GRAvitational Wave Inaf TeAm

⊘ra≬

Kilonova Observations by GRAWITA

Enzo Brocato INAF – Osservatorio Astronomico di Roma

From Bacodine <<u>vxw@capella2.gstc.na.9 gov</u>> Dite: 17 agosto 2017 15:08:18 CEST Subject: COMPACE INITIAL SIZE

TITLE: GCN/LVC NOTICE NOTICE_DATE: Thu 17 Aug 17 13:08:17 UT NOTICE_TYPE: LVC Initial Skymap TRIGGER NUM: G298048 TRIGGER_DATE: 17982 TJD; 229 DOY; 2017/08/17 (yyyy/mm/dd) TRIGGER_TIME: 45664.445710 SOD {12:41:04.445710} UT SEQUENCE_NUM: 1 GROUP_TYPE: 1 = CBC SEARCH_TYPE: 0 = undefined PIPELINE TYPE: 4 = GSTLAL FAR: 3.478e-12 [Hz] (one per 3328022.5 days) PROB_NS: 1.00 [range is 0.0-1.0] PROB_REMNANT: 1.00 [range is 0.0-1.0] TRIGGER_ID: 0x8 MISC: 0x1100001 SKYMAP_URL: https://gracedb.ligo.org/api/events/G298048/files/bayestar.fits.gz SKYMAP_BASIC_URL: https://gracedb.ligo.org/apibasic/events/G298048/files/bayestar.fits.gz EVENT_URL: https://gracedb.ligo.org/events/G298048 COMMENTS: LVC Initial Skymap -- a location probability map. COMMENTS: This event has been vetted by a human. COMMENTS: LIGO-Hanford Observatory contributed to this candidate event.

From: Bacodine <<u>vxw@capella2.gsfc.nasa.gov</u>> Date: 17 agosto 2017 15:08:18 CEST Subject: GCN/LVC_INITIAL_SKYMAP

TITLE: GCN/LVC NOTICE NOTICE_DATE: Thu 17 Aug 17 13:08:17 UT NOTICE_TYPE: LVC Initial Skymap TRIGGER_NUM: G298048 TRIGGER_DATE: 17982 TJD; 229 DOY; 2017/08/17 (yyyy/mm/dd) TRIGGER_TIME: 45664.445710 SOD {12:41:04.445710} UT SEQUENCE_NUM: 1 GROUP_TYPE: 1 = CBC SEARCH_TYPE: 0 = undefined PIPELINE_TYPE: 4 = GSTLAL

PROB_NS: 1.00 [range is 0.0-1.0]

TRIGGER_ID: 0x8 MISC: 0x1100001 SKYMAP_URL: https://gracedb.ligo.org/api/events/G298048/files/bayestar.fits.gz

SKYMAP_BASIC_URL: https://gracedb.ligo.org/apibasic/events/G298048/files/bayestar.fits.gz EVENT_URL: https://gracedb.ligo.org/events/G298048 COMMENTS: LVC Initial Skymap -- a location probability map. COMMENTS: This event has been vetted by a human.

COMMENTS: LIGO-Hanford Observatory contributed to this candidate event.

Sra∭ITA The route for the EM counterpart

INAF

STEP 1

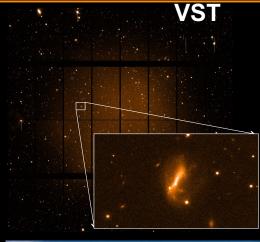
Search & Detect

Transients in the *skymap* provided by LVC have to be discovered and measured as soon as possible

STEP 2

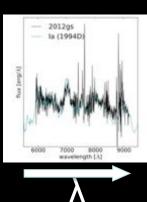
Observe & Characterize

The detected transients have to be observed to infer their nature


STEP 3

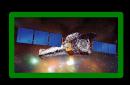
Follow & Study Follow-up at all observable λ for an adequate time to study the physical properties of the EM counterparts of GW **Telescopes** with large FoV distributed at different latitudes/longitudes

Computing Facilities with fast and smart software to select a handful of transients

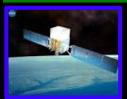

Telescopes for prompt spectroscopy of selected candidates at different latitudes/longitudes

Telescopes with large collecting area to obtain light curves and spectral features of the EM counterparts of GW

2225 23.0 24.0 24.5 25.0 111 111 180 280 220 240 260 MJD-56000 Time



STEP 1


Search & Detect

Transients in the **skymap** provided by LVC have to be discovered and measured as soon as possible

Gamma emission and precise localization by satellite (< few arcmin)

immediate follow-up of the source

Large error boxes (< ~40 deg²) a specific observational strategy

Aasi et al. 2014, ApJS, 211

Very large error boxes (> ~40 deg²) Wide field Opt-Nir search

Our Group

GRAvitational Waves Inaf TeAm

www.grawita.inaf.it

INAF OA Roma: E. Brocato (P.I.), S. Piranomonte, S. Ascenzi, L. Stella, A. Stamerra, P. Casella, G. Israel, L. Pulone, A. Giunta, A. Di Paola

INAF OA Napoli: A. Grado, F. Getman, L. Limatola, M.T. Botticella, M. della Valle,

M. Capaccioli, P. Schipani

INAF IASF Bologna: E. Palazzi, L. Nicastro, A. Rossi, L. Amati, L. Masetti, A. Bulgarelli, D. Vergani, G. De Cesare

INAF OA Brera / IASF Milano: S. Campana, S. Covino, P. D'Avanzo, A. Melandri, G. Ghisellini, G.Ghirlanda, R. Salvaterra

INAF OA Padova: E. Cappellaro, L. Tomasella, S. Benetti, M. Turatto, S. Yang,

M. Mapelli, R. Ciolfi

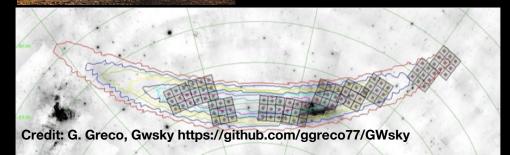
INAF OA Cagliari: A. Possenti, M. Burgay

GSSI: M. Branchesi

University of Urbino: G. Stratta, G. Greco

SNS Pisa: M. Razzano, B. Patricelli,

Space Science Data Center: L.A. Antonelli, V. D'Elia, S. Marinoni, P. Marrese,


INAF OA Abruzzo: G. Raimondo, M. Cantiello University of Calabria: S. Savaglio

University of Bologna: A. Cimatti, M. Moresco, M. Brusa, G. Lanzuisi, M. Talia

Gra₩ITA Search for counterparts: wide field

2.6m FoV = 1 deg² (PI Cappellaro/Grado) 0.61/0.91m FoV=1.3 deg² (PI: Di Paola, Giunta)

ESO-VST Campo Imperatore Schmidt Tel. Asiago Schmidt Telescope 0.67/0.92m FoV=1 deg² (PI: Tomasella)

FAST: hours after LVC alert WIDE: 50 - 90 deg² large contained probability DEEP: r_lim ~ 21 (CI & Asiago) - 22.5 (VST) mag

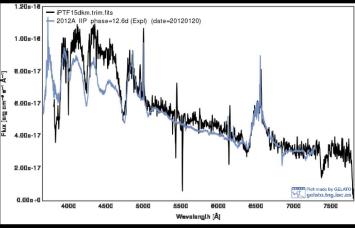
VST & CI successfully operated in O1 & O2, Asiago ready for O3

Brocato et al. 2017

Gra∭ITA Candidate classification / follow-up

Copernico 1.8 m telescope (Asiago) optical imaging & spectroscopy (PI: Tomasella)

TNG 3.6 m optical/NIR imaging & spectroscopy (PI: Piranomonte)



LBT (2x)8.2 m optical/NIR imaging & spectroscopy (PI: Palazzi)

ESO-NTT 3.6 m optical/NIR imaging & spectroscopy (PI: Botticella within ePESSTO)

ESO-VLT 8.5 m optical/NIR imaging & spectroscopy (PI: P. D'Avanzo)

All successfully operated in O1 & O2

Piranomonte et al. in prep.

Swift

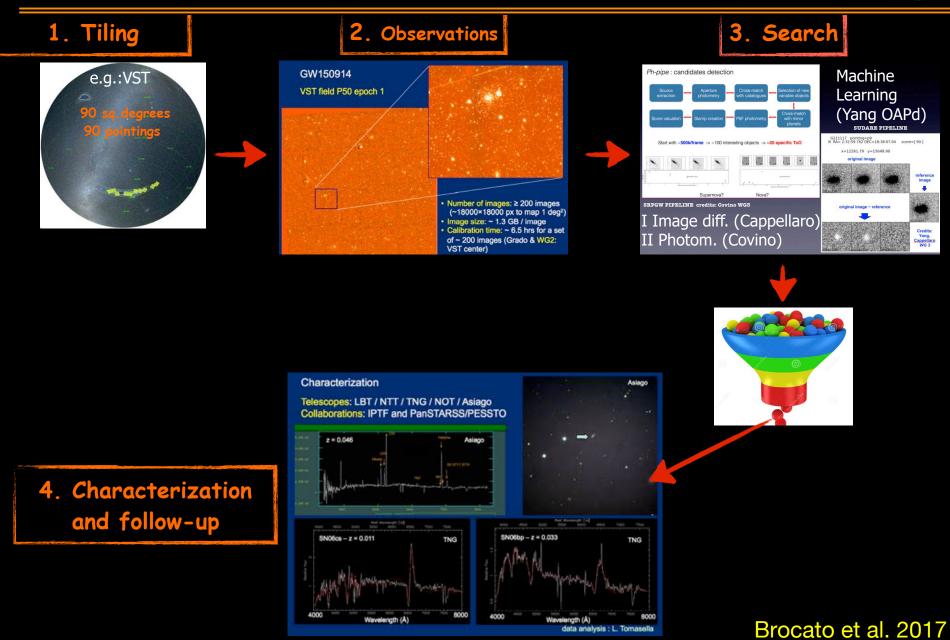
- BAT: 15-150 keV, 2 sr FoV
- XRT: 0.2-10 keV, 0.15 deg² FoV
- UVOT: UV/opt imaging; 0.08 deg² FoV ToO program (PI: Possenti)
- ToO program (GRAWITA co-ls)
- Tiling
- Targeted search
- Follow-up

Evans et al. 2016, 2017

Sardinia Radio Telescope (SRT)

- 64 m antenna
- <u>300 MHz 100 GHz</u>
- - Targeted search
 - Follow-up

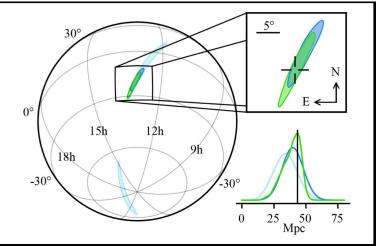
also Medicina & Noto radio telescopes (2x32m)

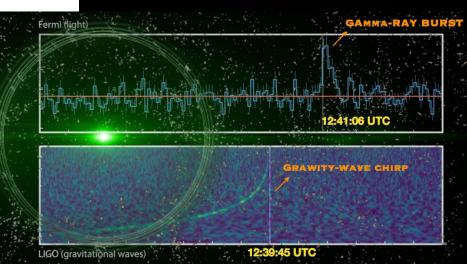

Both successfully operated in O1 & O2

Aresu et al. GCN 21914

Gra₩ITA

Example of GRAWITA response



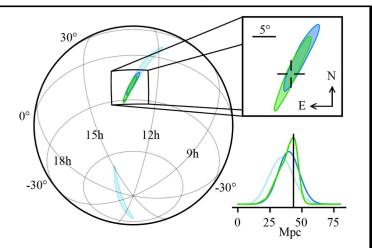

From: Bacodine <<u>vxw@capella2.gsfc.nasa.gov</u>> Date: 17 agosto 2017 15:08:18 CEST Subject: GCN/LVC_INITIAL_SKYMAP

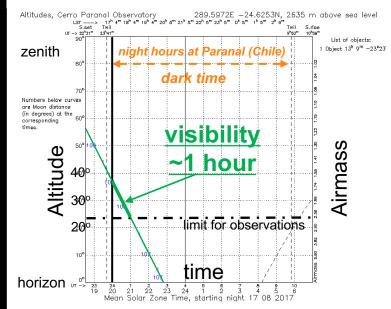
TITLE: GCN/LVC NOTICE NOTICE_DATE: Thu 17 Aug 17 13:08:17 UT NOTICE_TYPE: LVC Initial Skymap TRIGGER NUM: G298048 TRIGGER_DATE: 17982 TJD; 229 DOY; 2017/08/17 (yyyy/mm/dd) TRIGGER_TIME: 45664.445710 SOD {12:41:04.445710} UT SEQUENCE_NUM: 1 GROUP_TYPE: 1 = CBC SEARCH_TYPE: 0 = undefined PIPELINE TYPE: 4 = GSTLAL 0.47 de-12 [Hz] (one per 0029922.5 days) PROB_NS: 1.00 [range is 0.0-1.0] SOR BEMNANT: 1.00 [range is 9.0-1.0] TRIGGER_ID: 0X8 MISC: 0x1100001 SKYMAP_URL: https://gracedb.ligo.org/api/events/G298048/files/bayestar.fits.gz

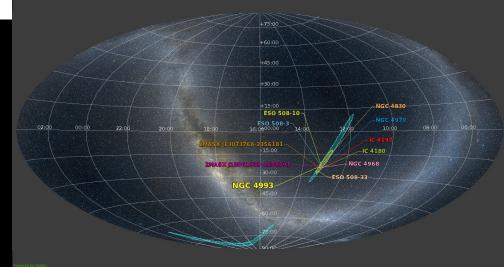
SKYMAP_BASIC_URL: <u>https://gracedb.ligo.org/api/events/G298048/files/bayestar.fits.gz</u> EVENT_URL: <u>https://gracedb.ligo.org/events/G298048</u> COMMENTS: LVC Initial Skymap -- a location probability map. COMMENTS: This event has been vetted by a human.

COMMENTS: LIGO-Hanford Observatory contributed to this candidate event.

GW17081


False-alarm rate < 1 per $\sim 8 \times 10^4$ years


From: Bacodine <<u>vxw@capella2.gsfc.nasa.gov</u>> Date: 17 agosto 2017 15:08:18 CEST Subject: GCN/LVC_INITIAL_SKYMAP



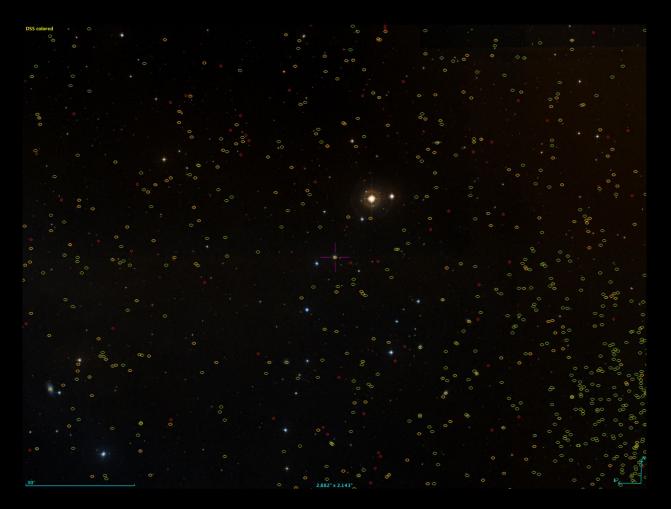
COMMENTS: LIGO-Hanford Observatory contributed to this candidate event.

Position of the GW skymap on sky

Observational strategies

The sky around GW170817 (~3 deg x ~2 deg)

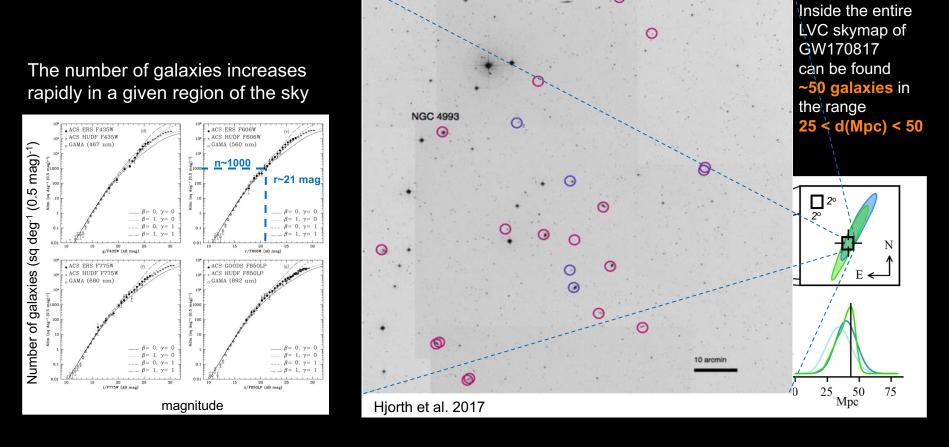
Gra


The *distance* is a *critical quantity* for searching the EM counterparts

The sky around GW170817 (~3 deg x ~2 deg)

⊘ra \

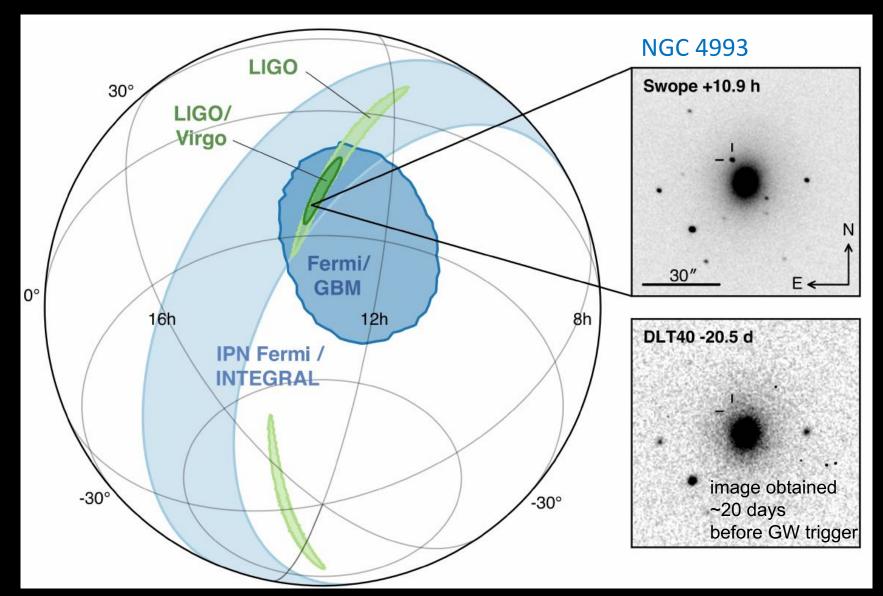
The *distance* is a *critical quantity* for searching the EM counterparts


When the distance (including uncertainties) is available, (no mosaics) the best observing strategy is

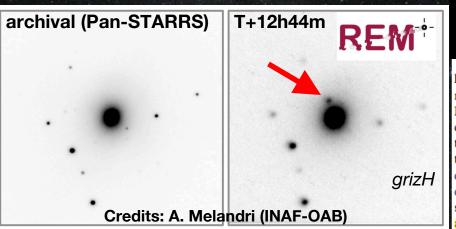
Galaxy targeting strategy :

≤Ta₩ITA

•Select a sample of galaxies using catalogs of galaxies with known distances. Constrains: position (LVC skymap) + distance (in the range given by LVC)


•Start observations (telescopes with small FoV are OK!) giving priority to high mass (luminosity) galaxies

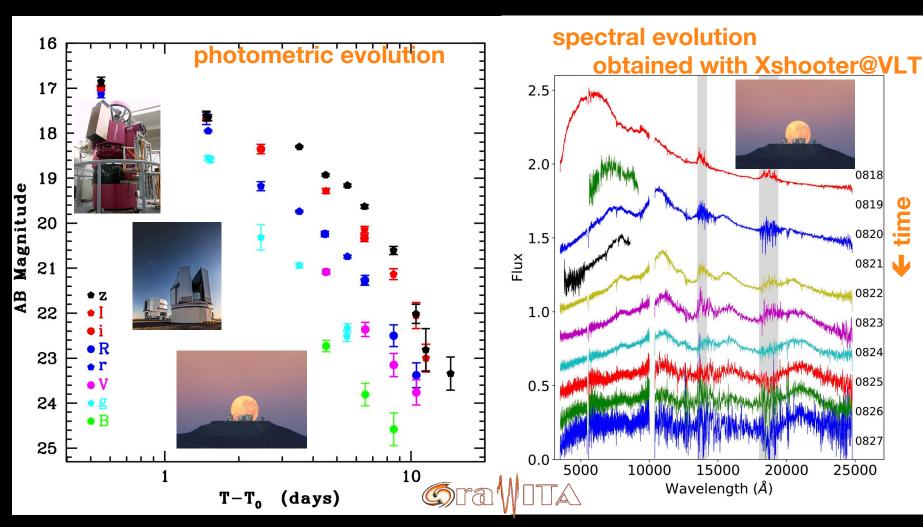
Gra∭ITA Discovery of an Optical/nIR Transient


OPTICAL counterpart detection ~ 11 hours after GW trigger

INAF

ITA GW 170817: optical counterpart in NGC 4993

GRAWITA: REM detection ~ 12.7 hours after GW trigger

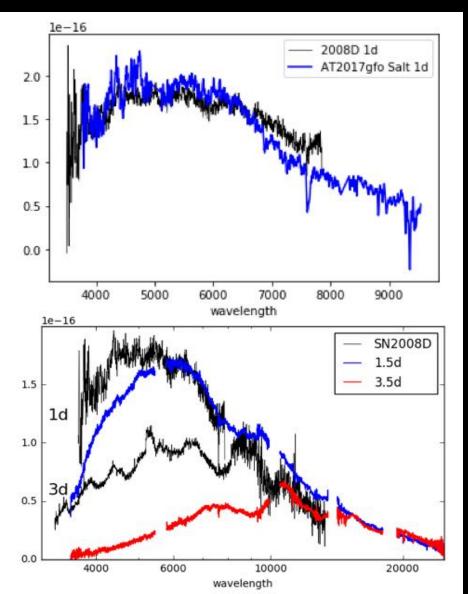

LVC + "partner astronomy groups" (2017)

Five other teams took images of the transient within an hour of the 1M2H image (and before the SSS17a announcement) using different observational strategies to search the LIGO-Virgo sky localization region. They reported their discovery of the same optical transient in a sequence of GCNs: the Dark Energy Camera (01:15 UTC; Allam et al. 2017), the Distance Less Than 40 Mpc survey (01:41 UTC; Yang et al. 2017a), Las Cumbres Observatory (04:07 UTC; Arcavi et al. 2017a), the Visible and Infrared Survey Telescope for Astronomy (05:04 UTC; Tanvir et al. 2017a), and MASTER (05:38 UTC; Lipunov et al. 2017a). Independent searches were also carried out by the Rapid Eye Mount (REM-GRAWITA, optical, 02:00 UTC; Melandri et al. 2017a), Swift UVOT/XRT (utraviolet, 07:24 UTC;

REM @ ESO La Silla (Chile) primary mirror 60 cm in diameter

Credits P. D'Avanzo

GraWITA GW 170817: imaging and spectroscopic follow-up


Pian, D'Avanzo et al. 2017, Nature

INAF

The Optical/nIR Transient

INAF

Why temporal and spectral sampling (+ good S/N) are important

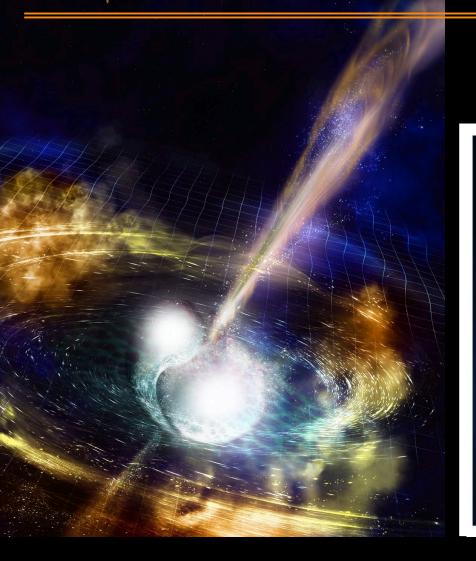
Gra₩ITA

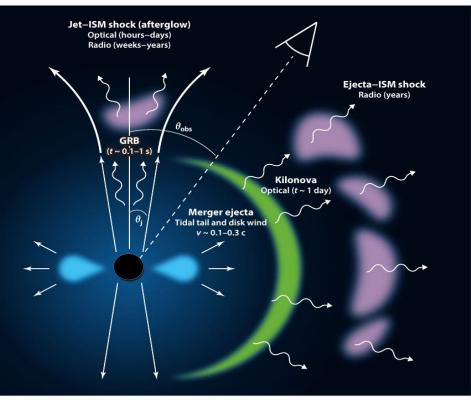
The low S/N spectrum *at 1 day* matches very well that of the supernova *SN2008D* / *XRF080109 (type lbc)* at a similar phase.

In a couple of day the peak of the Spectral Energy Distribution shifts to the near-infrared. Broad spectral features appear that are completely different from that of all known SN types.

Image: Second Secon

ESO VLT X-Shooter spectral sequence of GW170817


NAF



GraWITA

BNS Merger

Metzger & Berger et al 2011

MUSE instrument operating on ESO VLT

The host galaxy:

- ✓ lenticular galaxy (S0 galaxy type)
- ✓ redshift z_{helio} = 0.00978 +/- 0.00002
- Evidence of emission from gas (red in the image) revealing a surprising spiral structure
- ✓ relatively recent (~1 Gyr) episode of merger with another galaxy
- ✓ no globular cluster or young stellar cluster (with Mass > few 10³ Mo) at the position of GW170817

Credit: ESO/J.D. Lyman, A.J. Levan, N.R. Tanvir

Sra₩ITA BNS Merger: further work on GW170817

	New distance evaluation of NGC 4993 Surface Brightness Fluctuation (SBF) typical uncertainties are ~5% for distances < 1-200	Мрс
	The basic idea is:	
	closer ⇔ more grainy, more mottled farther ⇔ less grainy, less mottled	•
M32 @ 0.75 Mpc		
	$f_{SBF} \equiv \sum_{i} n_{i} f_{i}^{2} / \sum_{i} n_{i} f_{i}$ (Tonry & Schneider 1988)	
	n _i = number of stars in pixel i	
	f _i = flux measured in pixel I	
	the sum is extended to all the pixel of the galaxy	
N7768 @ 100 Mpc	i.e. SBF = Ratio of the 2 nd to the 1 st moment of the stellar luminosity function (LF)	

Results:

- ✓ By using the SBF method on HST images we derive the most precise distance to NGC4993 d = 40.7 ± 1.4 ± 1.9_{syst} Mpc available to date
- ✓ Combining our distance measurement with the corrected recession velocity of NGC 4993 implies a Hubble constant $H_0 = 71.9 \pm 6.3$ km s⁻¹ Mpc⁻¹
- ✓ Useful for the distance-inclination issue

Cantiello et al. 2018

ENGRAVE

Electromagnetic counterparts of gravitational waves at the Very Large Telescope

An European collaboration of 196 ESO scientists

Governing Council : M. Branchesi, E. Brocato, P. D'Avanzo, J. Hjorth, P. Jonker, E. Pian, S. Smartt, J. Sollerman, D. Steeghs, N. Tanvir

ENGRAVE

VLT ToO Large Programme (submitted)

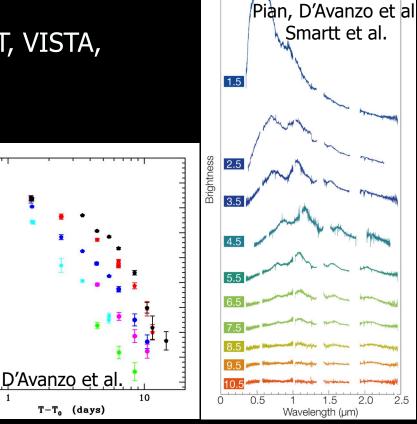
3 Periods P102 - P104 Oct 2018 - Mar 2020 Fully Covering O3

Requesting 180hrs of VLT

4 triggers @ 45hrs per event

All usable VLT instruments (depending on mag and SED of source)

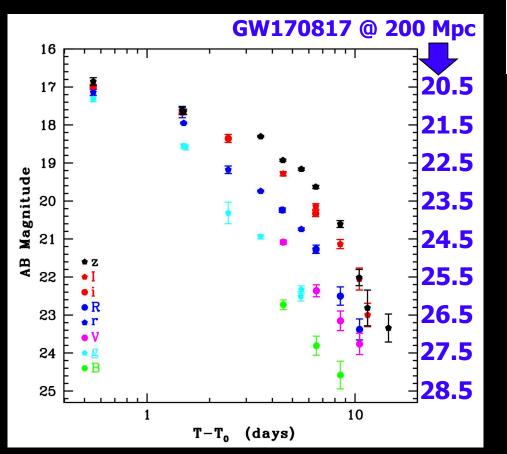
Proposal writing team : S. Covino, A. Levan, K. Maguire, D. Malesani, S. Vergani

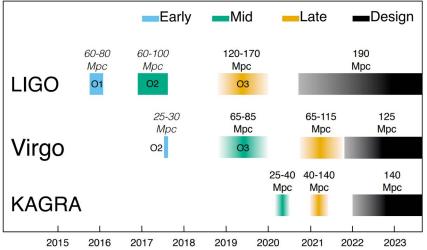

ENGRAVE Simple goal every useful ESO instrument, every night

17

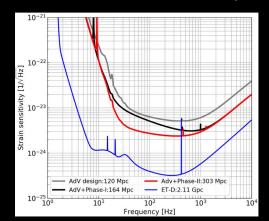
18

- 0.3 2.5 micron spectra (xshooter + FORS + EFOSC2/SOFI if bright enough)
- 0.3 3.5 micron lightcurve (VST, NTT, VISTA, FORS, HAWKI, NACO, REM)
- 1-3 mm afterglow emission (ALMA)




nature

Sra₩ITA


GRAWITA vs O3 and beyond

Increasing the sensibility of GW detectors move the horizon toward more distant objects, i.e. fainters sources

Expected multi-messenger event rates BBH: at least a few per month BNS: 1-10, possibly 1 per month NSBH: uncertain, one or more in O3 TownHall Amsterdam 12-13 April 2018

GRAWITA vs O3 and beyond

LSST

WF search

LSST (2022?):

- 8.4m, 9.6 deg², r ~ 24.5, Chile, 6 bands (0.3 - 1.1µm, *ugrizy*), 1000 visits over 10 years, same RA, DEC every 3 nights
- deep sky
- galaxy catalogs
- identification false candidates

<image>

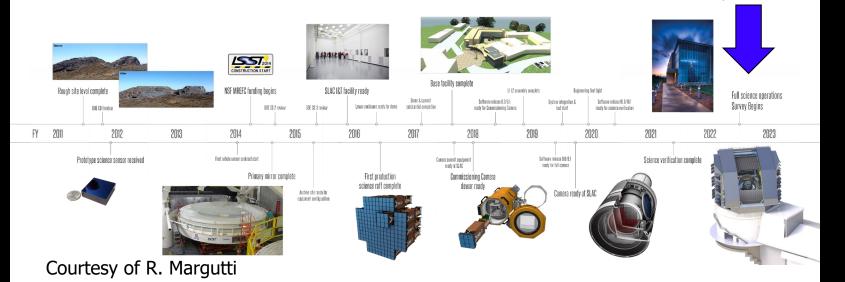
LSST has a EM/GW group (< GW LSST-Inaf team). Part of LSST transients collaboration.

GRAWITA vs O3 and beyond

LSST

Large Synoptic Survey Telescope Corporation

2023

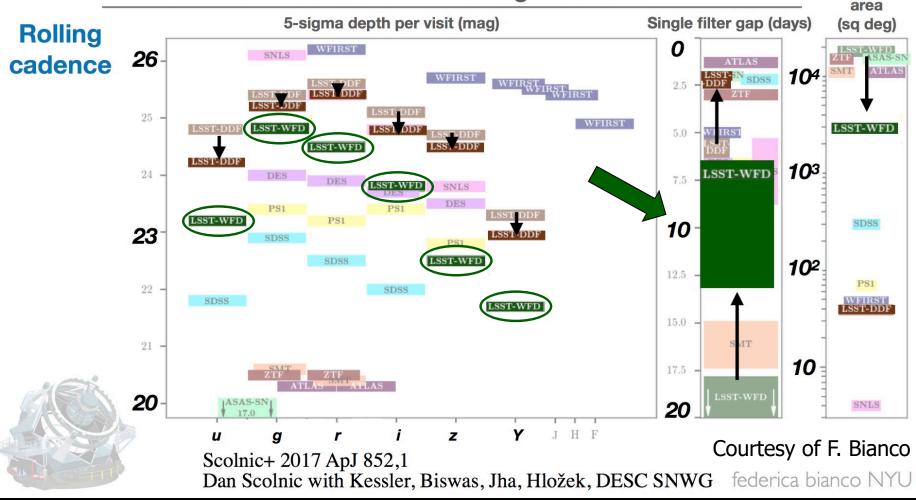

Full Science Operations

Transients and Variable Stars workshop

Naples April 9-11, 2018

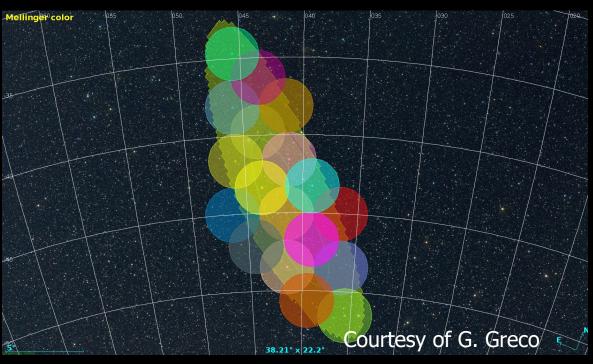
INAF – Osservatorio Astronomico di Capodimonte

LSST Time line:



LSST Cadence alternatives: Rolling Cadence

LSST


- \succ LSST has a LARGE Field of View (9.6 deg²)
- LSST horizon increased ==> fainter sources (> 24.5)
- > The strategy of targeting galaxies is unlikely to often succeed

Target of Opportunity mode !

To completely cover the skymap of GW170817 provided by LIGO/Virgo Collaboration,

LSST needs less than 20 tiles/pointing (not optimized)

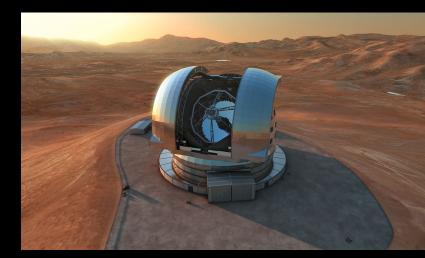
to reach r~24.5

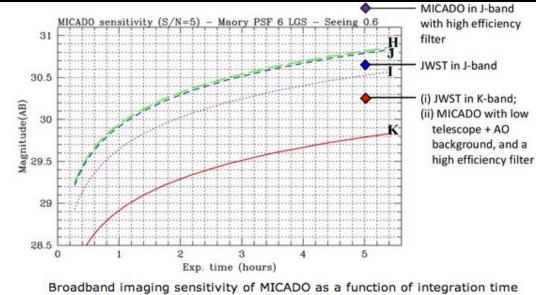
Action:

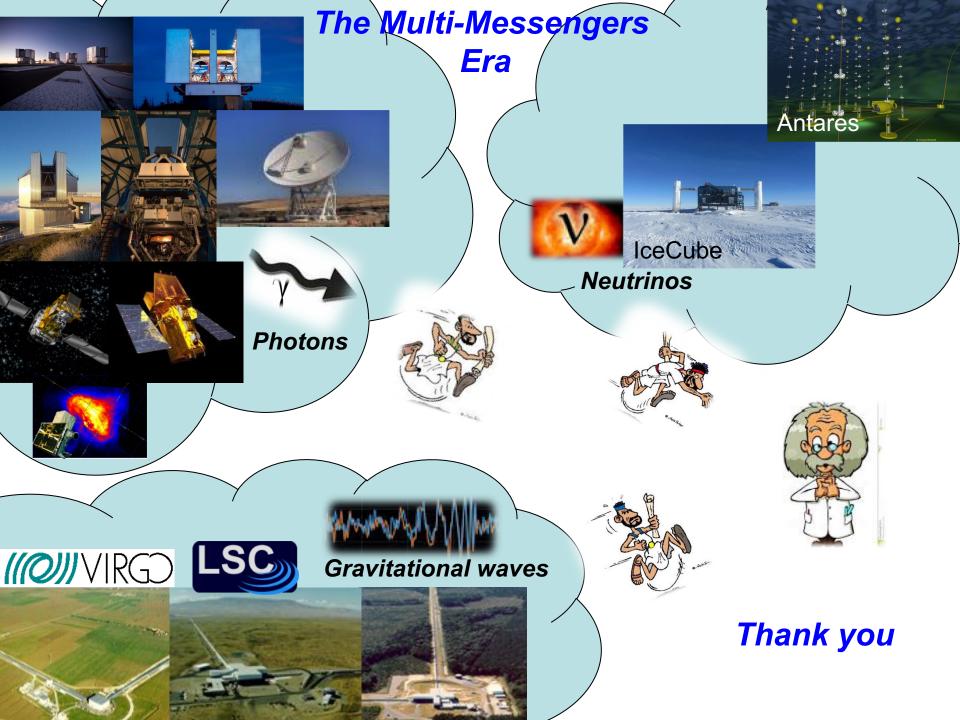
- Make the case of ToO@LSST
- Design best ToO strategy for GWs
- Evaluate Observing time needed (< 1%)

SOXS@NTT MOONS@VLT

GRAWITA vs O3 and beyond




E-ELT


Follow-up

E-ELT (2024?):

~40m, Adaptive Optics corrected FoV 10 arcmin e.g. MICADO Image+spectr. 0.8-2.4 µm, R~8000 FoV ~20-50 arcsec

