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Summary. — The Standard Model (SM) Higgs boson is mainly produced from
gluon-gluon and vector boson fusion at LHC. The associated production with vec-
tor bosons, although with a lower cross section, can be also considered a sensitive
channel because a signicant background rejection can be achieved using the pres-
ence of highly energetic charged leptons coming from the decays of W/Z. In the
light mass region, the SM Higgs boson decay into τ -lepton pairs has the second
highest branching ratio, after the decay into bb̄. For these reasons, a search for WH
process is performed, in which the W boson decays into muon or electron, and the
Higgs boson into τ pair, both decaying hadronically. The analysis is based on data
from proton-proton collisions collected with CMS detector in 2011 and 2012 corre-
sponding to an integrated luminosity of 4.9 fb−1 at

√
s = 7 TeV and 19.5 fb−1 at√

s = 8 TeV respectively. A data-driven technique, the fake rate method, has been
used for background estimation. The results are consistent with the expected SM
background, so upper limits are set at 95% CL for the SM Higgs boson production
cross section.

PACS 07.05.Hd – Data acquisition: hardware and software.
PACS 07.05.Kf – Data analysis: algorithms and implementation; data management.
PACS 29.85.fJ – Data analysis.

1. – Introduction

At the LHC, the SM Higgs boson is mainly produced from gluon-gluon and vector
boson fusion processes. The production in association with vector bosons (qq̄ →W±H0),
although characterized by one order of magnitude lower cross section, provide promising
channels for Higgs boson searches at the LHC because a significant background rejection
can be achieved using the presence of the additional highly energetic leptons in the event
coming from the W± decays.

In the light mass region (MH < 130 GeV/c2) , the dominant Higgs boson decays are
into pairs of b-quarks and τ -leptons. Detecting inclusive production using b or τ decays
is difficult due to the overwhelming multi-jet background processes. The associated
production process, where the Higgs boson is produced together with a W± boson, can
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be considered in this case because the presence of the additional highly energetic lepton
in the event coming from the vector boson decay provides additional handles to suppress
the SM background. Therefore, this analysis focuses on exploiting this channel to search
for a low mass SM Higgs boson produced in association with W±, where W decays into
a light lepton (electron or muon) and Higgs decays into a pair of τ -leptons decaying
hadronically (in the following indicated with τh) [1].

The analysis is performed on the 2011 and 2012 CMS [2] dataset that corresponds to
a total integrated luminosity of 24 fb−1.

2. – Selections

Candidate WH events are selected with trigger paths which require either one isolated
muon or one electron and one tau depending on the channel. All final leptons are
required to be associated to the reconstructed primary vertex with highest transvers
momentum (pT ) sum. At offline level requirements on minimum transverse momentum
and pseudorapidity, identification and isolation are applied.

The τhad identification is performed using the Hadrons Plus Strips algorithm in which
one or three charged hadrons are combined with photons to reconstruct τ decay modes
individually [3].

Then only events with at least one pair of opposite charge hadronic tau candidates are
preserved for further analysis. In order to reduce the contribution of tt̄ + jets background,
a veto is put for events where a jet tagged as coming from a b-quark is found.

In both channels the final state is characterized by a certain amount of missing energy
in the transverse plane coming from neutrinos contribution. Thus only events with
EmissT ≥ 20 GeV are preserved for further analysis

The remaining topological selections are specific to each of the two channels considered
in this analysis and are described separately in what follows.

µττ Final State. –

• Z → µµ veto: A Z/γ∗ → µ+µ− process accompanied by additional jet production
can mimic the signal events. This type of contributions can be removed with a veto
against the additional muon. If a second muon is found with pT > 15 GeV/c and
|η| < 2.1 coming from the same primary vertex as the leading τ (|zτlead

−zµ| ≤ 0.14
cm) the event is discarded.

• Electron veto: For similar reasons, if an electron with pT > 10 GeV/c which falls
in the acceptance of the electromagnetic calorimeter and passing the tight electron
identification criteria with |zτlead

− ze| ≤ 0.14 cm is found, the event is rejected.

• Z → ττ veto: An event is discarded if it contains a muon and τh candidates of
opposite charge signs that have an invariant mass mvis

τOS
h

µ
< 80 GeV/c2 and if the

pT of the di-tau system is less than 50 GeV/c.

• Overlap removal: The transverse mass MT of the muon and the missing trans-
verse energy vector is required to be greater than 20 GeV. This cut makes sure that
there is no event overlap with the µτh channel of the H → ττ analysis in CMS [4]
and therefore allows the two to be easily combined.
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eττ Final State. –

• Z → ee veto: Z → ee events are rejected if there are two opposite sign electrons in
the event whose invariant mass falls within the window of |M(e1, e2) −MZ | < 25
GeV around the nominal Z mass. Furthermore, the event is rejected if the invariant
mass of the selected electron candidate and the hadronic tau with opposite sign
falls within the window of |M(e, τ) −MZ | ≤ 6 GeV. This requirement recovers
events where an electron has been misidentified as a hadronic τ decay. Finally,
events where the selected electron candidate and the opposite sign hadronic tau
are separated in ∆R by less than 0.01 are rejected.

• Z → ττ veto: If the value of the transverse mass of the identified electron and
EmissT , MT

(
e, EmissT

)
, is less than 50 GeV/c2 the event is discarded.

3. – Background Estimation

The backgrounds events surviving all selections of this analysis can be classified into
two categories. The irreducible background comes fromWZ and ZZ events which contain
three isolated leptons in the final state. The reducible backgrounds contain at least one
quark or gluon jet which is incorrectly identified as an isolated e, µ or τh.

The irreducible ZZ and WZ backgrounds are estimated using PYTHIA Monte Carlo
simulations, and normalized using the NLO theoretical prediction. The main sources of
reducible background events are due to W + jets and Z + jets processes, where at least
one of the jets or their constituents are misidentified as isolated leptons.

The misidentification probabilities are driven by the performance of the jet fragmen-
tation models in describing rare fluctuations in the regime that is far from the design
limits of applicability of such models. Even though the simulation predictions tend to be
fairly accurate, relying on simulation in predicting the misidentification probabilities is
no prudent. Instead, we use a data-driven approach based on the fake rate calculation.

The Z+jets events satisfying all analysis selections fall into two categories. One
contribution stems from the Z → τhl+ jets events, where a recoil jet fakes one of the
two hadronic tau candidates. Another contribution is due to the Z → ee+jets events,
where one of the electrons is misidentified as one tau and a recoil jet is misidentified
as the second tau. Note that due to the requirement that the two tau candidates are
oppositely charged, in both of these two cases the tau candidate stemming from jet
misidentification has the same electrical charge as the lepton. Thus, in these events the
fake object is the one which has the same charge as the lepton candidate. W+jets events
predominantly pass analysis selections when W decays to a light lepton and two recoil
jets are misidentified as tau candidates. Note that in this case the tau candidate with
the same charge as the lepton is likely a misidentified jet (although, the other tau is also
likely a fake). We will utilize this property in defining the method for estimating the
background contributions of these processes. Contributions from the processes with a
misidentified light lepton are small.

The method is applied as follows:

• A background enriched region is selected. In this region the probability f(pT ) for
a jet to pass the final object criteria, parametrized as a function of the pT of the
jet, is measured.

• The fake background estimation is performed by defining a “side-band” region by
selecting events with all standard selections except that the tau candidate which
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Fig. 1.: Jet-to-leading-tau misidentification rates in the muon channel in 8 TeV, in W →
µν+ jets events (left) and Z → µµ+ jets (right) , versus τh pT for τh candidates with
pT ≥ 20 GeV/c.

has the same charge as the light lepton is not required to be isolated (it is the
fakeable object).

• Each event in the “side-band” region is weighted by the corrected probability
p = f(pT )/(1− f(pT )). The resulting weighted spectrum provides the estimate for
the expected background contribution in the signal region due to jets misidentified
as tau candidates.

The Fake Rate is measured as a function of jet pT using two separate samples, one
enriched with W → µν+ jets and the other with Z → µµ+ jets events, which are used
to evaluate the systematic uncertainty for the measured fake rate. With the exception
of the isolation, the τh candidates must fulfill the same requirements as for the direct
analysis.

The Fake Rates are measured individually in the 2011 and the 2012 dataset and for the
leading and sub-leading τh candidates in the two channels. All available tau candidates
in an event are used in both samples and the fake rate is measured per fakeable object.
The measured fake rate distributions as a function of pt are fit with the Landau function
with peak position and width as free parameters and an additive constant.

As the Fake Rates in the two regions are different due to a different fraction of quark-
induced and gluon-induced jets, we will use a weighted average of the two Fake Rate
measurements determined in W + jets and Z+ jets samples. Fig. 1 show the Fake Rate
functions determined in 2012 data in the two measurement regions .
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4. – Systematics

The systematics that have been considered in the analysis are summarized in table I.
The major systematic effect is due to the fake rate normalization that is calculated taking
into account different kinds of contributions. The first one is coming from the statistical
uncertainty of the fit of the measured fake rate as a function of pT . To account for the
uncertainty of the fit and its systematic effect on the analysis an uncertainty of 10% has
been determined by propagating the error on the fit parameter to the predicted number
of background events. Another source of systematic uncertainty is the difference between
the calculations of the fake rate function using the W + jets and Z+jets events. The
two functions are different, because of the different fraction of quark-induced and gluon-
induced jets. Thus a 10% is attributed for the difference between the two regions when
requiring two jets in both of them. Finally a 10% is attributed for the determination of
the weights when averaging the Fake Rate function measured in a W+jets or a Z+jets
enriched region. By combining this three contributions, assumed independent one from
the other, one obtains the conservative value of 20% quoted in the table I. The second
main source of uncertainty comes from the tau identification systematic uncertainty
measured in [3] that is 6%. In a conservative approach, considering that the two selected
taus are correlated, the total systematic uncertainty due to tau identification is 12%.
Moreover bin by bin shape uncertainties on the shape of the visible mass distribution
used as input for the limit computation have been considered. The statistical uncertainty
on the fake rate and irreducible background can lead to differences in the shape of the
background distribution. To estimate the systematic influence on the exclusion limits
different shapes are used where each bin in the fake rate, WZ and ZZ visible mass
distribution is scaled up and down by the statistical error individually. The exclusion
limit is calculated for each shape which results in an additional systematic uncertainty
which is taken into account during the limit calculation.

Table I.: Summary of the systematic uncertainties that are taken into account as nui-
sance parameters into the final fit.

Systematic Uncertainty Affected Sample Value

Luminosity Simulation 2.2% (2011) or 4.4% (2012)
Parton Distribution Functions Simulation 4.3%

Trigger Efficiency Simulation 3.5%
Electron ID Efficiency Simulation 2.9%

Muon ID Efficiency Simulation 1.4%
Tau ID Efficiency Simulation 12%
Tau Energy Scale Simulation 3%

MET Energy Scale Simulation 3.7%
Additional Electron Veto Simulation 3.8%

Additional Muon Veto Simulation 0.7%

Fake Rate Normalization Fake Background Estimate 20%

5. – Results

After all selections a total of 36 events are observed in both channels in the whole
analyzed statistics. The prediction from simulation indicates that the background en-
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Fig. 2.: Observed and expected Higgs boson candidate mass spectra. The expected
contribution from the associated production of a SM Higgs boson with mass mH = 125
GeV/c2 is shown by the dashed line. The yields of each process are determined using the
same maximum likelihood fit to a signal-plus-background hypothesis used in the limit
setting procedure.

riched region is dominated by W + jets, Z → ττ , and tt̄ events, and agrees well with
the observed data. In figure 2 is shown the distribution of the visible mass of the di-tau
system in the two channels after the best fit to data that takes into account all the sys-
tematic uncertainties listed in the previous section. The observed yields and background
estimates are presented in Table II.

The exclusion limits for the W±H0 associated production are calculated using the
signal shape of the SM Higgs extracted from MC and the shapes corresponding to various
background production processes.

The 95% confidence level (CL) upper limit and its ±1σ and ±2σ uncertainty regions
on the rate of the signal with respect to the SM cross section are calculated with the
Asymptotic CLs algorithm [5] using the event count only (for 7 TeV data) or the visible
mass of the selected di-tau pair (for 8 TeV data). The reason for using a counting
experiment approach for 7 TeV is that there are so few data events observed that no
di-tau mass shape can sensibly be extracted from the data events. The algorithm uses a
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Table II.: Yields for the 2011 and 2012 analyzed data and the estimated and measured
background contributing processes in the µττ and eττ channels. Signal events contain
all contributions from WH, ZH, tt̄H, but also from VBF and gluon-gluon fusion. The
systematic uncertainty is not included

Process lττ
Fakes 20.4 ± 4.3

WZ 6.2 ± 1
ZZ 0.38 ± 0.06

Total Background 27.1 ± 4.5
WH, H → ττ (mH = 125 GeV) 1.2 ± 0.2

Observed 36
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Fig. 3.: Observed and median expected 95% CL upper limits on SM Higgs production
set by lττ channels
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Fig. 4.: Observed and median expected 95% CL upper limits on SM Higgs production
set by ZH → llττ and W → lττ channels in the background-only hypothesis (left) and
with Higgs signal injected (right).

frequentist statistical test where a hypothesis with only background processes is tested
against the model with background plus signal. In this algorithm the shape of the
di-tau pair visible mass and its uncertainty is considered together with the systematic
uncertainties on normalization, introduced as nuisance parameters. The exclusion limits
obtained for the two channels are shown in fig. 3. These results have been combined with
the ones obtained in the other channels of associated production process (ZH, WH →
llτ) [1]. The final combination is shown in fig. 4 in the background only hypothesis
and with Higgs signal injected. The data are compatible with both the background-only
prediction and the presence of a SM Higgs boson. Upper limits of 2.9 to 4.6 times the
predicted SM value are set at 95% CL for the product of the SM Higgs boson production
cross section and decay branching fraction in the mass range 110 ≤ mH ≤ 145 GeV/c2.
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