Flux tubes in $N_f = 2 + 1$ QCD in the presence of external magnetic fields

C. Bonati⁽¹⁾, S. Calì⁽²⁾, M. D'Elia^(3,4), **F. Negro⁽³⁾**, A. Rucci^(3,4), F. Sanfilippo⁽⁵⁾

(1) University of Florence and INFN (2) University of Wuppertal and University of Cyprus (3) INFN - Pisa (5) INFN - Roma Tre

Phenomenological motivation

Magnetic fields (eB) comparable to Λ_{QCD} are present in these contexts: Astrophysics - in a class of

neutron stars, called magnetars: eB $\sim 10^{10}$ T

Cosmology - during the **ElectroWeak phase** transition: eB $\sim 10^{16}$ T

► Heavy ion collisions - at LHC in non-central HIC: eB $\sim 10^{15}$ $\sim 15 {
m m}_\pi^2$

 $1~{
m GeV}^2 \sim 5 \cdot 10^{15}~{
m T}$

What happens to QCD properties in such an environment?

The effect of B on the static $Q\overline{Q}$ -Potential

Let θ be the angle between the **Z**-oriented field and the $\overline{\mathbf{Q}}$ separation. The **B**-field modifies the static \overline{QQ} -potential, making it anisotropic. It grows steeply along the **X** and **Y** directions and slowly along **Z**.

Results for $N_f=2+1$ QCD at the physical point at a=0.0989 fm on a $48^3 \times 96$ lattice. Magnetic field value: (eB) $\simeq 1$ GeV². By fitting with the Cornell parametrization $V_{QQ}(\vec{r}) = C + \sigma |\vec{r}| + \alpha/|\vec{r}|$ we find (a) that both lpha and σ depend on heta.

Lattice observable for the flux tube

We consider a $\overline{\mathbf{Q}}$ pair at relative distance $\vec{d} = d\hat{u}$ (with $\hat{u} = \hat{x}, \hat{y}, \hat{z}$).

We measure the chromoelectric field **E**₁ (longitudinal with respect to the **QQ** separation) in between the pair, along a transverse direction using (b,c)

W is a squared Wilson Loop **U**_P is a coplanar plaquette

Classes of flux tubes according to rotational symmetry breaking

X (or Y) separation

We need to study individually these possible direction combinations.

Numerical setup and smearing

We discretize the $N_f=2+1$ QCD action at the physical point $(\mathbf{m}_{\pi}^{\mathsf{LAT}} = \mathbf{m}_{\pi}^{\mathsf{PHYS}})$ considering the tree level improved Symanzik gauge action and stout smearing improved rooted staggered fermions.

Simulations done on BG/Q-Fermi and on KNL-Marconi at CINECA, Italy.

Wilson Loop related observales are extremely noisy. To reduce the UV fluctuations, we smear the configurations:

- 1) 1 HYP smearing on the temporal links
- 2) N_{APE} spatial APE smearing steps lpha=0.1666 on spatial links

Ratios to avoid the smearing dependence of the flux tube

As an example, we plot the (eB) $\simeq 2 \text{ GeV}^2$ case.

Physical distance between the quarks: $7a \simeq 0.7$ fm.

Even if the chromo-electric field $E_I(x_t, B)$ depends on N_{APE} , the ratios $E_I(x_t, B \neq 0)/E_I(x_t, B = 0)$ are almost smearing independent.

Flux tube profiles at (eB) \neq 0

Profile of the flux tube at $(eB) = 3GeV^2$ compared to that at (eB) = 0. The ratios are also plotted.

We consider $R_s \simeq 0.7$ fm $(N_{APE}=80)$ and $Q\overline{Q}$ separation of $\simeq 0.7$ fm. • $B=3 \text{ GeV}^2 \text{ xt-v}$ □ B=0 • $B=3 \text{ GeV}^2 \text{ xt-y}$ $^{\blacktriangle}$ B=3 GeV² xt-z $B=3 \text{ GeV}^2 \text{ xt-z}$ $^{\mathbf{v}}$ B=3 GeV² zt-x $B=3 \text{ GeV}^2 \text{ zt-x}$ x_{t} [fm] x_{t} [fm]

Energy per unit lenght and string tension

As observed in (c), the flux tube profile is well described by^(d):

$$\mathsf{E}_{\mathsf{I}}(\mathsf{x}_{\mathsf{t}}) = \frac{\phi \mu^{2}}{2\pi\alpha} \frac{\mathsf{K}_{0}(\sqrt{\mu^{2}}\mathsf{x}_{\mathsf{t}}^{2} + \alpha)}{\mathsf{K}_{1}(\alpha)}$$

The energy per unit lenght $\epsilon = \int d^2x_t E_1^2(x_t)/2$ from extracted

Even if $\epsilon \neq \sigma$, their ratios appear consistent to each other.

Acknowledgements and references

We aknowledge PRACE for computing time on CINECA HPC systems. SC acknowledges funding from HPC-LEAP - Marie Curie grant N 642069.

- a) Bonati et al., Phys.Rev. D94 (2016) no.9, 094007
- Di Giacomo et al., Phys. Lett. B236, 199; Nucl. Phys. B347, 441 (1990)
- c) Cea et al., Phys.Rev. D95 (2017) 114511
- d) Clem, Journal of Low Temperature Physics 18, 427 (1975)