## Search for the H-Dibaryon in two flavor Lattice QCD

Parikshit Junnarkar ${ }^{1}$<br>Jeremy Green, Anthony Francis, Thomas Rae, Chuan Miao, Hartmut Wittig<br>${ }^{1}$ Helmholtz-Institut Mainz,<br>Johannes Gutenberg Universität Mainz<br>$8^{\text {th }}$ International Workshop on Chiral Dynamics 2015, Pisa, Italy

## Outline

- Brief Introduction
- Experimental results and status of lattice calculations.
- Lattice methodology
- Operators employed
- Lattice set up
- Discussion of results


## The H-dibaryon

## Perhaps a Stable Dihyperon*

## R. L. Jaffe $\dagger$

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305, and Department of Physics and Laboratory of Nuclear Science, $\ddagger$ Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
(Received 1 November 1976)
In the quark bag model, the same gluon-exchange forces which make the proton lighter than the $\Delta(1236)$ bind six quarks to form a stable, flavor-singlet (with strangeness of -2) $J^{P}=0^{+}$dihyperon $(H)$ at 2150 MeV . Another isosinglet dihyperon ( $H^{*}$ ) with $J^{P}=1^{+}$ at 2335 MeV should appear as a bump in $\Lambda \Lambda$ invariant-mass plots. Production and decay systematics of the $H$ are discussed.

## Predicted by R. L. Jaffe (1977) as a six quark bound state using MIT bag model as [ $H \sim u u d d s s$ ]

$$
J=I=0, S=-2, m_{H}<2 m_{\Lambda} \sim-80 \mathrm{MeV}
$$



## Experimental searches

Stongest Constraint comes from "Nagara" Event which found a double ${ }_{\Lambda \Lambda}^{6} \mathrm{He}$ double-hypernucleus with binding energy

$$
B_{\Lambda \Lambda}=6.91 \pm 0.16 \mathrm{MeV}
$$

The absence of a strong decay ${ }_{\Lambda \Lambda}^{6} \mathrm{He} \rightarrow{ }^{4} \mathrm{He}+H$ implies,

$$
m_{H}>2 m_{\Lambda}-B_{\Lambda \Lambda}
$$



FIG. 2. Photograph and schematic drawing of NAGARA event. See text for detailed explanation.

KEK-E176, Nucl.Phys. A835(207-214)2010

## Lattice Calculation of H-dibaryon

Lattice techinques offer first principle calculation of QCD observables. But ...,


Courtesy:USQCD

## Lattice Calculation of H-dibaryon

Lattice techinques offer first principle calculation of QCD observables. But ...,


- Unphysical quarks, Continuum limit, Infinite volume limit.

Courtesy:USQCD

## Lattice Calculation of H-dibaryon

Lattice techinques offer first principle calculation of QCD observables. But ...,


- Unphysical quarks, Continuum limit, Infinite volume limit.
- Exponential Signal/noise problem for baryon systems


## Lattice Calculation of H-dibaryon

Lattice techinques offer first principle calculation of QCD observables. But ...,


- Unphysical quarks, Continuum limit, Infinite volume limit.
- Exponential Signal/noise problem for baryon systems
- No of contractions can be non-trivial $N=\prod_{i}^{N_{f}} N_{q_{i}}$ !

Courtesy:USQCD

## Lattice Calculation of H-dibaryon

Lattice techinques offer first principle calculation of QCD observables. But ...,


- Unphysical quarks, Continuum limit, Infinite volume limit.
- Exponential Signal/noise problem for baryon systems
- No of contractions can be non-trivial $N=\prod_{i}^{N_{f}} N_{q_{i}}$ !
- Multiple volumes necessary to get reliable results.

Courtesy:USQCD
Systems with shallow binding energy, for eg maybe : $H^{\mathbf{1}}$ ? combined with the issues mentioned .. presents a formidable challenge!

## Status of Lattice results

Early attempts (1985 ~ 2003 ) on quenched lattices gave mixed results.
[Mackenzie et al (1985), Pochinsky et al (1999), Wertzoke-Karsch (2003)]

## Status of Lattice results

Early attempts (1985 ~ 2003 ) on quenched lattices gave mixed results.
[Mackenzie et al (1985), Pochinsky et al (1999), Wertzoke-Karsch (2003)]

| Group | Method | $N_{f}$ | Action | $\mathrm{N}_{\mathrm{Vol}}$ | $m_{\pi}(\mathrm{MeV})$ | $B_{H}(\mathrm{MeV})$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| NPLQCD | 2 pt | 3 | clover | 3 | 806 | $74.6(3.3)(3.4)$ |
|  |  | $2+1$ | aclover | 4 | 390 | $13.2(1.8)(4.0)$ |
|  |  |  | aclover | 1 | 230 | $-0.6(8.9)(10.3)$ |
| HALQCD | Botential | 3 | clover | 1 | 837 | $37.4(4.4)(7.3)$ |
|  |  |  |  | 1 | 672 | $35.6(7.4)(4.0)$ |
|  |  |  |  | 1 | 469 | $26(4)$ |
| Mainz | 2pt | $\mathbf{2}$ | clover | $\mathbf{1}$ | $\mathbf{1 0 0 0}$ | $\mathbf{9 2 ( 1 0 ) ( 7 )}$ |
|  |  |  |  |  | $\mathbf{4 5 0}$ | $\mathbf{7 7 ( 1 1 ) ( 7 )}$ |

Our methodology

## Interpolating operators

- Positive parity projected six quark operators at source and sink

$$
\begin{gathered}
{[a b c d e f]=\varepsilon^{i j k} \varepsilon^{l m n}\left(b_{i}^{T} C \gamma_{5} P_{+} c_{j}\right)\left(e_{l}^{T} C \gamma_{5} P_{+} f_{m}\right)\left(a_{k}^{T} C \gamma_{5} P_{+} d_{n}\right)} \\
H^{\mathbf{1}}=\frac{1}{48}([s u d s u d]-[u d u s d s]-[d u d s u s]) \\
H^{\mathbf{2 7}}=\frac{1}{48 \sqrt{3}}(2[s u d s u d]+[u d u s d s]+[d u d s u s])
\end{gathered}
$$

## Interpolating operators

- Positive parity projected six quark operators at source and sink

$$
\begin{gathered}
{[a b c d e f]=\varepsilon^{i j k} \varepsilon^{l m n}\left(b_{i}^{T} C \gamma_{5} P_{+} c_{j}\right)\left(e_{l}^{T} C \gamma_{5} P_{+} f_{m}\right)\left(a_{k}^{T} C \gamma_{5} P_{+} d_{n}\right)} \\
H^{\mathbf{1}}=\frac{1}{48}([s u d s u d]-[u d u s d s]-[d u d s u s]) \\
H^{\mathbf{2 7}}=\frac{1}{48 \sqrt{3}}(2[s u d s u d]+[u d u s d s]+[d u d s u s])
\end{gathered}
$$

- Momentum projected two-baryon operators at the sink

$$
\begin{gathered}
B_{\alpha}=[a b c]_{\alpha}=\varepsilon^{i j k}\left(b_{i}^{T} C \gamma_{5} P_{+} c_{j}\right) a_{k \alpha} \\
B_{1} B_{2}\left(\overrightarrow{p_{1}}, \overrightarrow{p_{2}}\right)=\sum_{\vec{x}, \vec{y}} e^{i \overrightarrow{p_{1}} \cdot \vec{x}} e^{i \overrightarrow{p_{2}} \cdot \vec{y}} B_{1}^{T}(\vec{x}) C \gamma_{5} P_{+} B_{2}(\vec{y})
\end{gathered}
$$

Operators belonging to $B B^{1}, B B^{8}, B B^{\mathbf{2 7}}$

## Contractions

An efficient way to contract the six-quark operators into correlation functions is to use a blocking algorithm:

- Form blocks of three propagators contracted into a color-singlet at the sink

$$
\begin{aligned}
& B\left(\alpha_{1}, \xi_{1}^{\prime}, \xi_{2}^{\prime}, \xi_{3}^{\prime}\right)= \epsilon_{c_{1}, c_{2}, c_{3}}\left(C \gamma_{5} P_{+}\right)_{\alpha_{2} \alpha_{3}} \\
& S_{l}\left(\xi_{1}, \xi_{1}^{\prime}\right) S_{l}\left(\xi_{2}, \xi_{2}^{\prime}\right) S_{s}\left(\xi_{3}, \xi_{3}^{\prime}\right)
\end{aligned}
$$

- Then sum over all permutations as,

$$
\begin{array}{r}
{[\text { sudsud }]=\left(C \gamma_{5} P_{+}\right)_{\alpha \beta} \times \epsilon_{c_{1}^{\prime}, c_{2}^{\prime}, c_{3}^{\prime}} \epsilon_{c_{4}^{\prime}, c_{5}^{\prime}, c_{6}^{\prime}}\left(C \gamma_{5} P_{+}\right)_{\alpha_{2}^{\prime} \alpha_{3}^{\prime}}\left(C \gamma_{5} P_{+}\right)_{\alpha_{5}^{\prime} \alpha_{6}^{\prime}}} \\
\sum_{\sigma_{u}, \sigma_{d}, \sigma_{s}} B\left(\alpha, \xi_{\sigma_{u}(1)}^{\prime}, \xi_{\sigma_{d}(2)}^{\prime}, \xi_{\sigma_{s}(3)}^{\prime}\right) B\left(\beta, \xi_{\sigma_{u}(4)}^{\prime}, \xi_{\sigma_{d}(5)}^{\prime}, \xi_{\sigma_{s}(6)}^{\prime}\right)
\end{array}
$$

## All mode Averaging

Employ low precision propagator solves over multiple sources and compute observable as,

$$
\mathcal{O}^{\text {AMA }}=\mathcal{O}_{\vec{x}_{0}}^{\text {high prec }}-\mathcal{O}_{\vec{x}_{0}}^{\text {low prec }}+\frac{1}{N_{\vec{x}}} \sum_{N_{\vec{x}}} \mathcal{O}_{N_{\vec{x}}}^{\text {low prec }}
$$

Variance with AMA :

$$
\sigma_{\mathrm{AMA}}^{2}=\sigma^{2}\left(2(1-r)+\frac{1}{N_{\vec{x}}}\right) \quad, \quad r=\operatorname{Corr}\left(\mathcal{O}_{\vec{x}_{0}}^{\text {high prec }}, \mathcal{O}_{\vec{x}_{0}}^{\text {low prec }}\right)
$$

## All mode Averaging

Employ low precision propagator solves over multiple sources and compute observable as,

$$
\mathcal{O}^{\text {AMA }}=\mathcal{O}_{\vec{x}_{0}}^{\text {high prec }}-\mathcal{O}_{\vec{x}_{0}}^{\text {low prec }}+\frac{1}{N_{\vec{x}}} \sum_{N_{\vec{x}}} \mathcal{O}_{N_{\vec{x}}}^{\text {low prec }}
$$

Variance with AMA :

$$
\sigma_{\mathrm{AMA}}^{2}=\sigma^{2}\left(2(1-r)+\frac{1}{N_{\vec{x}}}\right) \quad, \quad r=\operatorname{Corr}\left(\mathcal{O}_{\vec{x}_{0}}^{\text {high prec }}, \mathcal{O}_{\vec{x}_{0}}^{\text {low prec }}\right)
$$



## Ensemble E1

- $m_{\pi}=1000 \mathrm{MeV}$
- $\mathrm{L}^{3}=(2 \mathrm{fm})^{3}$
- $m_{\pi} L=10$
- 1 high/low precision solve for AMA bias
- $N_{\text {srcs }}=128$ with low precision solves.
- Double statistics using $P_{+}$and $P_{-}$for forward/backward propagating states.
- Total measurements

$$
168 \times 128 \times 2 \sim 43000
$$

- $\kappa_{s}=\kappa_{u d}$ implies no mixing between 1 and $\mathbf{2 7}$
- Two sets of smearing provide independent operators for GEVP.


## Operators on Ensemble E1

- Operators at the source $\mathrm{H}^{1}(\mathrm{~N})$ and $\mathrm{H}^{1}(\mathrm{M})$
- Operators choices at sink
- Choice of smearings : Narrow and Medium (medium is noisy)
- Choice of six-quark and two-baryon operators at different kinematics.
- Construct various $2 \times 2$ correlator matrices to explore ground state.
- Estimate systematic uncertainty as,

$$
\chi^{2}=\sum_{t_{i}, t_{j}}^{N}\left(\bar{G}\left(t_{i}\right)-F\left(t_{i}, A\right)\right) C_{i j}^{-1}\left(\bar{G}\left(t_{j}\right)-F\left(t_{j}, A\right)\right)
$$

## Generalized EigenValue Problem

We compute matrix of two point functions as,

$$
C_{i j}=\sum_{\vec{x}}\left\langle\mathcal{O}_{i}\left(t_{0}+t, \vec{x}\right) \mathcal{O}^{\dagger}\left(t_{0}, \vec{x}_{0}\right)\right\rangle,
$$

and solve the generalized eigenvalue problem (GEVP),

$$
C_{i j}(t+\Delta t) v_{j}(t)=\lambda(t) C_{i j}(t) v_{j}(t)
$$

and compute effective masses as,

$$
m_{\mathrm{eff}}=\frac{-\log \lambda(t)}{\Delta t}
$$

Asymptotically dominated by a single exponential

## GEVP on E1



## Scattering phase shift from Energy levels

The two particle scattering/binding momenta,

$$
p^{2}=\frac{1}{4}\left(E^{2}-\vec{P} \cdot \vec{P}\right)-M_{\Lambda}^{2}
$$

is related to scattering phases in the continuum via,

$$
p \cot \delta_{0}(p)=\frac{2}{\gamma L \sqrt{\pi}} \mathcal{Z}_{0,0}^{d}\left(1, q^{2}\right) \quad q=\frac{p L}{2 \pi}
$$

[Lüscher (1991), Rummukainen Gottlieb (1995)]

$$
\mathcal{Z}_{0,0}^{d}\left(1, q^{2}\right)=\frac{1}{\sqrt{4 \pi}}\left\{\sum_{q^{2} \neq n^{2}}^{\Lambda} \frac{1}{q^{2}-n^{2}}-4 \pi \Lambda\right\}
$$

Use scattering information to locate the pole in the scattering amplitude,

$$
\mathcal{A} \propto \frac{1}{p \cot \delta_{0}(p)-i p} \quad p \cot \delta_{0}(p)=-\frac{1}{a}+\frac{1}{2} r_{0} p^{2}+\ldots
$$

## Scattering phase shift of $\mathrm{H}^{1}$ - Ensemble E1

 (Preliminary)

## GEVP for $\mathrm{H}^{27}$ - Ensemble E1



Scattering phase shift of $\mathrm{H}^{27}$ - Ensemble E1 (Preliminary)


## Ensemble E5

- $m_{\pi}=451 \mathrm{MeV}$
- $\mathrm{L}^{3}=(2 \mathrm{fm})^{3}$
- $m_{\pi} L=4.6$
- $N_{\text {cfgs }}=1990$ gauge configurations.
- 1 high/low precision solve for AMA bias
- $N_{\text {srcs }}=32$ with low precision solves.
- Double statistics using $P_{+}$and $P_{-}$for forward/backward propagating states.
- Total measurements

$$
1990 \times 32 \times 2 \sim 125000
$$

- $\kappa_{s}>\kappa_{u d}$ implies mixing between 1 and 27


## Operators on Ensemble E5

Solve a GEVP with the available operators:

- Four source operators Narrow(N) and Medium (M) smeared $H^{\mathbf{1}}$ and $H^{\mathbf{2 7}}$
- Choice of six-quark operators $H^{1} \& H^{27}$ and $B B^{1}, B B^{8} \&$ $B B^{\mathbf{2 7}}$ with different kinematic combinations. Employ only narrow smeared operators
- Construct various $4 \times 4$ correlator matrices to explore the ground state.

For scattering studies, this is coupled channel scattering problem requiring total 3 parameters.

## GEVP on Ensemble E5



## Ground state scattering phase shift on E5 (Preliminary)



## Conclusions and Outlook

- Multi-baryon operators provide a better overlap to the ground state.


## Conclusions and Outlook

- Multi-baryon operators provide a better overlap to the ground state.
- At $m_{\pi}=1000 \mathrm{MeV}, \mathrm{H}^{1}$ is bound in finite volume at $\vec{P}=0$ with $B_{H}=92(10)(7) \mathrm{MeV}$.


## Conclusions and Outlook

- Multi-baryon operators provide a better overlap to the ground state.
- At $m_{\pi}=1000 \mathrm{MeV}, \mathrm{H}^{1}$ is bound in finite volume at $\vec{P}=0$ with $B_{H}=92(10)(7) \mathrm{MeV}$.
- At $m_{\pi}=451 \mathrm{MeV}, \mathrm{H}^{\mathbf{1}}$ is bound in finite volume at $\vec{P}=0$ with $B_{H}=77(11)(7) \mathrm{MeV}$.


## Conclusions and Outlook

- Multi-baryon operators provide a better overlap to the ground state.
- At $m_{\pi}=1000 \mathrm{MeV}, \mathrm{H}^{1}$ is bound in finite volume at $\vec{P}=0$ with $B_{H}=92(10)(7) \mathrm{MeV}$.
- At $m_{\pi}=451 \mathrm{MeV}, \mathrm{H}^{1}$ is bound in finite volume at $\vec{P}=0$ with $B_{H}=77(11)(7) \mathrm{MeV}$.
- In both cases, the existence of the pole in the scattering ampltude is unclear.

Things to pursue...

- Understand the ground state contibutions from $B B^{8}$.
- Perform a systematic study of finite volume effects for a reliable determination on the fate of $H^{1} \ldots$.

