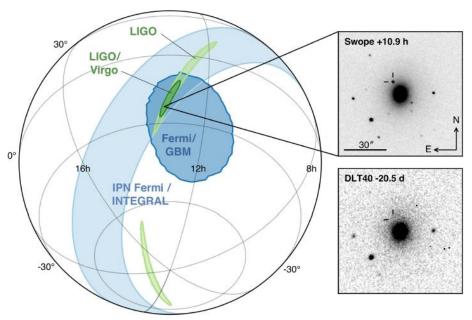

Theory of off-axis GRBs and GW events

Hendrik van Eerten lecturer in computational astrophysics Physics Department University of Bath United Kingdom



Vulcano, 21 May, 2018

A range of electro-magnetic counterparts to GW170817

- Short gamma-ray burst ("GRB") unambiguous classification (but possibly atypical event?)
- Kilonova in optical and infra-red *ridiculously rich data set and level of detail*
- Afterglow in radio, optical and X-rays definitely atypical event: late rise (first detection ~9 days)

Note: to streamline the narrative, I will leave out discussion of many papers published during the timeline of this presentation that presented similar arguments for these models, e.g. Lamb & Kobayashi 2017, Margutti + 2018, Hallinan+ 2017, Kathirgamaraju+2018, Lyman+ 2018, Zhang+ 2018, Resmi+ 2018, Evans+ 2017, Mooley+ 2017, Lazzati+ 2017, Gottlieb+ 2017, etc...

Gamma-ray burst afterglows

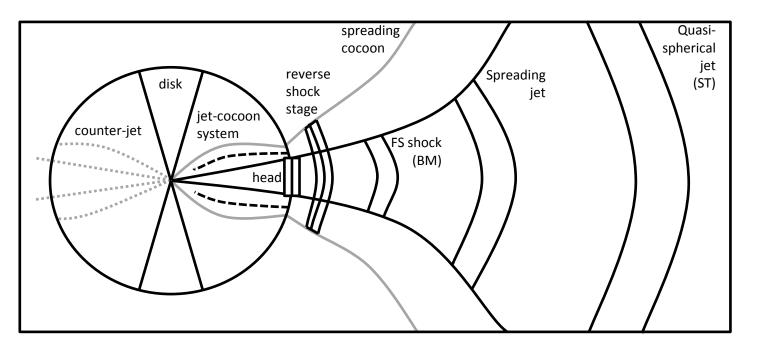


Fig from van Eerten, IJMPD (2018), ArXiv: 180101848

Gamma-ray burst afterglows

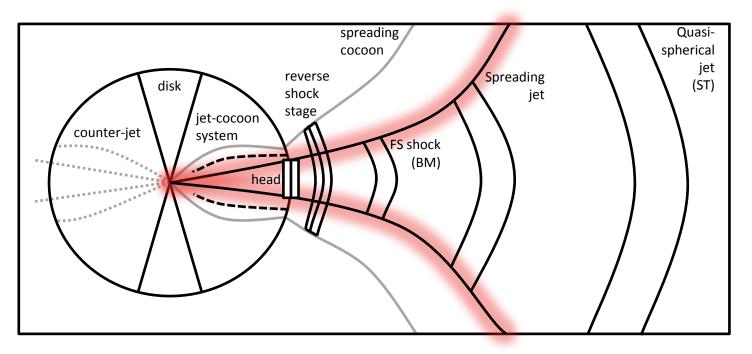


Fig from van Eerten, IJMPD (2018), ArXiv: 180101848

Hard edges not a given, likely some structure either imprinted by launching, clearing the envelope and/or cocoon interaction.

Cocoon theoretically recent arrival on short GRB scene, requires dense environment

Basic ejecta modeling

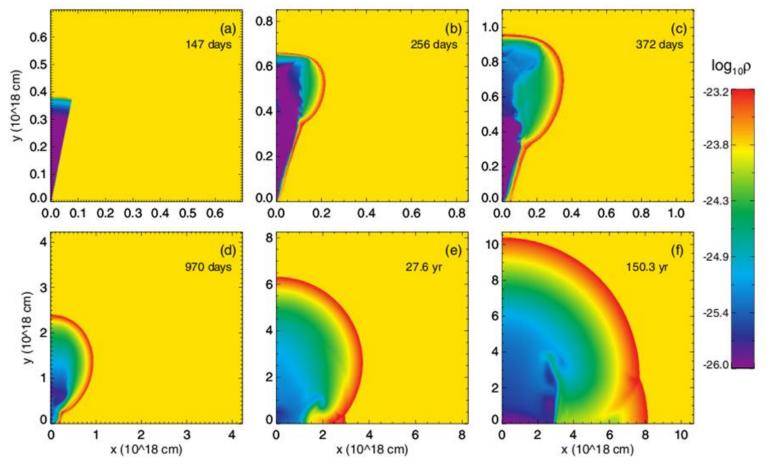
Total energy is sum of cold ejecta kinetic energy and total hot swept-up gas energy

$$E = (\gamma - 1)M_{ej}c^2 + \frac{\beta^2}{3}(4\gamma^2 - 1)M_{sw}c^2$$

(employing shock-jump condition for a trans-relativistic equation-of-state) The width of the blast wave is given by $\Delta R_{ej} = \Delta R_0$, and $\Delta R_{sw} = R/12\gamma^2$

If $M_{ej} \downarrow 0$, for the early, relativistic limit, we have

$$\gamma = 57 \left(\frac{E_{iso}}{10^{51} erg}\right)^{\frac{1}{8}} \left(\frac{\rho_{ext}}{10^{-2} m_p}\right)^{-\frac{1}{8}} \left(\frac{t_{obs}}{10^{2} s}\right)^{-\frac{3}{8}}$$

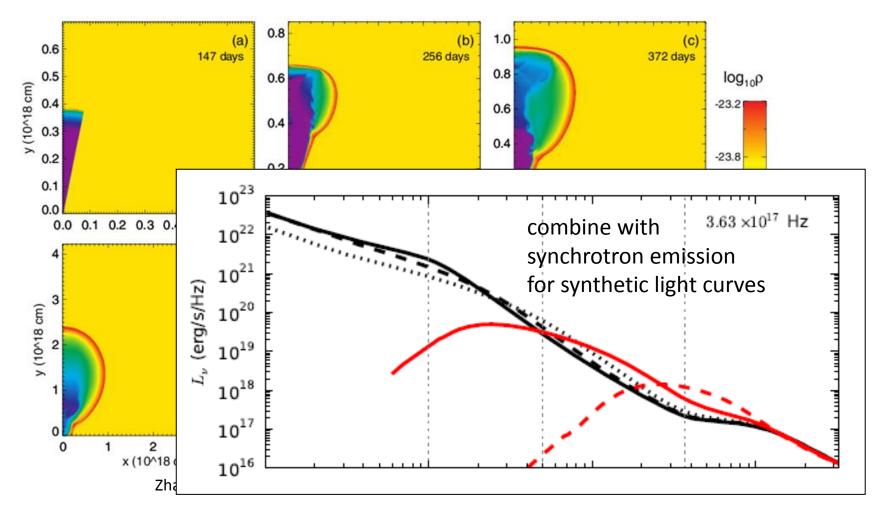

(accounting for arrival time compression $t_{obs} = t_{lab}/16\gamma^2$)

For the late, non-relativistic limit we have

$$R = 0.47 \left(\frac{E_j}{10^{49}}\right)^{\frac{1}{5}} \left(\frac{\rho_{ext}}{10^{-2}m_p}\right)^{-\frac{1}{5}} \left(\frac{t_{obs}}{10^8 s}\right)^{\frac{2}{5}}$$

- For jets with lateral structure (e.g. "Gaussian jets"), use $E \to E(\theta)$
- for jets with radial injection of energy (e.g. source activity, slower shells), use $E \rightarrow E(t)$
- for (late-time) sideways spreading, transition to larger rate \dot{M}_{sw}

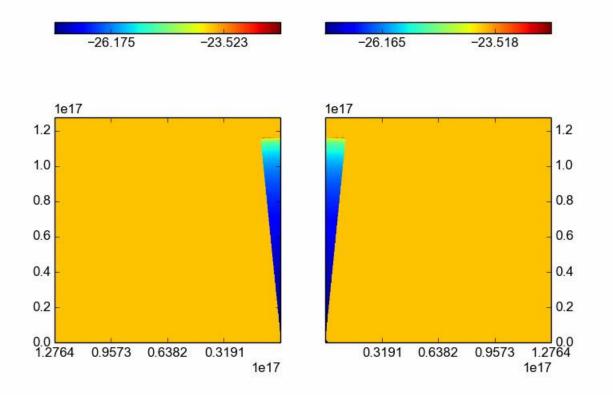
blast wave simulations in 2D



Zhang & MacFadyen (2009) ApJ 698, 1261; van Eerten, Zhang & MacFadyen (2010), ApJ 722, 235

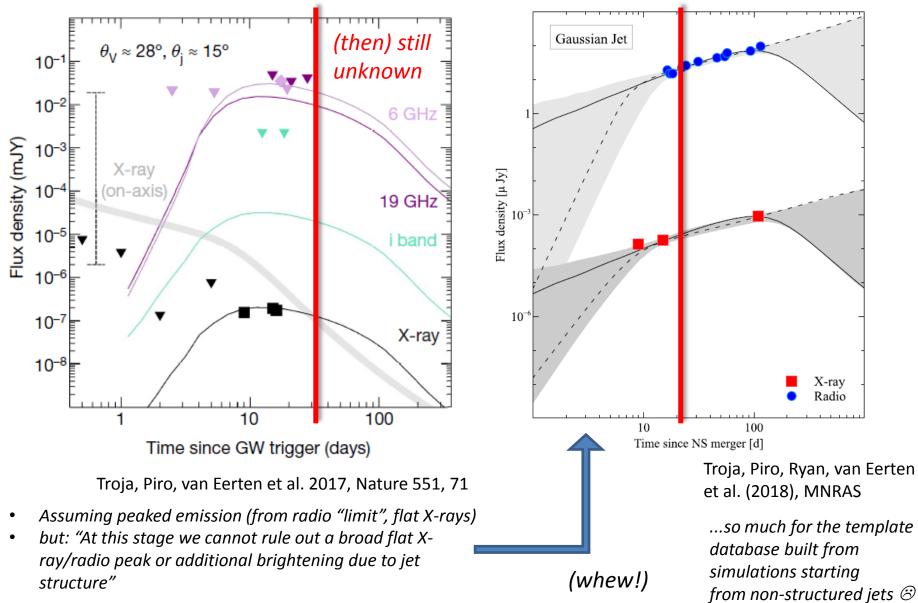
5th order WENO, adaptive-mesh refinement, parallel RHD simulation -> ~500 GB data 17 levels of refinement, effective resolution of 10⁷ cells

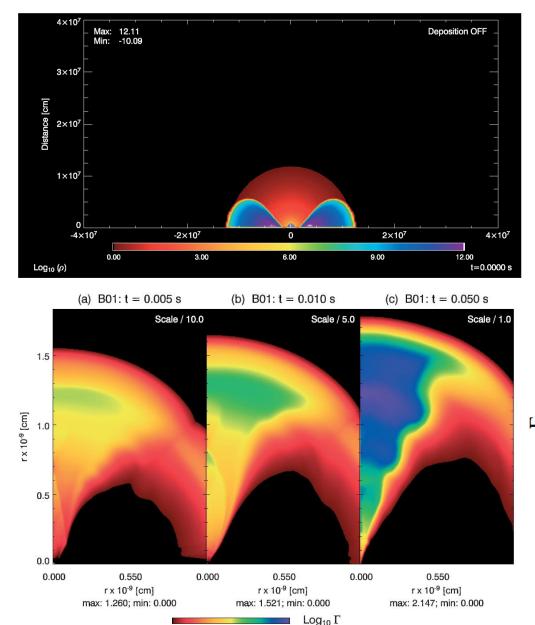
SPREADING IS ACTUALLY VERY SLOW


blast wave simulations in 2D

5th order WENO, adaptive-mesh refinement, parallel RHD simulation -> ~500 GB data 17 levels of refinement, effective resolution of 10⁷ cells

SPREADING IS ACTUALLY VERY SLOW

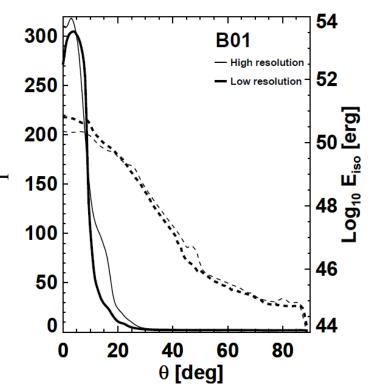

Making use of jet spreading simulations


Compress data and rescale -> loads of synchrotron spectral templates (BOXFIT, SCALEFIT)

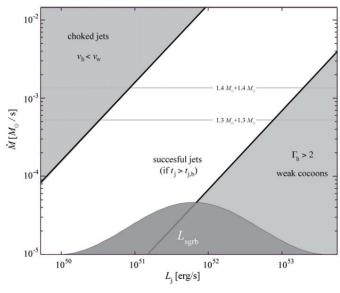
van Eerten, van der Horst & MacFadyen 2012, ApJ 749, 44 van Eerten & MacFadyen 2012, ApJ 747, L30

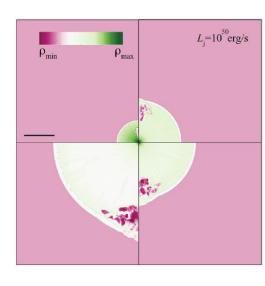
GRB170817, broadband light curves

Structured jet as a natural configuration

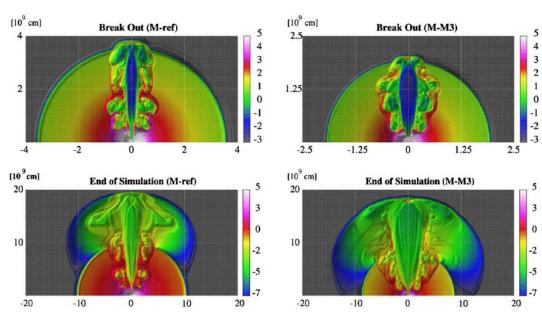

0.69

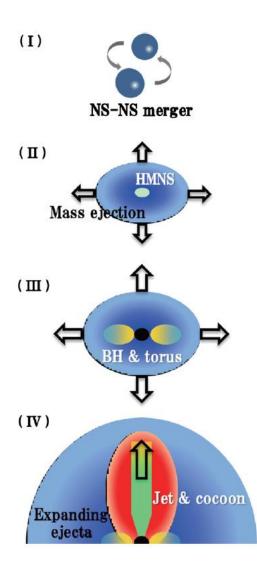
0.20

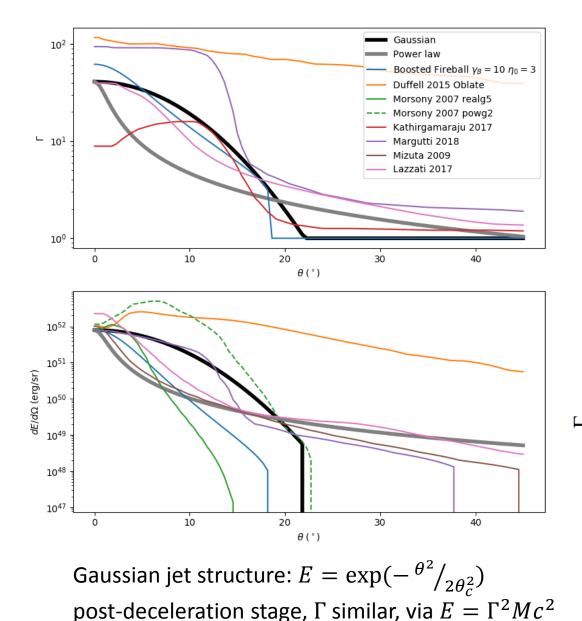

1.18 1.66 2.15


Structured jets are a natural outcome of simulations of short GRB jets

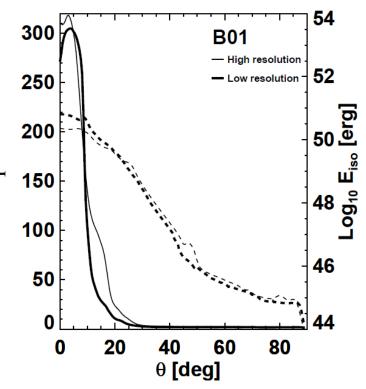
e.g. through jet-torus interaction during launching, see e.g. Aloy, Janka, Mueller 2005 (torus mass $M \sim 0.1 - 0.2M_{sun}$)



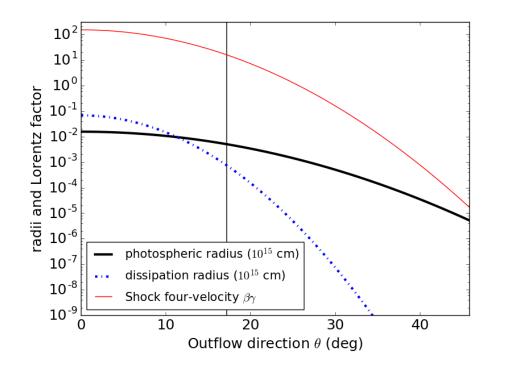

since 2014, cocoon models



above: dense neutrino-driven wind, e.g. $\dot{M} = 10^{-3} M_{sun} s^{-1}$ (Murgua-Berthier+ 2014) below and right: NS merger ejecta, $M \sim 10^{-2} M_{sun}$ (Nagakura+ 2014)



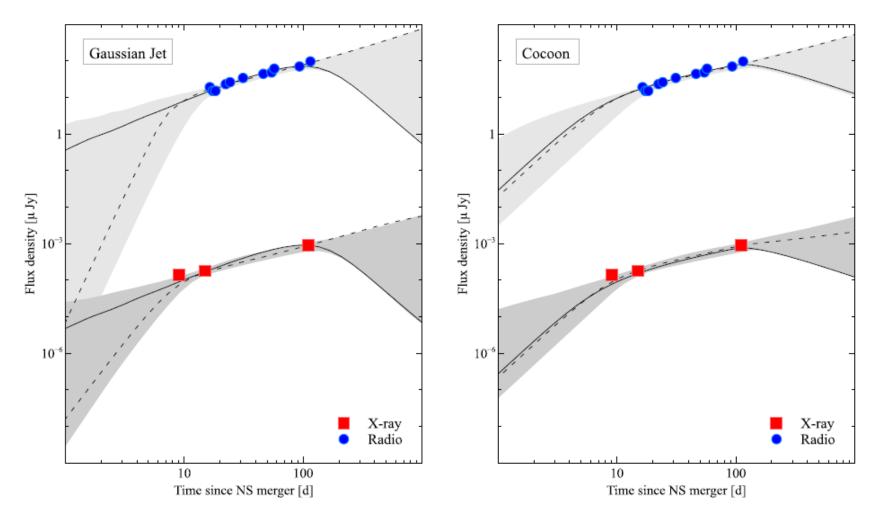
Structured jet as a natural configuration



Structured jets are a natural outcome of simulations accounting for breakout

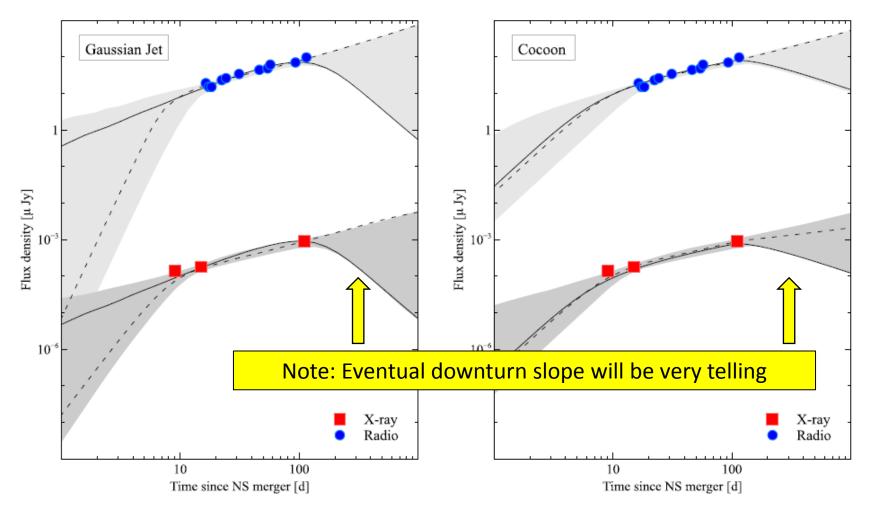
or jet-torus interaction during launching, see e.g. Aloy, Janka, Mueller 2005, image below

Structure and photospheric radius


A fireball containing Baryons would also have electrons providing opacity that tends to imply optically thin prompt emission only natural near the jet tip:

GRB 170817 would have been typical if seen on-axis, but was maybe genuinely atypical off-axis?

 $R_d \sim \Gamma^2 c \delta t \sim 3 \cdot 10^{13} \delta t_{-1} \Gamma_2^2$ cm for the dissipation radius


 $R_{\gamma} \sim \sigma_{\tau} E_{iso} / 4\pi R^2 m_p c^2 \Gamma$, from $\tau = \sigma_T n R \equiv 1$ and $\Gamma = \frac{E_{iso}}{Mc^2} = \frac{E_{iso}}{m_p V}$ for the photospheric radius

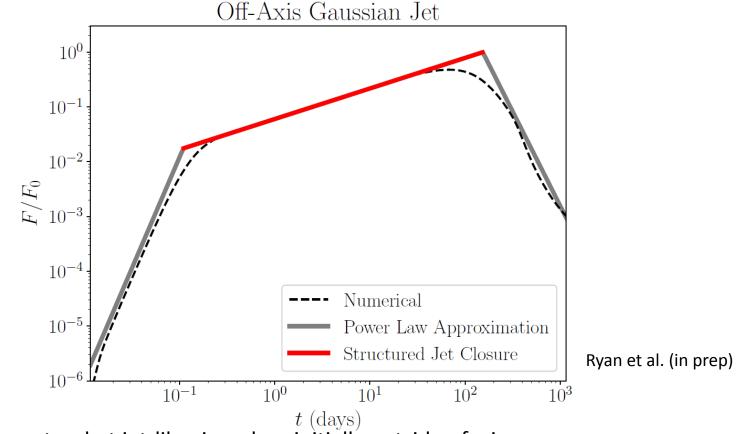
Structured jets and cocoons

Troja, Piro, Ryan, van Eerten et al., 2018, MNRAS accepted, ArXiV 1801.06516

Structured jets and cocoons

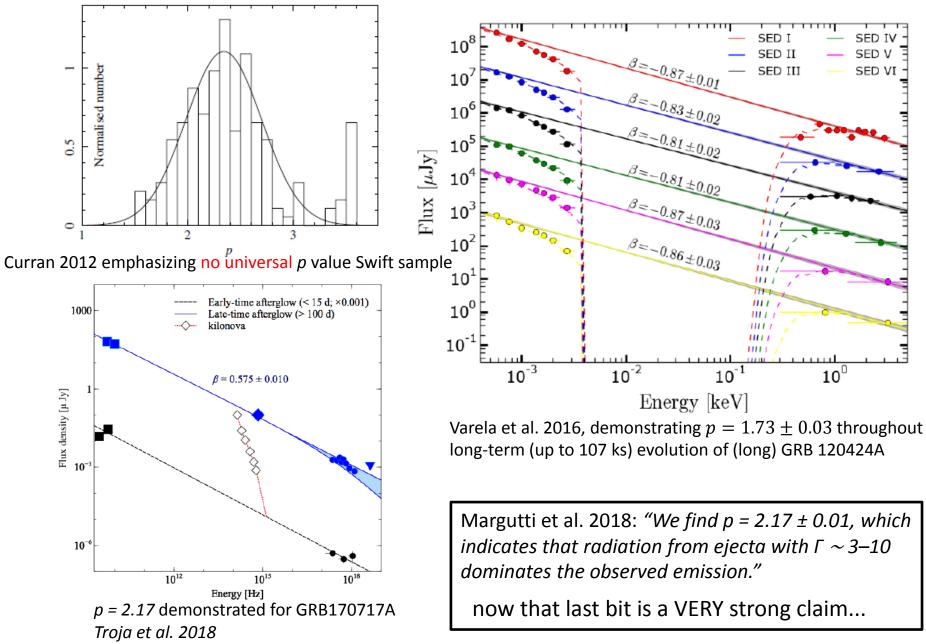
Troja, Piro, Ryan, van Eerten et al., 2018, MNRAS accepted, ArXiV 1801.06516

(more recent broadband data -not included in Figure- indeed suggests turnover)

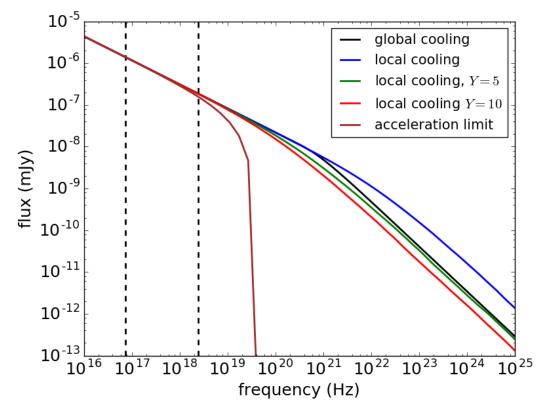

Summarizing models

Model	Features	Verdict	
Top hat jet, either semi- analytic or simulated	Sharp rise, brief peakprompt emission seen off-axis	afterglow fine, prompt not ideal	
Universal structured jet	power-law drop in energy with angle	too bright early on	
Gaussian jet	Exponential drop in energy with angle	afterglow fine thermalized or scattered prompt?	
Basic cocoon model	Single isotropic shell, mildly relativistic	wrong peak time, new type of prompt?	
Velocity stratification cocoon model	Late low velocity shells catching up, containing bulk of energy.	afterglow fine new type of prompt?	
Why we care: cocod	on / failed GRB would be a new phenomenon;		

e: cocoon / failed GRB would be a new phenomenon; structured jet definitive proof GRB NS-merger connection AND allows for true multi-messenger analysis through jet orientation


Current best fit cocoon models: range of velocities up to Lorentz factor 10, surrounding density 10^{-5} cm⁻³, total energy 10^{51-54} erg Current best fit structured jet models: jet core about 7 deg, orientation 12-24 deg, wings 35 deg total energy around 10^{50} erg, density around 10^{-3} cm⁻³

The light curve of a $E \propto \exp[-\theta^2/2\theta_c^2]$ "Gaussian" jet



- A sharp top-hat jet-like rise when initially outside of wings
- a shallow rise
 - containing information about jet structure (!), depends on rate at which annuli with different Lorentz factors come into view
- a post "jet-break" decay, segueing into trans-relativistic dynamics

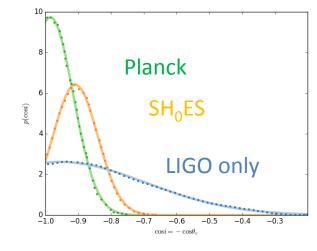
particle acceleration at the shock front

Electron cooling, Inverse Compton cooling, etc.

global cooling: assume steady state solution particle injection and cooling losses, equate cooling time to time since launch explosion (single plasma)

local cooling: each fluid parcel gets populated with shock-accelerated electrons upon crossing the shock front. Cooling time is time since crossing

as usual, both lead to same power law time evolution emission, but different normalizations


Summary

- long-lasting afterglow emission from off-axis event GW170817 / GRB170817A
- basic cocoon models would peak too soon, basic jet models would have had shorter peak duration
- if directed jet, then plausibly cementing short GRB neutron star merger connection
- if 'failed' GRB, or pure cocoon, then new phenomenon
- afterglow best modeled using structure in flow (lateral or radial)
- either type of structure is reasonably expected.
- an ultimately steeply decaying afterglow signal, would be tell-tale signature of directed flow (when fast moving tip comes into view, and a lack beyond that point becomes apparent; contrast gradual decline spherical signal once energy injection into sphere ceases)
- model either using multi-dimensional simulations, or shell models based on energy conservation in the shell
- clear non-thermal synchrotron-like afterglow spectrum, p = 2.17
- a wide range of accelerated electron power-law slopes has been seen in GRBs

END

The era of multi-messenger astronomy!

	Jet		$\rm Jet+GW+Planck$		Jet+GW+SHoES			Cocoon	
Parameter	Med.	Best-fit	Med.	Best-fit	Med.	Best-fit	Parameter	Med.	Best-fit
θ_{v}	$0.51^{+0.20}_{-0.22}$	0.79	$0.32^{+0.13}_{-0.13}$	0.51	$0.43^{+0.13}_{-0.15}$	0.51	$\log_{10} u_{\rm max}$	$0.93^{+0.34}_{-0.36}$	0.79
$\log_{10} E_0$	$52.50^{+1.6}_{-0.79}$	54.39	$52.73^{+1.30}_{-0.75}$	56.93	$52.52^{+1.4}_{-0.71}$	56.93	$\log_{10} u_{\min}$	$-2.2^{+1.9}_{-1.9}$	-2.9
θ_c	$0.091\substack{+0.037\\-0.040}$	0.146	$0.057^{+0.025}_{-0.023}$	0.079	$0.076^{+0.026}_{-0.027}$	0.079	$\log_{10} E_{inj}$	$54.7^{+1.6}_{-2.7}$	52.4
θ_w	$0.55^{+0.65}_{-0.22}$	0.63	$0.62^{+0.65}_{-0.37}$	0.44	$0.53^{+0.70}_{-0.24}$	0.44	k	$5.62^{+0.93}_{-1.1}$	5.3
							$\log_{10} M_{\rm ej}$	$-7.6^{2.1}_{-1.7}$	-9.5
$\log_{10} n_0$	$-3.1^{+1.0}_{-1.4}$	-3.8	$-3.8^{+1.0}_{-1.3}$	-6.4	$-3.24^{+0.91}_{-1.3}$	-6.4	$\log_{10} n_0$	$-5.2^{+2.2}_{-2.0}$	-6.5
р	$2.155^{+0.015}_{-0.014}$	2.159	$2.155^{+0.015}_{-0.014}$	2.170	$2.155^{+0.015}_{-0.014}$	2.170	р	$2.156^{+0.014}_{-0.014}$	2.157
$\log_{10} \epsilon_e$	$-1.22^{+0.45}_{-0.80}$	-0.73	$-1.51^{+0.53}_{-0.89}$	-1.37	$-1.31^{+0.46}_{-0.78}$	-1.37	$\log_{10} \epsilon_e$	$-1.33^{+0.93}_{-1.3}$	-0.36
$\log_{10} \epsilon_B$	$-3.38^{+0.81}_{-0.45}$	-3.50	$-3.20^{+0.92}_{-0.58}$	-1.27	$-3.33^{+0.82}_{-0.49}$	-1.27	$\log_{10} \epsilon_B$	$-2.5^{+1.5}_{-1.1}$	-0.4
$\log_{10} E_{tot}$	$50.26^{+1.7}_{-0.69}$	52.72	$50.16^{+1.1}_{-0.67}$	54.75	$50.19^{+1.41}_{-0.65}$	54.75	$\log_{10} E_{tot}^*$	52.84+0.97	51.00

Troja, Piro, Ryan, van Eerten et al., 2018, MNRAS subm., ArXiV 1801.06516

- Different assumptions about cosmology give different likelihoods for orientation of system based on GW data
- Orientation for GW data informs afterglow prior!