

Search for the SM Higgs boson in the WH production with the $e^{\pm}\tau^{+}\tau^{-}$ and $\mu^{\pm}\tau^{+}\tau^{-}$ final states

Rosamaria Venditti*
On Behalf of the CMS Collaboration

*University and INFN, Bari

Outline

- Motivations
- Analysis Strategy
- τ reconstruction with CMS
- WH fully hadronic Analysis
- Combined Limits
- Conclusions

Motivations

- Cross section for the Associated Production is an order of magnitude lower than that of the gluon-gluon fusion mechanism
- In the light mass region the Higgs boson decaying into τ -leptons pairs has the second BR.
- Additional lepton coming from the W provides additional handle to suppress the background.
- Importance of probing Higgs coupling with leptons.
- The Fully Hadronic channel has the highest BR between all the tau decay mode but also suffer of huge background.

Analysis Strategy

- Whole statistics recorded by CMS in the last two years
 - 2011: L=5 fb⁻¹ @ 7TeV 2012: L=19.5 fb⁻¹@ 8TeV
- Two final states
 - $e\tau_{had}\tau_{had}$
 - $-\mu \tau_{had} \tau_{had}$
- Cut based analysis to select the final state
 - Object identification
 - Topological cuts
- Background estimation
 - Main Bkg: W+jets, Z+jet, WW, WZ, ZZ, QCD, ttbar
 - Irreducible bkg relies on MC estimate
 - Reducible bkg via fake rate method
- The asymptotic CLs method is used to set exclusion limits

τ reconstruction with CMS: HPS

HPS reconstructs hadronic tau decay mode

Decay Mode	Resonance	BR
τ→evv		18%
τ→μνν		17%
τ→hv		12%
τ→hh ⁰ v	ρ(770)	37%
τ→hhhv	a1 (1200)	15%

Isolation

Energy deposits in $\Delta R = 0.5$ cone

•Discriminator against electron based on shower shape info and E/p

Discriminator against muon

Based on compatibility between tau leading and muon track

Check compatibility on intermediate particle mass

Selections

- Trigger applied on data and MC
- μ/electron
 - at least one well-identified and isolated (Pile Up corrections applied)
 - pt>24 GeV
- Taus
 - reconstructed with HPS Algorithm
 - τ1: pt>45 GeV, Tight Isolation, Tight Muon Rejection, Loose(Tight) electron rejection
 - τ2: pt>30 GeV, Medium Isolation, Tight Muon Rejection, Medium electron rejection
- $Q(\tau 1) + Q(\tau 2) = 0$
- E_T^{miss} > 20 GeV
- No b-tagged jet with pT > 20 GeV

Topological (µ channel)

- •Z $\rightarrow \mu\mu$ veto
 - No additional muon
- •Z → ττ veto
 - • $p_t(\tau_1, \tau_2) > 50 \text{ GeV or } M_t(\mu, \tau_{OS}) > 80 \text{ GeV}$
- Anti-Overlap with $H \rightarrow \tau_{\mu} \tau_{had}$
 - • $M_t (\mu, E_T^{miss}) > 20 \text{ GeV}$

<u>Topological (e channel)</u>

- •Z → TT veto
 - • M_t (e, E_T^{miss}) > 50 GeV
- •Z → ee veto
 - •No 2 OS electrons with $|m_z m_{ee}| < 25$
 - •No | mZ m(e, τ_{OS}) | < 6 GeV

Background Estimation

- Irreducible : ZZ, WZ estimated with MC
- Reducible: events where quark or gluon jets are uncorrectly reconstructed as τ_{had}.
- Data driven estimation by fake rate techinque.
 - Processes:
 - Z ($\rightarrow \tau \tau \rightarrow l\tau_{had}$)+1jet
 - Z (→ee) +1jet
 - W(→ lv) +2jets

fakeable object is τ-candidate SS to light lepton

- Measure probability (as a function of tau pt) that a jet passes the tau isolation in background enriched region:
 - $Z \rightarrow \mu\mu$ +jets
 - W $\rightarrow \mu v + jets$

chosen such that signal events are excluded.

jet $\rightarrow \tau_{had}$ Fake rate functions

- Different Fake Rate in the two regions due to different fraction of quark and gluon jets →
 Systematic Effect
- Fit with Landau plus constant → Uncertainty on fit function
- Same function used for both channels -> Full Correlation between channels

Fake Background Estimation

- From MC studies:
 - 2/3 bkg: W (→ μν) + 2 jets
 - 1/3 bkg: Z+1 jet
- Total function is a weighted average

$$f(p_t) = \frac{2f_{Wjets}(p_t) + f_{Zjets}(p_t)}{3}$$

- ✓ Invert isolation of fakeable object
- ✓ Apply a weight to each event according to fake candidate pt.

Signal region

Systematics

Normalization (%)		
Luminosity 2011(2012)	2.2(4.4)	
VV MC	4.3 (pdf) + stat.	
Trigger Efficiency	3.5	
Fake Rate Normalization	20+stat.	
Electron ID	2.9	
Muon ID	1.4	
Tau ID	12	
Tau Energy Scale	3	
Jet Energy Scale	1	
MET	3.7	
Electron Veto	3.8	
Muon Veto	0.7	
Shape Uncertainty		
WH,WZ,ZZ, Fakes	± 1 sigma	

- Uncertainties are considered as fully correlated over the
- 2 channels and data taking periods.
- •20% obtained considering:
 - •10% Fake Rate differences in W+Jets and Z+Jets
 - •10% mismodelling of background composition
 - •10% for fit statistical uncertainty

Recommended value

Propagate the recommended value to the final yield

Final Events

Process	Ιττ
Fakes	20.4 ± 4.3
WZ	6.2 ± 1
ZZ	0.38 ± 0.06
Total Bkg	27.1 ± 4.5
VH→Vττ (mH=125 GeV)	1.2 ± 0.2
Observed	36

Observed events are compatible within the error with what we expect from fake estimation and irreducible background contribution

Visible Mass

Pre-fit

Final distribution of observed and expected events

Post-fit

Best fit to data using the Maximum likelihood method

$W(\rightarrow lv_l) H(\rightarrow \tau_h \tau_h)$ Limits

- The **counting experiment** is used to set 2011 limits in mu/e channel (lacking of statistics)
- A shape analysis is performed using the ditau visible mass in 2012 mu/e channel

VH Combined Limits

- Results have been combined with the other VH channels:
 - WH: μμτ_{had}, eμτ_{had}
 - ZH: (μμ, ee) \otimes (μτ_{had}, eτ_{had}, eμ, τ_{had}τ_{had})

Conclusions

- The search of SM Higgs boson in association with W and in fully hadronic final state has been performed at CMS with full statistics.
- Analysis strategy:
 - Cut based analysis to select the final state
 - Background estimation: irreducible bkg via MC, reducible bkg via fake rate method
- Limit is measured with counting experiment in 2011 and by fitting the Higgs visible mass for 2012.
- Observation is consistent both with the presence and the absence of a SM Higgs boson
- This analysis, together with other channels of VH process, will be included in the H

 ττ global combination.

Back-up

Cut-Based Tau Isolation

- Sum p_T of charged and gamma PF candidates not belonging to tau within cone of $\Delta R = 0.5$.
- $\Delta\beta$ Correction to take into account pile-up effects:
 - Neutral pileup contribution estimated from pile-up tracks entering isolation cone.
 - Sum p_T of pile-up tracks multiplied by neutral-to-charged ratio
 - Neutral-to-Charged ratio tuned to obtain flat efficiency vs. pile-up.
 - Estimated neutral pileup contribution subtracted from isolation .

$$I_{PF}^{(\Delta\beta)} = \sum P_t^{\text{charged}} + \max(E_t^{\gamma} + E_t^{\text{neutral}} - 0.0729 \times E_t^{PU}, 0.0)$$

- Cut Based Isolation Working Points:
 - **VeryLoose**: $I_{pe}^{(\Delta\beta)}$ <3GeV;
 - **Loose**: $I_{PF}^{(\Delta\beta)}$ < 2 GeV;
 - **Medium**: $I_{PF}^{(\Delta\beta)}$ <1GeV;
 - **Tight**: $I_{PF}^{(\Delta\beta)} < 0.8 \text{GeV}$.

Dataset and Triggers

- $\mu \tau_h \tau_h$: Single Muon Trigger
- $e\tau_h\tau_h$: Electron + Tau Trigger
- Trigger applied on MC and data
- Pile up Reweighting applied

Topological Selections

Additional (both channels)

 ΔR between all selected objects $\Delta z(I, PV)$ $Q(\tau 1) * Q(\tau 2) < 0$ $E_T^{miss} > 20 \text{ GeV}$

No b-tagged jet with pT > 20 GeV (b-jet veto)

Additional (µ channel):

- No additional global + PF muon with $p_t > 15$ GeV (Z $\rightarrow \mu\mu$ veto)
- No MVA electron with pT > 10 GeV
- $p_t(\tau_1, \tau_2) > 50$ GeV or $M_t(\mu, \tau_{OS}) > 80$ GeV (Z \rightarrow $\tau\tau$ veto)
- $M_t (\mu, E_T^{miss}) > 20 \text{ GeV (Overlap removal)}$

Additional (e channel):

- M_t (e, E_T^{miss}) > 50 GeV (**Z** → ττ veto)
- No 2 OS electrons with |m_z m_{ee}| < 25 GeV
 (Z → ee veto)
- No $|mZ m(e, \tau_{OS})| < 6 \text{ GeV } (Z \rightarrow ee \text{ veto})$

Fake Rate Method

- Main reducible backgrounds have at least one fake lepton due to a misidentified quark or gluon jet which passes the lepton identification
- Data-driven estimation.
- Measure misidentification probabilities for the fake lepton candidates to pass the final isolation criteria in background enriched regions (control regions):
 - − W $\rightarrow \mu v$ + jets
 - Z → $\mu\mu$ + jets

as a function of lepton pt $(f(p_t))$

- The control regions are chosen such that signal events are excluded.
- Define sideband: invert isolation on fake lepton candidate.
- Extrapolate reducible background contribution in signal region by weighting each event in sideband with:

$$\omega(p_t) = \frac{f(p_t)}{1 - f(p_t)}$$

Fake Rate Measurement

Denominator

- W $(\rightarrow \mu \nu)$ + jets
- Muon pT > 24 GeV, $|\eta|$ < 2.1
- PF-based relative isolation < 0.1 No electron (pT > 15 GeV, loose MVA ID)
- No b-tagged jets (loose CSV WP) MT(Muon, MET) > 40 GeV
- $2 SS \tau_h$

Consider all reconstructed taus which are part of a SS tau pair and which are SS to the muon from the W decay

- Z+ jets
- 2 OS muons
- $\mu 1 \text{ pT} > 24 \text{GeV}, \ \mu 2 \text{ pT} > 10 \text{GeV}, \ |\eta| < 2.1$
- PF-based relative isolation < 0.1
- No electron
- No b-jet
- $80 \text{GeV} \leq M(\mu 1, \mu 2) \leq 100 \text{ GeV}$

Consider all reconstructed taus in the event

Numerator: All Taus passing **Isolation** Requirement