Flux tubes in $N_{\mathrm{f}}=2+1$ QCD in the presence of external magnetic fields
C. Bonati ${ }^{(1)}$, S. Cali(${ }^{(2)}$, M. D'Elia ${ }^{(3,4)}$, F. Negro ${ }^{(3)}$, A. Rucci $i^{(3,4)}$, F. Sanfilippo ${ }^{(5)}$
$\begin{array}{lll}\text { (1) University of Florence and INFN } & \text { (2) University of Wuppertal and University of Cyprus } \\ \text { (3) INFN - Pisa } & \text { (4) University of Pisa } & \text { (5) INFN - Roma Tre }\end{array}$

Phenomenological motivation

Magnetic fields (eB) comparable to $\Lambda_{\text {QCD }}$ are present in these contexts:

- Astrophysics - in a class of neutron stars, called magnetars: $\mathrm{eB} \sim 10^{10} \mathrm{~T}$
- Cosmology - during the ElectroWeak phase transition: eB $\sim \mathbf{1 0}^{16} \mathrm{~T}$
- Heavy ion collisions - at LHC in non-central HIC: eB $\sim 10^{15}$ $\mathrm{T} \sim 15 \mathrm{~m}_{\boldsymbol{\pi}}^{2}$
$1 \mathrm{GeV}^{2} \sim 5 \cdot 10^{15} \mathrm{~T}$
What happens to QCD properties in such an environment?

Numerical setup and smearing

We discretize the $\mathbf{N}_{\mathrm{f}}=\mathbf{2 + 1}$ QCD action at the physical point $\left(\mathbf{m}_{\pi}^{\text {LAT }}=\mathbf{m}_{\pi}^{\text {PHYS }}\right)$ considering the tree level improved Symanzik gauge action and stout smearing improved rooted staggered fermions.
Simulations done on BG/Q-Fermi and on KNL-Marconi at CINECA, Italy.
Wilson Loop related observales are extremely noisy. To reduce the UV
fluctuations, we smear the configurations:

1) 1 HYP smearing on the temporal links
2) $\mathbf{N}_{\text {APE }}$ spatial APE smearing steps $\boldsymbol{\alpha}=\mathbf{0 . 1 6 6 6}$ on spatial links

Ratios to avoid the smearing dependence of the flux tube

As an example, we plot the $(\mathrm{eB}) \simeq 2 \mathrm{GeV}^{2}$ case.
Physical distance between the quarks: $7 \mathrm{a} \simeq 0.7 \mathrm{fm}$.

Even if the chromo-electric field $\mathbf{E}_{1}\left(x_{t}, B\right)$ depends on ${ }^{N_{A P E}}{ }_{\text {APE }}$, the ratios
$E_{l}\left(x_{t}, B \neq 0\right) / E_{1}\left(x_{t}, B=0\right)$ are almost smearing independent.

Flux tube profiles at $(e B) \neq 0$
Profile of the flux tube at $(\mathrm{eB})=3 \mathrm{GeV}^{2}$ compared to that at $(\mathrm{eB})=\mathbf{0}$. The ratios are also plotted.
We consider $\mathbf{R}_{\mathrm{s}} \simeq 0.7 \mathrm{fm}\left(\mathbf{N}_{\mathrm{APE}}=\mathbf{8 0}\right)$ and $\mathbf{Q} \overline{\mathbf{Q}}$ separation of $\simeq 0.7 \mathrm{fm}$.

Energy per unit lenght and string tension

As observed in (c), the flux tube profile is well described by ${ }^{(d)}$
$\mathbf{E}_{\mathbf{I}}\left(\mathbf{X}_{\mathbf{t}}\right)=\frac{\phi \mu^{2}}{2 \pi \alpha} \frac{\mathbf{K}_{0}\left(\sqrt{\mu^{2} \mathbf{x}_{\mathbf{t}}^{2}+\alpha^{2}}\right)}{\mathbf{K}_{1}(\alpha)}$

The energy per unit lenght
$\epsilon=\int d^{2} x_{t} E_{l}^{2}\left(x_{t}\right) / 2$
can be extracted from
ϕ, μ, α :
$\epsilon=\frac{\mu^{2} \phi^{2}}{8 \pi}\left(1-\left(\frac{\mathrm{K}_{0}(\alpha)}{\mathrm{K}_{1}(\alpha)}\right)^{2}\right)$

Even if $\epsilon \neq \sigma$, their ratios appear consistent to each other.

Acknowledgements and references

We aknowledge PRACE for computing time on CINECA HPC systems.
SC acknowledges funding from HPC-LEAP - Marie Curie grant N 642069.
a) Bonati et al., Phys.Rev. D94 (2016) no.9, 094007
b) Di Giacomo et al., Phys. Lett. B236, 199; Nucl. Phys. B347, 441 (1990)
c) Cea et al., Phys.Rev. D95 (2017) 114511
d) Clem, Journal of Low Temperature Physics 18, 427 (1975)

