛ3

A ≈ −
3αm2

Z

32πs2W vZaZ

(Λ3(t,mW )

t
+

Λ3(u,mW )

u

)

.(32)

After simplifications and series expansion of Λ3 at
small t,

Λ3(t,mW ) = −
5t

27m2
W

+O(
t

m2
W

), (33)

we find

δΛ3

A ≈
α

π

5

9(1− 4s2W )
. (34)

Using Eq. (34) for Elab = 11 GeV and θ = 90◦, we
obtain δΛ3

A ≈ 0.0118. Again, this approximate value
calculated "by hand" is in a very good agreement with
the exact result obtaned with our second, computer-
based approach.

The box part is UV-finite and does not require the
renormalization procedure. We divide the box contri-
bution into QED (γγ- and γZ-boxes) and a heavy-box
part (HB = ZZ +WW ):

σBox = σBox
QED + σBox

HB . (35)

The types of boxes are shown in Fig. 2(d, e). The
IR-divergent QED-part of boxes (the first term in
Eq. (35)) is described in detail both analytically and
numerically in [8]. For the purely-weak part of the
boxes (the second term), the equations are derived in
the low-energy approximation.

The total weak correction to ALR includes the HB
cross section:

σBox
HB = −

α3

s

∑

k=γ,Z

(Bk
ZZ +Bk

WW ) + (t ↔ u), (36)
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FIG. 5: Truncated and renormalized γZ self-energies in both sets of renormalization conditions. The right graph shows
the low-energy domain.

where the expressions for Bk
ij take a form

Bk
ZZ = DktλBk

− δ1ZZ + (Dkt +Dku)λBk
+ δ2ZZ ,

Bk
WW = DktλCk

− δ1WW + (Dkt +Dku)λCk
+ δ2WW .(37)

The combinations of the coupling constants are given
in Eq. (5). Let us recall the coupling constants for the
heavy boxes:

vB = (vZ)
2
+ (aZ)

2
, aB = 2vZaZ ,

vC = aC = 1/(4s2W ). (38)

At s, |t|, |u| ! m2
Z , the corrections δ1,2(ij) have a form:

δ1ZZ =
3u2

2m2
Z

, δ2ZZ = −
3s2

2m2
Z

,

δ1WW =
2u2

m2
W

, δ2WW =
s2

2m2
W

. (39)

At last, after simplification at small t, for the rela-
tive corrections to PV asymmetry coming from heavy
boxes we find:

δZZ
A ≈ −

3α

2π
vB, δWW

A ≈
α

4πs2W (1 − 4s2W )
. (40)

The numerical values obtained from the equations
above at Elab = 11 GeV and θ = 90◦ give δZZ

A ≈
−0.0013 and δWW

A ≈ 0.0238, which is once again in

good agreement with the exact results evaluated with
help of the FeynArts, FormCalc, LoopTools and Form
program packages.

3. Numerical analysis on EWC to PV asymmetry

In the table below, we present the contributions to
relative weak corrections calculated using two different
approaches. In the first approach, we use approximate
and compact expressions derived "by hand" with the
application of HRC. In the second, we use computer-
based analytical (FeynArts, FormCalc, and FORM)
and when numerical (LoopTools) calculations, with
DRC.

Table 1 demonstrates that the γγ-SE contribution
is small, non-additive and, as expected, is the same
whether obtained in HRC or DRC. The γZ-SE, ZZ-
SE and HV contributions are rather sizeable, are all
additive, and are different for HRC and DRC. The
ZZ-box contribution is small, and the WW -box is
dominant for the weak box correction. Both the ZZ-
box and WW -box are additive and their sum is in
excellent agreement regardless the method of calcu-
lations. The total relative weak correction is signifi-
cant and in excellent agreement between the different
methods. That confirms that we are dealing with a
gauge-invariant set of graphs. The discrepancy be-
tween the two approaches is ∼ 0.0001 at θ = 90◦, but

HRC

DRC

HRC

DRC

HRC

DRC
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FIG. 3: Bremsstrahlung diagrams for the Møller process in the t-channel. The four u-channel diagrams are obtained from
those in Fig. 3 by means of the interchange k2 ↔ p2.

The bremsstrahlung cross section can be broken down into two parts (soft and hard) as

σR = σR
IR + σR

H (52)

by separating the integration domain according to k0 < ω or k0 > ω, where k0 is the photon energy (in the
reference frame co-moving with the center of mass of primary electrons) and ω is a parameter corresponding to
the maximum soft photon energy. The easiest way to implement such partition is to multiply the integrand in
(42) by θ(ω − k0) and neglect photon momentum k → 0 where possible, which would give us the soft photon
cross section.

A. Soft Photons and IR-divergence Cancellation

First, we follow the methods of paper [26] to get a well-known result (see also [11, 12]) for the soft photon
cross section:

σR
IR =

α

π
(4 log

2ω

λ
log

tu

em2s
− log2

s

em2
+ 1−

π2

3
+ log2

u

t
)σ0. (53)

Next, we summ the IR-terms of V - and R-contributions (formulae (41) and (53)),

σC = σV
IR + σR

IR =
α

π
(2 log

4ω2

s
log

tu

em2s
− log2

s

em2
+ 1−

π2

3
+ log2

u

t
)σ0. (54)

and get a result free from IR-divergence which logarithmically depends on ω and contains log2(s/m2)-terms.
Adding the contribution corresponding to Λ1 to σC , we get an expression with the first power of collinear
logarithms:

σVer + σC ∼
α

π
(Λ1(λ

2 → s)− log2
s

m2
) + ... =

α

π
(log2

−t

m2
− log2

s

m2
) + ... =

=
α

π
log

−t

s
log

−ts

m4
+ .... (55)

with non-physical dependencies cancelled analytically.

B. Hard Photons. Leading Logarithms Approach

Now we will calculate the hard bremsstrahlung cross section retaining in the result the leading collinear
logarithms. This approach allows estimating the EWC very rapidly yet provide a rather accurate result. First
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One-loop: results  

The relative correction to the Born asymmetry A0LR is defined as follows:

where index C means a specific contribution (C = BSE, Ver, Box, ... ),  A0LR  is the Born 
asymmetry, and ACLR  is the total asymmetry including electroweak radiative corrections.

�CA =
AC

LR �A0
LR

A0
LR

Input parameters: α=1/137.035999,
mW = 80.398 GeV, 
mZ = 91.1876 GeV.

Comparison of our result for the 
weak correction to asymmetry 
with the result of arXiv:hep-ph/
9807446.

Friday, 9 September, 11

http://xxx.lanl.gov/abs/hep-ph/9807446
http://xxx.lanl.gov/abs/hep-ph/9807446
http://xxx.lanl.gov/abs/hep-ph/9807446
http://xxx.lanl.gov/abs/hep-ph/9807446
http://xxx.lanl.gov/abs/hep-ph/9807446
http://xxx.lanl.gov/abs/hep-ph/9807446


A. Aleksejevs PAVI11, September 5-9, 201111

One-loop: results  
10

TABLE I: The Born asymmetry A0
LR and the structure of relative weak corrections to it for Elab = 11 GeV at different

θ.

θ,◦ 20 30 40 50 60 70 80 90

A0
LR, ppb 6.63 15.19 27.45 43.05 60.69 77.68 90.28 94.97

γγ-SE, DRC −0.0043 −0.0049 −0.0054 −0.0058 −0.0062 −0.0064 −0.0066 −0.0067

γγ-SE, HRC −0.0043 −0.0049 −0.0054 −0.0058 −0.0062 −0.0064 −0.0066 −0.0067

γZ-SE, DRC −0.2919 −0.2916 −0.2914 −0.2912 −0.2911 −0.2910 −0.2909 −0.2909

γZ-SE, HRC −0.6051 −0.6043 −0.6042 −0.6038 −0.6034 −0.6031 −0.6028 −0.6028

ZZ-SE, DRC −0.0105 −0.0105 −0.0105 −0.0105 −0.0105 −0.0105 −0.0105 −0.0105

ZZ-SE, HRC 0.0309 0.0309 0.0309 0.0309 0.0309 0.0309 0.0309 0.0309

HV, DRC −0.2946 −0.2633 −0.2727 −0.2703 −0.2714 −0.2712 −0.2711 −0.2710

HV, HRC −0.0015 −0.0012 −0.0010 −0.0009 −0.0008 −0.0007 −0.0007 −0.0007

ZZ-box, exact −0.0013 −0.0013 −0.0013 −0.0013 −0.0013 −0.0013 −0.0013 −0.0013

ZZ-box, approx. −0.0013 −0.0013 −0.0013 −0.0013 −0.0013 −0.0013 −0.0013 −0.0013

WW -box, exact 0.0239 0.0238 0.0238 0.0239 0.0239 0.0238 0.0238 0.0238

WW -box, approx. 0.0238 0.0238 0.0238 0.0238 0.0238 0.0238 0.0238 0.0238

total weak, DRC, exact −0.5643 −0.5430 −0.5508 −0.5489 −0.5500 −0.5495 −0.5493 −0.5493

total weak, HRC, approx. −0.5526 −0.5514 −0.5511 −0.5505 −0.5500 −0.5496 −0.5493 −0.5493

FIG. 6: The relative weak (solid line in DRC (semi-
automated) and dotted line in HRC ("by hand")) and
QED (dashed line) corrections to the Born asymmetry
A0

LR versus
√
s at θ = 90◦. The filled circle corresponds

to our predictions for the MOLLER experiment.

becomes larger with decreasing θ.
In Fig. 6 we can see the relative weak corrections

shown by solid line for DRC (exact) and dotted line for
HRC (approximate). The dashed line shows the QED
correction obtained by including soft bremsstrahlung
to the Born asymmetry A0

LR. We can see that for low

energy region 1 <
√
s < 30 GeV the results calculated

by the two methods are in excellent agreement. It is
worth mentioning here that the semi-automated nu-
merical calculations of boxes in the region of

√
s " 1

GeV suffer from the numerical instability due to Lan-
dau singularities. As for our approximated calcula-
tions, we have used the small-energy approximation
with the expansion parameters taken as r/m2

Z,W for
energies

√
s < 30 GeV. In any case, for the 11 GeV

relevant for the planned JLab experiment, the consis-
tency of our calculations in both approaches is obvi-
ous, with a difference of ∼ 0.01% or less. The dotted
line for

√
s > 500 GeV on the Fig. 6 is obtained us-

ing HRC with the help of equations from [28], which
used the high-energy approximation. We can see good
a agreement between our results for the high-energy
region

√
s > 500 GeV which becomes better with en-

ergy increase. For
√
s ≥ 50 GeV we have excellent

agreement with the result of [24] if we use their SM
parameters (see [8]). Furthermore, the relative QED
correction (see Fig. 8 in [24] and dashed line in Fig. 6
here) is also in good qualitative and numerical agree-
ment. In this case, we apply the same cut on the soft
photon emission energy as in [24] (ω/

√
s = 0.05). At

the low-energy point corresponding to the E-158 ex-
periment, and using our set of input parameters (α,
mW and mZ) we find that δweak

A ≈ −54%. If we trans-
late our input parameters to the set α, GF and mZ

according to [24], we obtain good agreement with the
result of [29].
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ZZ-SE, HRC 0.0309 0.0309 0.0309 0.0309 0.0309 0.0309 0.0309 0.0309
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total weak, HRC, approx. −0.5526 −0.5514 −0.5511 −0.5505 −0.5500 −0.5496 −0.5493 −0.5493
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region
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s > 500 GeV which becomes better with en-

ergy increase. For
√
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√
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shown by solid line for DRC (exact) and dotted line for
HRC (approximate). The dashed line shows the QED
correction obtained by including soft bremsstrahlung
to the Born asymmetry A0

LR. We can see that for low

energy region 1 <
√
s < 30 GeV the results calculated

by the two methods are in excellent agreement. It is
worth mentioning here that the semi-automated nu-
merical calculations of boxes in the region of

√
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GeV suffer from the numerical instability due to Lan-
dau singularities. As for our approximated calcula-
tions, we have used the small-energy approximation
with the expansion parameters taken as r/m2

Z,W for
energies

√
s < 30 GeV. In any case, for the 11 GeV

relevant for the planned JLab experiment, the consis-
tency of our calculations in both approaches is obvi-
ous, with a difference of ∼ 0.01% or less. The dotted
line for

√
s > 500 GeV on the Fig. 6 is obtained us-

ing HRC with the help of equations from [28], which
used the high-energy approximation. We can see good
a agreement between our results for the high-energy
region

√
s > 500 GeV which becomes better with en-

ergy increase. For
√
s ≥ 50 GeV we have excellent

agreement with the result of [24] if we use their SM
parameters (see [8]). Furthermore, the relative QED
correction (see Fig. 8 in [24] and dashed line in Fig. 6
here) is also in good qualitative and numerical agree-
ment. In this case, we apply the same cut on the soft
photon emission energy as in [24] (ω/

√
s = 0.05). At

the low-energy point corresponding to the E-158 ex-
periment, and using our set of input parameters (α,
mW and mZ) we find that δweak

A ≈ −54%. If we trans-
late our input parameters to the set α, GF and mZ

according to [24], we obtain good agreement with the
result of [29].
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B. Constrained Differential Renormalization

The CDR (Constrained Differential Renormaliza-
tion) scheme, which provides renormalized expressions
for Feynman graphs preserving the Ward identities,
was introduced at the one-loop level in [30]. [31] ex-
pands on [30] to introduce the techniques for one-loop
calculations in any renormalizable theory in four di-
mensions. The procedure has been implemented in
FormCalc and LoopTools, which allows us to evalu-
ate NLO EWC in CDR. Since our "scheme of choice"
at the moment is on-shell, which is more suitable for
calculating EWC beyond one-loop, we do not provide
the same detailed analysis and step-by-step compari-
son between the two methods for CDR as we do for
on-shell. The reason we evaluate NLO EWC in CDR
is to obtain some indication of the size of the higher-
order effects (NNLO and beyond) to see if there is
enough motivation to do these very involved calcula-
tions in the future.

In Fig. 7, we can see the relative total correction

δtot = (σtot − σ0)/σ0

to the unpolarized cross section versus
√
s at θ = 90◦

for different RS: on-shell and CDR. In the region of
small energies, the difference between the two schemes
is almost constant and rather small (∼ 0.01), but
grows at

√
s ≥ mZ . It is well known that in the region

of small energies, the correction to the cross section
is dominated by the QED contribution. However, in
the high-energy region the weak correction becomes
comparable to QED. Since the difference between the
on-shell and CDR results grows substantially as the
weak correction becomes larger, it is clear that for an
observable such as the PV asymmetry the difference
between the on-shell and CDR schemes will be sizeable
for the entire spectrum of energies

√
s < 2000 GeV.

Because of that, we expect that the NNLO correction
to the PV asymmetry may become important to PV
precision physics in the future.

Fig. 8 shows the relative weak (lower lines), and
QED (upper lines) corrections to the Born asymmetry
A0

LR versus
√
s at θ = 90◦. The difference is signifi-

cant and is growing with increasing
√
s. According to

our calculations for Elab = 11 GeV, ω = 0.05
√
s and θ

= 90◦, the total radiative correction to PV asymmetry
is −69.8% with on-shell and −58.5% with CDR. The
difference is not at all surprising. For E-158, for ex-
ample, the one-loop weak corrections were found to be
about −40% in the MS scheme [29] and about −50%
in the on-shell scheme [21, 25].

The physical, NLO-corrected asymmetries, com-
puted in both on-shell and CDR schemes, are com-
pared in Fig. 9. Here, for consistency with the MS
definition of the couplings to O(α) [32], we use ŝ2Z ≡
sin2 θ̂W (MZ) = 0.2313 [26] in the expression of the

FIG. 7: The relative total corrections to the unpolarized
cross section versus

√
s at θ = 90◦. The filled circle cor-

responds to our predictions to the MOLLER experiment.
Solid line corresponds to CDR and dotted line to on-shell
RS.

Born asymmetry. We find that the predictions for the
physical PV asymmetry, computed to the same order
in perturbation theory in two different schemes, dif-
fer by about 3%. The difference is an indication of
the order of magnitude the higher-order, NNLO and
beyond, terms.

The [25] estimated that the higher-order corrections
are suppressed by ∼ 0.1% relative to the one-loop re-
sult, possibly 5% in some cases, and thus are not sig-
nificant source of uncertainty. However, we conclude
that although the corrections at the NNLO level were
not mandated by the previously achievable experimen-
tal precision, they may become important for the next
generation of experiments.

V. EFFECT OF ADDITIONAL MASSIVE

NEUTRAL BOSON

Let us now add a very simple NP assumption to
our SM calculations and show how this NP contri-
bution affects the observable asymmetry. The reason
we want to do it in here is to investigate if the two
complimentary methods we used in the previous sec-
tions, "by-hand" and semi-automated, can be applied
in the NP domain. As we mention in the Introduc-
tion, FeynArts, FormCalc, LoopTools, and FORM are
not "black box" programs and can be modified for
specific projects, including adding the NP sector. As
was already concluded in [33] and [34], the proposed
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tion) scheme, which provides renormalized expressions
for Feynman graphs preserving the Ward identities,
was introduced at the one-loop level in [30]. [31] ex-
pands on [30] to introduce the techniques for one-loop
calculations in any renormalizable theory in four di-
mensions. The procedure has been implemented in
FormCalc and LoopTools, which allows us to evalu-
ate NLO EWC in CDR. Since our "scheme of choice"
at the moment is on-shell, which is more suitable for
calculating EWC beyond one-loop, we do not provide
the same detailed analysis and step-by-step compari-
son between the two methods for CDR as we do for
on-shell. The reason we evaluate NLO EWC in CDR
is to obtain some indication of the size of the higher-
order effects (NNLO and beyond) to see if there is
enough motivation to do these very involved calcula-
tions in the future.

In Fig. 7, we can see the relative total correction

δtot = (σtot − σ0)/σ0

to the unpolarized cross section versus
√
s at θ = 90◦

for different RS: on-shell and CDR. In the region of
small energies, the difference between the two schemes
is almost constant and rather small (∼ 0.01), but
grows at

√
s ≥ mZ . It is well known that in the region

of small energies, the correction to the cross section
is dominated by the QED contribution. However, in
the high-energy region the weak correction becomes
comparable to QED. Since the difference between the
on-shell and CDR results grows substantially as the
weak correction becomes larger, it is clear that for an
observable such as the PV asymmetry the difference
between the on-shell and CDR schemes will be sizeable
for the entire spectrum of energies

√
s < 2000 GeV.

Because of that, we expect that the NNLO correction
to the PV asymmetry may become important to PV
precision physics in the future.

Fig. 8 shows the relative weak (lower lines), and
QED (upper lines) corrections to the Born asymmetry
A0

LR versus
√
s at θ = 90◦. The difference is signifi-

cant and is growing with increasing
√
s. According to

our calculations for Elab = 11 GeV, ω = 0.05
√
s and θ

= 90◦, the total radiative correction to PV asymmetry
is −69.8% with on-shell and −58.5% with CDR. The
difference is not at all surprising. For E-158, for ex-
ample, the one-loop weak corrections were found to be
about −40% in the MS scheme [29] and about −50%
in the on-shell scheme [21, 25].

The physical, NLO-corrected asymmetries, com-
puted in both on-shell and CDR schemes, are com-
pared in Fig. 9. Here, for consistency with the MS
definition of the couplings to O(α) [32], we use ŝ2Z ≡
sin2 θ̂W (MZ) = 0.2313 [26] in the expression of the
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physical PV asymmetry, computed to the same order
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fer by about 3%. The difference is an indication of
the order of magnitude the higher-order, NNLO and
beyond, terms.

The [25] estimated that the higher-order corrections
are suppressed by ∼ 0.1% relative to the one-loop re-
sult, possibly 5% in some cases, and thus are not sig-
nificant source of uncertainty. However, we conclude
that although the corrections at the NNLO level were
not mandated by the previously achievable experimen-
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generation of experiments.
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FIG. 8: The relative weak (lower lines) and QED (upper
lines) corrections to the Born asymmetry A0

LR versus
√
s at

θ = 90◦. The filled circle corresponds to our predictions to
the MOLLER experiment. Solid lines correspond to CDR
and dotted lines to on-shell RS.

MOLLER measurement could be influenced by radia-
tive loop effects of new-physics particles. This type
of calculation is out of scope of this paper, but we
plan to provide a full estimation in our future publi-
cation. For now, we assume that there is just one ad-
ditional neutral boson (ANB), or Z ′-boson, with the
usual V − A structure of interaction with fermions,
vector(axial) coupling constants vZ

′

(aZ
′

) and mass
mZ′ . From the analysis done in the previous section,
we can clearly see that in the low-energy region where
s, |t|, |u| " m2

Z < m2
Z′ , contributions are mainly sup-

pressed by propagator factors like DZ′r. In this sec-
tion, our goal is to analyze the contribution of Z ′-Born
and ZZ ′-box diagrams to the observable scattering
asymmetry for MOLLER experiment. The only sig-
nificant contribution to the Born asymmetry comes
from the interference terms from the Z ′ and photon
diagrams. The relative correction to the Born asym-
metry coming from Z ′-boson is additive, and is given
by

δZ
′

A =
vZ

′

aZ
′

vZaZ
m2

Z

m2
Z′

. (41)

According to [3], the goal of MOLLER is to measure
the PV asymmetry to a precision of 2% (0.73 ppb).
With this uncertainty, and assuming the identical cou-
pling constants for Z and Z ′, it should be possible to
detect ANB with a mass up to mZ′ =

√

m2
Z/0.02 ≈

7mZ . The sensitivity of MOLLER to Z ′ increases if

FIG. 9: The NLO-corrected asymmetries vs
√
s at θ =

90◦, computed in on-shell RS (solid line) and CDR (dotted
line). The CDR Born asymmetry uses the MS definition
of ŝ2Z ≡ sin2 θ̂W (MZ) = 0.2313 [26].

its parity-violating couplings are larger than those of
Z0, making the measurements of PV complementary
to the direct searches at high energies.

The one-loop diagrams including ANB give signif-
icantly smaller contributions. As an example, let us
consider ZZ ′-box. As before, we perform our calcu-
lations by both approximate ("by-hand") and exact
(with FeynArts and FormCalc) methods, and get an
excellent agreement. The expressions derived as a re-
sult of our approximate approach are presented below.

For the ZZ ′-box contribution, the cross section can
be expressed by the following short equation:

σZZ′−box =
3α3

s
L

∑

k=γ,Z

[

λB′k
− (Dktu2 +Dkut2)

−2λB′k
+ s2(Dkt +Dku)

]

+ (Z ↔ Z ′), (42)

where

L =
1

m2
Z −m2

Z′

log
mZ′

mZ
, (43)

and the functions λB′k
± are expressed through

vB
′

= vZvZ
′

+ aZaZ
′

, aB
′

= vZaZ
′

+ vZ
′

aZ . (44)

To obtain L, we calculate the master scalar integral:

1
∫

0

z2dz

1
∫

0

xdx

1
∫

0

dy

m2
Zz(x− 1) + (t−m2

Z′)(1 − z)
.(45)

QED 
correction
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B. Constrained Differential Renormalization

The CDR (Constrained Differential Renormaliza-
tion) scheme, which provides renormalized expressions
for Feynman graphs preserving the Ward identities,
was introduced at the one-loop level in [30]. [31] ex-
pands on [30] to introduce the techniques for one-loop
calculations in any renormalizable theory in four di-
mensions. The procedure has been implemented in
FormCalc and LoopTools, which allows us to evalu-
ate NLO EWC in CDR. Since our "scheme of choice"
at the moment is on-shell, which is more suitable for
calculating EWC beyond one-loop, we do not provide
the same detailed analysis and step-by-step compari-
son between the two methods for CDR as we do for
on-shell. The reason we evaluate NLO EWC in CDR
is to obtain some indication of the size of the higher-
order effects (NNLO and beyond) to see if there is
enough motivation to do these very involved calcula-
tions in the future.

In Fig. 7, we can see the relative total correction

δtot = (σtot − σ0)/σ0

to the unpolarized cross section versus
√
s at θ = 90◦

for different RS: on-shell and CDR. In the region of
small energies, the difference between the two schemes
is almost constant and rather small (∼ 0.01), but
grows at

√
s ≥ mZ . It is well known that in the region

of small energies, the correction to the cross section
is dominated by the QED contribution. However, in
the high-energy region the weak correction becomes
comparable to QED. Since the difference between the
on-shell and CDR results grows substantially as the
weak correction becomes larger, it is clear that for an
observable such as the PV asymmetry the difference
between the on-shell and CDR schemes will be sizeable
for the entire spectrum of energies

√
s < 2000 GeV.

Because of that, we expect that the NNLO correction
to the PV asymmetry may become important to PV
precision physics in the future.

Fig. 8 shows the relative weak (lower lines), and
QED (upper lines) corrections to the Born asymmetry
A0

LR versus
√
s at θ = 90◦. The difference is signifi-

cant and is growing with increasing
√
s. According to

our calculations for Elab = 11 GeV, ω = 0.05
√
s and θ

= 90◦, the total radiative correction to PV asymmetry
is −69.8% with on-shell and −58.5% with CDR. The
difference is not at all surprising. For E-158, for ex-
ample, the one-loop weak corrections were found to be
about −40% in the MS scheme [29] and about −50%
in the on-shell scheme [21, 25].

The physical, NLO-corrected asymmetries, com-
puted in both on-shell and CDR schemes, are com-
pared in Fig. 9. Here, for consistency with the MS
definition of the couplings to O(α) [32], we use ŝ2Z ≡
sin2 θ̂W (MZ) = 0.2313 [26] in the expression of the

FIG. 7: The relative total corrections to the unpolarized
cross section versus

√
s at θ = 90◦. The filled circle cor-

responds to our predictions to the MOLLER experiment.
Solid line corresponds to CDR and dotted line to on-shell
RS.

Born asymmetry. We find that the predictions for the
physical PV asymmetry, computed to the same order
in perturbation theory in two different schemes, dif-
fer by about 3%. The difference is an indication of
the order of magnitude the higher-order, NNLO and
beyond, terms.

The [25] estimated that the higher-order corrections
are suppressed by ∼ 0.1% relative to the one-loop re-
sult, possibly 5% in some cases, and thus are not sig-
nificant source of uncertainty. However, we conclude
that although the corrections at the NNLO level were
not mandated by the previously achievable experimen-
tal precision, they may become important for the next
generation of experiments.

V. EFFECT OF ADDITIONAL MASSIVE

NEUTRAL BOSON

Let us now add a very simple NP assumption to
our SM calculations and show how this NP contri-
bution affects the observable asymmetry. The reason
we want to do it in here is to investigate if the two
complimentary methods we used in the previous sec-
tions, "by-hand" and semi-automated, can be applied
in the NP domain. As we mention in the Introduc-
tion, FeynArts, FormCalc, LoopTools, and FORM are
not "black box" programs and can be modified for
specific projects, including adding the NP sector. As
was already concluded in [33] and [34], the proposed
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ū(k

2

)�µ(vB � aB�
5

)(��↵)�⌫u(k
1

) · ū(p
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+ ū(k
2

)�µ(vB � aB�
5

)�↵�⌫u(k
1

) · ū(p
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with the coupling-constants combinations for ZZ- and WW -boxes

vB = (vZ)
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Now we are ready to present the one-loop complex amplitude as the sum of IR and IR-finite
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III. EXTRACTION OF INFRARED DIVERGENCES

Now we should make sure that the infrared divergences are cancelled. In a similar way as
it was done for amplitudes, we present the complex interference term �̂

1

and di↵erential cross
section �Q as sums of �-dependent (IRD-terms) and �-independent (infrared-finite) parts:

�̂
1

=
⇡3

s
M

1

M+

0

= ��
1

+ �f
1

, �Q =
⇡3

2s
M

1

M+

1

= ��
Q + �f

Q. (32)

The one-loop cross section which we denote �
1

= Re�̂
1

was carefully evaluated with the full
control of uncertainties in paper [14]. The term �Q (see (2) is called the Q-part of two-loop
EWC and it is the main subject of the present paper.
If we substitute the amplitudes derived in Section II to the left-hand-side of (2), and compare

the result with the right-hand side of this equation, we will get the same expression for �
1

as
given in [14]. The simplest form for ��

1

(see formula (42) of [14]) is then:

��
1

=
↵

⇡
��
1

�
0

. (33)

The infrared-finite part �f
1

can be conveniently to presented via the relative dimensionless
correction:

�f
1

=
↵

⇡
�f
1

�
0

. (34)

After some transformations, the value ��
Q is given by

��
Q =

⇡3

2s
M�

1

+

�
M�

1

+ 2M f
1

�
=

1

4

⇣↵
⇡

⌘
2

Re
h
��
1

⇤

(��
1

+ 2�f
1

)
i
�
0

. (35)

Finally, the infrared-finite part �f
Q expressed via the relative dimensionless corrections has a

form

�f
Q =

⇡3

2s
M f

1

M f
1

+

=
⇣↵
⇡

⌘
2

�fQ �
0

. (36)

IV. BREMSSTRAHLUNG AND CANCELLATION OF INFRARED DIVERGENCES

To evaluate the cross section induced by emission of the one soft photon with energy less
then !, we follow the methods of [24]. Then, this cross section can be expressed as:

�� = ��
1

+ ��
2

, (37)

where ��
1,2 have the similar factorized structure based on factorization of the soft-photon

bremsstrahlung:

��
1

=
↵

⇡
Re

⇥���
1

+R
1

⇤
�
0

, ��
2

=
↵

⇡
Re

⇥
(���

1

+R
1

)⇤�̂
1

⇤
, (38)

Differential quadratic cross section σQ written as sums of λ-dependent (IRD-terms) and 
λ-independent (infrared-finite) parts.
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Quadratic correction: photon emission
In order to remove IR divergent terms in quadratic cross section it is required to consider:

1. Photon emission from one-loop diagrams 
2. Two photon photon emission

γ
γ

γ
γ

+ +...

9

where

R
1

= �4B log

p
s

2!
� log2

s

em2

+ 1� ⇡2

3
+ log2

u

t
. (39)

The first part of the soft-photon cross section, ��
1

, cancels the IRD at the one-loop order, the
second part, ��

2

, cancels the IRD a the two-loop order, with half of ��
2

going to the cancellation
of IRD in the Q-part and the other half going to treat IRD in the T-part:

��
Q = ��

T =
1

2
��
2

. (40)

To obtain the term ���
1

+R
1

in Eq. (38), we should calculate the 3-dimensional integral over
the phase space of one real soft photon. It can be done according to [24] in c.m.s:

���
1

+R
1

= L(�,!) = � 1

4⇡

Z

k0<!

d3k

k
0

T �(k)T�(k), (41)

where

T ↵(k) =
k↵
1

k
1

k
� k↵

2

k
2

k
+

p↵
1

p
1

k
� p↵

2

p
2

k
. (42)

The di↵erence between the estimation relying on the soft part only and the result obtained by
separation into the soft and hard parts at lowest order is rather small (see [14]), so we believe
that the soft cross section will provide the su�cient accuracy in second order as well.
At last, the cross section induced by emission of two soft photons with the total energy less

then ! can be written as:

��� =
1

2

⇣↵
⇡

⌘
2

✓�������
1

+R
1

����
2

�R
2

◆
�
0

, (43)

were 1

2

is a statistical factor caused by the indistinguishability of two final photons and R
2

=
8

3

⇡2B2. The detailed calculations of ��� are shown in Appendix A.
Just like ��, the cross section ��� is divided into equal halves, with a half going to cancel the

IRD in the Q-part and a half going to the T-part:

���
Q = ���

T =
1

2
���. (44)

Combining all the terms together, we get the infrared-finite result both in the first and second
orders. For first(second) order it is shown by the first(second) term on the LHS of the equation
below:

Re[�
1

+��
1

]+(�Q+��
Q+���

Q ) =
↵

⇡
Re[R

1

+�f
1

]�
0

+
⇣↵
⇡

⌘
2

Re[
1

2
R⇤

1

�f
1

+�fQ+
1

4
R⇤

1

R
1

� 1

4
R

2

]�
0

. (45)
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1 M0]

���
Q =

1

2
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Quadratic correction: photon emission
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FIG. 3: Virtual and bremstrahlung contributions to the relative correction to unpolarized cross section vs the photon mass
� at ✓ = 90o and Elab = 11 GeV.

FIG. 4: The relative corrections to the asymmetry (left) and the absolute correction �
A

(right) vs scattering angle ✓.

10

V. NUMERICAL RESULTS

For the numerical calculations we used ↵ = 1/137.035999, mW = 80.398 GeV, and mZ =
91.1876 GeV as input parameters and according to [25]. The electron, muon, and ⌧ -lepton
masses are taken as me = 0.510998910 MeV, mµ = 0.105658367 GeV, m⌧ = 1.77684 GeV and
the quark masses for loop contributions as mu = 0.06983 GeV, mc = 1.2 GeV, mt = 174 GeV,
md = 0.06984 GeV, ms = 0.15 GeV, and mb = 4.6 GeV. The light quark masses provide shift
in fine structure constant due to hadronic vacuum polarization �↵

(5)

had(m
2

Z)=0.02757 [26], where

�↵
(5)

had(s) =
↵

⇡

X

f=u,d,s,c,b

Q2

f

✓
log

s

m2

f

� 5

3

◆
, (46)

Qf is the electric charge of fermion f in proton charge units q, (q =
p
4⇡↵). We believe that

the use of the light quarks masses as parameters regulated by the hadron vacuum polarization
is a better choice in this case. Finally, for the mass of the Higgs boson, we take mH = 115 GeV.
Although this mass is still to be determined experimentally, the dependence of EWC on mH is
rather weak. For parameter of maximum soft photon energy we use ! = 0.05

p
s, according to

[14] and [27].
Let us define the relative corrections to the Born cross section due to specific type of contri-

butions (labeled by C) as

�C = (�C � �0)/�0, C = 1-loop,Q,T, ...

The parity-violating asymmetry is defined in a traditional way,

ALR =
�LL + �LR � �RL � �RR

�LL + �LR + �RL + �RR

=
�LL � �RR

�LL + 2�LR + �RR

, (47)

and the relative correction to the Born asymmetry due to C-contribution is defined as

�CA = (AC

LR � A0

LR)/A
0

LR.

Fig. 3, plotted for ✓ = 90o and E
lab

= 11 GeV, clearly demonstrates that the relative correction
to unpolarized cross section is independent on the photon mass �. We can also see the quadratic
dependence in lof scale of � of the both virtual and bremstrahlung contributions.
On the left part of Fig. 4 we can see the relative corrections to asymmetry at E

lab

= 11 GeV
vs scattering angle ✓ in c.m.s. The lower line shows the corrections to asymmetry with only
one-loop EWC taken into account and the upper line show the combined one-loop and the
Q-part corrections. As expected, both of them are symmetric along the line ✓ = ⇡/2, have a
minimum at ✓ = 90o, and depend on scattering angle quite weakly.
The di↵erence of these two e↵ects as an absolute correction defined by

�A = (A1�loop+Q

LR � A0

LR)/A
0

LR � (A1�loop

LR � A0

LR)/A
0

LR = (A1�loop+Q

LR � A1�loop

LR )/A0

LR

and depicted on the right part of Fig. 4. Here we can see that the Q-part gives quite a significant
contribution, with �A reaching a maximum of 0.0419 at ✓ = 90o. Taking into account that the

The plot for θ = 90o and Elab = 11 GeV, 
clearly demonstrates that the relative 
correction to unpolarized cross section is 
independent on the photon mass λ. 

We can also see the quadratic 
dependence in log scale of λ for the both 
virtual and bremstrahlung contributions.
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B. Constrained Differential Renormalization

The CDR (Constrained Differential Renormaliza-
tion) scheme, which provides renormalized expressions
for Feynman graphs preserving the Ward identities,
was introduced at the one-loop level in [30]. [31] ex-
pands on [30] to introduce the techniques for one-loop
calculations in any renormalizable theory in four di-
mensions. The procedure has been implemented in
FormCalc and LoopTools, which allows us to evalu-
ate NLO EWC in CDR. Since our "scheme of choice"
at the moment is on-shell, which is more suitable for
calculating EWC beyond one-loop, we do not provide
the same detailed analysis and step-by-step compari-
son between the two methods for CDR as we do for
on-shell. The reason we evaluate NLO EWC in CDR
is to obtain some indication of the size of the higher-
order effects (NNLO and beyond) to see if there is
enough motivation to do these very involved calcula-
tions in the future.

In Fig. 7, we can see the relative total correction

δtot = (σtot − σ0)/σ0

to the unpolarized cross section versus
√
s at θ = 90◦

for different RS: on-shell and CDR. In the region of
small energies, the difference between the two schemes
is almost constant and rather small (∼ 0.01), but
grows at

√
s ≥ mZ . It is well known that in the region

of small energies, the correction to the cross section
is dominated by the QED contribution. However, in
the high-energy region the weak correction becomes
comparable to QED. Since the difference between the
on-shell and CDR results grows substantially as the
weak correction becomes larger, it is clear that for an
observable such as the PV asymmetry the difference
between the on-shell and CDR schemes will be sizeable
for the entire spectrum of energies

√
s < 2000 GeV.

Because of that, we expect that the NNLO correction
to the PV asymmetry may become important to PV
precision physics in the future.

Fig. 8 shows the relative weak (lower lines), and
QED (upper lines) corrections to the Born asymmetry
A0

LR versus
√
s at θ = 90◦. The difference is signifi-

cant and is growing with increasing
√
s. According to

our calculations for Elab = 11 GeV, ω = 0.05
√
s and θ

= 90◦, the total radiative correction to PV asymmetry
is −69.8% with on-shell and −58.5% with CDR. The
difference is not at all surprising. For E-158, for ex-
ample, the one-loop weak corrections were found to be
about −40% in the MS scheme [29] and about −50%
in the on-shell scheme [21, 25].

The physical, NLO-corrected asymmetries, com-
puted in both on-shell and CDR schemes, are com-
pared in Fig. 9. Here, for consistency with the MS
definition of the couplings to O(α) [32], we use ŝ2Z ≡
sin2 θ̂W (MZ) = 0.2313 [26] in the expression of the

FIG. 7: The relative total corrections to the unpolarized
cross section versus

√
s at θ = 90◦. The filled circle cor-

responds to our predictions to the MOLLER experiment.
Solid line corresponds to CDR and dotted line to on-shell
RS.

Born asymmetry. We find that the predictions for the
physical PV asymmetry, computed to the same order
in perturbation theory in two different schemes, dif-
fer by about 3%. The difference is an indication of
the order of magnitude the higher-order, NNLO and
beyond, terms.

The [25] estimated that the higher-order corrections
are suppressed by ∼ 0.1% relative to the one-loop re-
sult, possibly 5% in some cases, and thus are not sig-
nificant source of uncertainty. However, we conclude
that although the corrections at the NNLO level were
not mandated by the previously achievable experimen-
tal precision, they may become important for the next
generation of experiments.

V. EFFECT OF ADDITIONAL MASSIVE

NEUTRAL BOSON

Let us now add a very simple NP assumption to
our SM calculations and show how this NP contri-
bution affects the observable asymmetry. The reason
we want to do it in here is to investigate if the two
complimentary methods we used in the previous sec-
tions, "by-hand" and semi-automated, can be applied
in the NP domain. As we mention in the Introduc-
tion, FeynArts, FormCalc, LoopTools, and FORM are
not "black box" programs and can be modified for
specific projects, including adding the NP sector. As
was already concluded in [33] and [34], the proposed
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our SM calculations and show how this NP contri-
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not "black box" programs and can be modified for
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V. NUMERICAL RESULTS

For the numerical calculations we used ↵ = 1/137.035999, mW = 80.398 GeV, and mZ =
91.1876 GeV as input parameters and according to [25]. The electron, muon, and ⌧ -lepton
masses are taken as me = 0.510998910 MeV, mµ = 0.105658367 GeV, m⌧ = 1.77684 GeV and
the quark masses for loop contributions as mu = 0.06983 GeV, mc = 1.2 GeV, mt = 174 GeV,
md = 0.06984 GeV, ms = 0.15 GeV, and mb = 4.6 GeV. The light quark masses provide shift
in fine structure constant due to hadronic vacuum polarization �↵
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Qf is the electric charge of fermion f in proton charge units q, (q =
p
4⇡↵). We believe that

the use of the light quarks masses as parameters regulated by the hadron vacuum polarization
is a better choice in this case. Finally, for the mass of the Higgs boson, we take mH = 115 GeV.
Although this mass is still to be determined experimentally, the dependence of EWC on mH is
rather weak. For parameter of maximum soft photon energy we use ! = 0.05

p
s, according to

[14] and [27].
Let us define the relative corrections to the Born cross section due to specific type of contri-

butions (labeled by C) as
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and the relative correction to the Born asymmetry due to C-contribution is defined as
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Fig. 3, plotted for ✓ = 90o and E
lab

= 11 GeV, clearly demonstrates that the relative correction
to unpolarized cross section is independent on the photon mass �. We can also see the quadratic
dependence in lof scale of � of the both virtual and bremstrahlung contributions.
On the left part of Fig. 4 we can see the relative corrections to asymmetry at E

lab

= 11 GeV
vs scattering angle ✓ in c.m.s. The lower line shows the corrections to asymmetry with only
one-loop EWC taken into account and the upper line show the combined one-loop and the
Q-part corrections. As expected, both of them are symmetric along the line ✓ = ⇡/2, have a
minimum at ✓ = 90o, and depend on scattering angle quite weakly.
The di↵erence of these two e↵ects as an absolute correction defined by

�A = (A1�loop+Q
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and depicted on the right part of Fig. 4. Here we can see that the Q-part gives quite a significant
contribution, with �A reaching a maximum of 0.0419 at ✓ = 90o. Taking into account that the
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B. Constrained Differential Renormalization

The CDR (Constrained Differential Renormaliza-
tion) scheme, which provides renormalized expressions
for Feynman graphs preserving the Ward identities,
was introduced at the one-loop level in [30]. [31] ex-
pands on [30] to introduce the techniques for one-loop
calculations in any renormalizable theory in four di-
mensions. The procedure has been implemented in
FormCalc and LoopTools, which allows us to evalu-
ate NLO EWC in CDR. Since our "scheme of choice"
at the moment is on-shell, which is more suitable for
calculating EWC beyond one-loop, we do not provide
the same detailed analysis and step-by-step compari-
son between the two methods for CDR as we do for
on-shell. The reason we evaluate NLO EWC in CDR
is to obtain some indication of the size of the higher-
order effects (NNLO and beyond) to see if there is
enough motivation to do these very involved calcula-
tions in the future.

In Fig. 7, we can see the relative total correction

δtot = (σtot − σ0)/σ0

to the unpolarized cross section versus
√
s at θ = 90◦

for different RS: on-shell and CDR. In the region of
small energies, the difference between the two schemes
is almost constant and rather small (∼ 0.01), but
grows at

√
s ≥ mZ . It is well known that in the region

of small energies, the correction to the cross section
is dominated by the QED contribution. However, in
the high-energy region the weak correction becomes
comparable to QED. Since the difference between the
on-shell and CDR results grows substantially as the
weak correction becomes larger, it is clear that for an
observable such as the PV asymmetry the difference
between the on-shell and CDR schemes will be sizeable
for the entire spectrum of energies

√
s < 2000 GeV.

Because of that, we expect that the NNLO correction
to the PV asymmetry may become important to PV
precision physics in the future.

Fig. 8 shows the relative weak (lower lines), and
QED (upper lines) corrections to the Born asymmetry
A0

LR versus
√
s at θ = 90◦. The difference is signifi-

cant and is growing with increasing
√
s. According to

our calculations for Elab = 11 GeV, ω = 0.05
√
s and θ

= 90◦, the total radiative correction to PV asymmetry
is −69.8% with on-shell and −58.5% with CDR. The
difference is not at all surprising. For E-158, for ex-
ample, the one-loop weak corrections were found to be
about −40% in the MS scheme [29] and about −50%
in the on-shell scheme [21, 25].

The physical, NLO-corrected asymmetries, com-
puted in both on-shell and CDR schemes, are com-
pared in Fig. 9. Here, for consistency with the MS
definition of the couplings to O(α) [32], we use ŝ2Z ≡
sin2 θ̂W (MZ) = 0.2313 [26] in the expression of the

FIG. 7: The relative total corrections to the unpolarized
cross section versus

√
s at θ = 90◦. The filled circle cor-

responds to our predictions to the MOLLER experiment.
Solid line corresponds to CDR and dotted line to on-shell
RS.

Born asymmetry. We find that the predictions for the
physical PV asymmetry, computed to the same order
in perturbation theory in two different schemes, dif-
fer by about 3%. The difference is an indication of
the order of magnitude the higher-order, NNLO and
beyond, terms.

The [25] estimated that the higher-order corrections
are suppressed by ∼ 0.1% relative to the one-loop re-
sult, possibly 5% in some cases, and thus are not sig-
nificant source of uncertainty. However, we conclude
that although the corrections at the NNLO level were
not mandated by the previously achievable experimen-
tal precision, they may become important for the next
generation of experiments.

V. EFFECT OF ADDITIONAL MASSIVE

NEUTRAL BOSON

Let us now add a very simple NP assumption to
our SM calculations and show how this NP contri-
bution affects the observable asymmetry. The reason
we want to do it in here is to investigate if the two
complimentary methods we used in the previous sec-
tions, "by-hand" and semi-automated, can be applied
in the NP domain. As we mention in the Introduc-
tion, FeynArts, FormCalc, LoopTools, and FORM are
not "black box" programs and can be modified for
specific projects, including adding the NP sector. As
was already concluded in [33] and [34], the proposed
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FIG. 5: Relative (labeled by 1-loop+Q and 1-loop) and absolute (labeled by Q) corrections to PV-asymmetry vs
p
s. The

filled circle corresponds to our predictions for the MOLLER experiment.

planned experimental error MOLLER to the PV asymmetry is ⇠ 2% or less, we see that it is
necessary to continue to work on the two-loop EWC, staring from the T-part.
Fig. 5 shows the relative (labeled as 1-loop and 1-loop+Q) corrections and absolute �A

corrections (labeled by Q) versus
p
s at ✓ = 90o. In the high-energy region (

p
s � 50 GeV)

our one-loop result (see [14]) is in excellent agreement with the result from [27] if we use the
same set of Standard Model parameters. As one can see from Fig. 5, the scale of the Q-part
contribution in the low-energy region is approximately constant, but starting from

p
s � mZ ,

where the weak contribution becomes comparable with electromagnetic, the e↵ect Q-part grows
sharply. This e↵ect of increasing importance of two-loop contribution at higher energies may
have a significant e↵ect on the asymmetry measured at the future e�e�-collides.

VI. CONCLUSIONS

Experimental investigation of Møller scattering is not only one of the oldest tools of modern
physics in the framework of the Standard Model, but also a powerful probe of new physics
e↵ects. The new ultra-precise measurement of the weak mixing angle via 11 GeV Møller
scattering planned soon at JLab, named MOLLER, as well as experiments planned at ILC will

The scale of the Q-part contribution in the 
low-energy region is approximately 
constant, but starting from √s ≥ mZ , where 
the weak contribution becomes 
comparable with electromagnetic, the 
effect of Q-part grows sharply. 

This effect of increasing importance of 
two-loop contribution at higher energies 
may have a significant effect on the 
asymmetry measured at the future 
e− e− -colliders.
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B. Constrained Differential Renormalization

The CDR (Constrained Differential Renormaliza-
tion) scheme, which provides renormalized expressions
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pands on [30] to introduce the techniques for one-loop
calculations in any renormalizable theory in four di-
mensions. The procedure has been implemented in
FormCalc and LoopTools, which allows us to evalu-
ate NLO EWC in CDR. Since our "scheme of choice"
at the moment is on-shell, which is more suitable for
calculating EWC beyond one-loop, we do not provide
the same detailed analysis and step-by-step compari-
son between the two methods for CDR as we do for
on-shell. The reason we evaluate NLO EWC in CDR
is to obtain some indication of the size of the higher-
order effects (NNLO and beyond) to see if there is
enough motivation to do these very involved calcula-
tions in the future.

In Fig. 7, we can see the relative total correction

δtot = (σtot − σ0)/σ0

to the unpolarized cross section versus
√
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for different RS: on-shell and CDR. In the region of
small energies, the difference between the two schemes
is almost constant and rather small (∼ 0.01), but
grows at

√
s ≥ mZ . It is well known that in the region

of small energies, the correction to the cross section
is dominated by the QED contribution. However, in
the high-energy region the weak correction becomes
comparable to QED. Since the difference between the
on-shell and CDR results grows substantially as the
weak correction becomes larger, it is clear that for an
observable such as the PV asymmetry the difference
between the on-shell and CDR schemes will be sizeable
for the entire spectrum of energies

√
s < 2000 GeV.

Because of that, we expect that the NNLO correction
to the PV asymmetry may become important to PV
precision physics in the future.

Fig. 8 shows the relative weak (lower lines), and
QED (upper lines) corrections to the Born asymmetry
A0

LR versus
√
s at θ = 90◦. The difference is signifi-

cant and is growing with increasing
√
s. According to

our calculations for Elab = 11 GeV, ω = 0.05
√
s and θ

= 90◦, the total radiative correction to PV asymmetry
is −69.8% with on-shell and −58.5% with CDR. The
difference is not at all surprising. For E-158, for ex-
ample, the one-loop weak corrections were found to be
about −40% in the MS scheme [29] and about −50%
in the on-shell scheme [21, 25].

The physical, NLO-corrected asymmetries, com-
puted in both on-shell and CDR schemes, are com-
pared in Fig. 9. Here, for consistency with the MS
definition of the couplings to O(α) [32], we use ŝ2Z ≡
sin2 θ̂W (MZ) = 0.2313 [26] in the expression of the
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difference is not at all surprising. For E-158, for ex-
ample, the one-loop weak corrections were found to be
about −40% in the MS scheme [29] and about −50%
in the on-shell scheme [21, 25].

The physical, NLO-corrected asymmetries, com-
puted in both on-shell and CDR schemes, are com-
pared in Fig. 9. Here, for consistency with the MS
definition of the couplings to O(α) [32], we use ŝ2Z ≡
sin2 θ̂W (MZ) = 0.2313 [26] in the expression of the

FIG. 7: The relative total corrections to the unpolarized
cross section versus

√
s at θ = 90◦. The filled circle cor-

responds to our predictions to the MOLLER experiment.
Solid line corresponds to CDR and dotted line to on-shell
RS.

Born asymmetry. We find that the predictions for the
physical PV asymmetry, computed to the same order
in perturbation theory in two different schemes, dif-
fer by about 3%. The difference is an indication of
the order of magnitude the higher-order, NNLO and
beyond, terms.

The [25] estimated that the higher-order corrections
are suppressed by ∼ 0.1% relative to the one-loop re-
sult, possibly 5% in some cases, and thus are not sig-
nificant source of uncertainty. However, we conclude
that although the corrections at the NNLO level were
not mandated by the previously achievable experimen-
tal precision, they may become important for the next
generation of experiments.

V. EFFECT OF ADDITIONAL MASSIVE

NEUTRAL BOSON

Let us now add a very simple NP assumption to
our SM calculations and show how this NP contri-
bution affects the observable asymmetry. The reason
we want to do it in here is to investigate if the two
complimentary methods we used in the previous sec-
tions, "by-hand" and semi-automated, can be applied
in the NP domain. As we mention in the Introduc-
tion, FeynArts, FormCalc, LoopTools, and FORM are
not "black box" programs and can be modified for
specific projects, including adding the NP sector. As
was already concluded in [33] and [34], the proposed
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V. NUMERICAL RESULTS

For the numerical calculations we used ↵ = 1/137.035999, mW = 80.398 GeV, and mZ =
91.1876 GeV as input parameters and according to [25]. The electron, muon, and ⌧ -lepton
masses are taken as me = 0.510998910 MeV, mµ = 0.105658367 GeV, m⌧ = 1.77684 GeV and
the quark masses for loop contributions as mu = 0.06983 GeV, mc = 1.2 GeV, mt = 174 GeV,
md = 0.06984 GeV, ms = 0.15 GeV, and mb = 4.6 GeV. The light quark masses provide shift
in fine structure constant due to hadronic vacuum polarization �↵

(5)

had(m
2

Z)=0.02757 [26], where
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⇡
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◆
, (46)

Qf is the electric charge of fermion f in proton charge units q, (q =
p
4⇡↵). We believe that

the use of the light quarks masses as parameters regulated by the hadron vacuum polarization
is a better choice in this case. Finally, for the mass of the Higgs boson, we take mH = 115 GeV.
Although this mass is still to be determined experimentally, the dependence of EWC on mH is
rather weak. For parameter of maximum soft photon energy we use ! = 0.05

p
s, according to

[14] and [27].
Let us define the relative corrections to the Born cross section due to specific type of contri-

butions (labeled by C) as

�C = (�C � �0)/�0, C = 1-loop,Q,T, ...

The parity-violating asymmetry is defined in a traditional way,

ALR =
�LL + �LR � �RL � �RR

�LL + �LR + �RL + �RR

=
�LL � �RR

�LL + 2�LR + �RR

, (47)

and the relative correction to the Born asymmetry due to C-contribution is defined as

�CA = (AC

LR � A0

LR)/A
0

LR.

Fig. 3, plotted for ✓ = 90o and E
lab

= 11 GeV, clearly demonstrates that the relative correction
to unpolarized cross section is independent on the photon mass �. We can also see the quadratic
dependence in lof scale of � of the both virtual and bremstrahlung contributions.
On the left part of Fig. 4 we can see the relative corrections to asymmetry at E

lab

= 11 GeV
vs scattering angle ✓ in c.m.s. The lower line shows the corrections to asymmetry with only
one-loop EWC taken into account and the upper line show the combined one-loop and the
Q-part corrections. As expected, both of them are symmetric along the line ✓ = ⇡/2, have a
minimum at ✓ = 90o, and depend on scattering angle quite weakly.
The di↵erence of these two e↵ects as an absolute correction defined by

�A = (A1�loop+Q

LR � A0

LR)/A
0

LR � (A1�loop

LR � A0

LR)/A
0

LR = (A1�loop+Q

LR � A1�loop

LR )/A0

LR

and depicted on the right part of Fig. 4. Here we can see that the Q-part gives quite a significant
contribution, with �A reaching a maximum of 0.0419 at ✓ = 90o. Taking into account that the

10

V. NUMERICAL RESULTS

For the numerical calculations we used ↵ = 1/137.035999, mW = 80.398 GeV, and mZ =
91.1876 GeV as input parameters and according to [25]. The electron, muon, and ⌧ -lepton
masses are taken as me = 0.510998910 MeV, mµ = 0.105658367 GeV, m⌧ = 1.77684 GeV and
the quark masses for loop contributions as mu = 0.06983 GeV, mc = 1.2 GeV, mt = 174 GeV,
md = 0.06984 GeV, ms = 0.15 GeV, and mb = 4.6 GeV. The light quark masses provide shift
in fine structure constant due to hadronic vacuum polarization �↵

(5)

had(m
2

Z)=0.02757 [26], where

�↵
(5)

had(s) =
↵

⇡

X

f=u,d,s,c,b

Q2

f

✓
log

s

m2

f

� 5

3

◆
, (46)

Qf is the electric charge of fermion f in proton charge units q, (q =
p
4⇡↵). We believe that

the use of the light quarks masses as parameters regulated by the hadron vacuum polarization
is a better choice in this case. Finally, for the mass of the Higgs boson, we take mH = 115 GeV.
Although this mass is still to be determined experimentally, the dependence of EWC on mH is
rather weak. For parameter of maximum soft photon energy we use ! = 0.05

p
s, according to

[14] and [27].
Let us define the relative corrections to the Born cross section due to specific type of contri-

butions (labeled by C) as

�C = (�C � �0)/�0, C = 1-loop,Q,T, ...

The parity-violating asymmetry is defined in a traditional way,

ALR =
�LL + �LR � �RL � �RR

�LL + �LR + �RL + �RR

=
�LL � �RR

�LL + 2�LR + �RR

, (47)

and the relative correction to the Born asymmetry due to C-contribution is defined as

�CA = (AC

LR � A0

LR)/A
0

LR.

Fig. 3, plotted for ✓ = 90o and E
lab

= 11 GeV, clearly demonstrates that the relative correction
to unpolarized cross section is independent on the photon mass �. We can also see the quadratic
dependence in lof scale of � of the both virtual and bremstrahlung contributions.
On the left part of Fig. 4 we can see the relative corrections to asymmetry at E

lab

= 11 GeV
vs scattering angle ✓ in c.m.s. The lower line shows the corrections to asymmetry with only
one-loop EWC taken into account and the upper line show the combined one-loop and the
Q-part corrections. As expected, both of them are symmetric along the line ✓ = ⇡/2, have a
minimum at ✓ = 90o, and depend on scattering angle quite weakly.
The di↵erence of these two e↵ects as an absolute correction defined by

�A = (A1�loop+Q

LR � A0

LR)/A
0

LR � (A1�loop

LR � A0

LR)/A
0

LR = (A1�loop+Q

LR � A1�loop

LR )/A0

LR

and depicted on the right part of Fig. 4. Here we can see that the Q-part gives quite a significant
contribution, with �A reaching a maximum of 0.0419 at ✓ = 90o. Taking into account that the

10

V. NUMERICAL RESULTS

For the numerical calculations we used ↵ = 1/137.035999, mW = 80.398 GeV, and mZ =
91.1876 GeV as input parameters and according to [25]. The electron, muon, and ⌧ -lepton
masses are taken as me = 0.510998910 MeV, mµ = 0.105658367 GeV, m⌧ = 1.77684 GeV and
the quark masses for loop contributions as mu = 0.06983 GeV, mc = 1.2 GeV, mt = 174 GeV,
md = 0.06984 GeV, ms = 0.15 GeV, and mb = 4.6 GeV. The light quark masses provide shift
in fine structure constant due to hadronic vacuum polarization �↵

(5)

had(m
2

Z)=0.02757 [26], where

�↵
(5)

had(s) =
↵

⇡

X

f=u,d,s,c,b

Q2

f

✓
log

s

m2

f

� 5

3

◆
, (46)

Qf is the electric charge of fermion f in proton charge units q, (q =
p
4⇡↵). We believe that

the use of the light quarks masses as parameters regulated by the hadron vacuum polarization
is a better choice in this case. Finally, for the mass of the Higgs boson, we take mH = 115 GeV.
Although this mass is still to be determined experimentally, the dependence of EWC on mH is
rather weak. For parameter of maximum soft photon energy we use ! = 0.05

p
s, according to

[14] and [27].
Let us define the relative corrections to the Born cross section due to specific type of contri-

butions (labeled by C) as

�C = (�C � �0)/�0, C = 1-loop,Q,T, ...

The parity-violating asymmetry is defined in a traditional way,

ALR =
�LL + �LR � �RL � �RR

�LL + �LR + �RL + �RR

=
�LL � �RR

�LL + 2�LR + �RR

, (47)

and the relative correction to the Born asymmetry due to C-contribution is defined as

�CA = (AC

LR � A0

LR)/A
0

LR.

Fig. 3, plotted for ✓ = 90o and E
lab

= 11 GeV, clearly demonstrates that the relative correction
to unpolarized cross section is independent on the photon mass �. We can also see the quadratic
dependence in lof scale of � of the both virtual and bremstrahlung contributions.
On the left part of Fig. 4 we can see the relative corrections to asymmetry at E

lab

= 11 GeV
vs scattering angle ✓ in c.m.s. The lower line shows the corrections to asymmetry with only
one-loop EWC taken into account and the upper line show the combined one-loop and the
Q-part corrections. As expected, both of them are symmetric along the line ✓ = ⇡/2, have a
minimum at ✓ = 90o, and depend on scattering angle quite weakly.
The di↵erence of these two e↵ects as an absolute correction defined by

�A = (A1�loop+Q

LR � A0

LR)/A
0

LR � (A1�loop

LR � A0

LR)/A
0

LR = (A1�loop+Q

LR � A1�loop

LR )/A0

LR

and depicted on the right part of Fig. 4. Here we can see that the Q-part gives quite a significant
contribution, with �A reaching a maximum of 0.0419 at ✓ = 90o. Taking into account that the

Friday, 9 September, 11



A. Aleksejevs PAVI11, September 5-9, 201121

Conclusion

•Excellent agreement we obtained between the results calculated "by hand" and semi 
automatically serves as a good illustration of opportunities offered by FeynArts, FormCalc, 
LoopTools, and FORM.

• EWC corrections depend quite significantly on the energy and scattering angles.

•At the MOLLER kinematic conditions, the part of the quadratic EWC we considered here can 
increase the asymmetry up to ∼ 4%.

•For the high-energy region √s ∼ 2000 GeV the contribution of the quadratic EWC we estimated 
can reach +30%. 

•The large size of the Q-part demands detailed and consistent consideration of two-loop 
corrections, which is the current task of our group. It is impossible to say at this time if the Q-part 
will be enhanced partially or completely cancelled by other two-loop radiative corrections, 
although it seems probable that the two-loop EWC may be larger than previously thought. 
Although an argument can be made that the two-loop corrections are suppressed by a factor of 
απ relative to the one-loop corrections, we are reluctant to dismiss them, especially in the light of 
2% uncertainty to asymmetry promised by MOLLER.
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