

DIFFRACTIVE OPTICS TOPOLOGIES

Michael Britzger, Max Wimmer, Daniel Friedrich, Karsten Danzmann, and Roman Schnabel

Max-Planck Institute for Gravitational Physics
Albert Einstein Institute Hannover

OUTLINE

- Motivation
- Interferometry with gratings
- 3-port grating cavities
- Experiments
 - 3-port grating cavity with power recycling
 - Michelson interferometer with 3PG-coupled arm cavities
- To do
- Summary

MOTIVATION

- Thermal lensing
- Photo-thermo refractive noise

Adv**LIGO**:

- Dual recycling + arm resonators
- High quality materials
- 200W Laser

DIFFRACTIVE ALTERNATIVE

Replacing the transmissive components that are exposed to high thermal load

- Described by the grating equation for monochromatic light
- R, T correspond to diffraction orders with certain diffraction efficiencies

$$\sin \alpha + \sin \beta_m = \frac{m\lambda}{d}$$

m = diffraction order

 $\lambda =$ wavelength

d = grating period

NEW TOPOLOGIES

iap

Coating still required for high reflectivity under normal incidence!

Another diffractive approach:

T-shaped monolithic mirror

Diffractive optics for coating reduced and all-reflective interferometry

see talk of Stefanie Kroker tomorrow!

NEW TOPOLOGIES

NEW TOPOLOGIES

3-PORT GRATING

Transmissive Component

- Two light fields
- Phases are constant
- 2x2 Scattering Matrix

$$\mathbf{S}_{2p} = \begin{pmatrix} \rho & \tau \\ \tau & -\rho \end{pmatrix}$$
$$\mathbf{b} = \mathbf{S} \times \mathbf{a}$$

3-port Grating:

- Three light fields
- Phases: Φ(ηο, η1, η2)
- 3x3 Scattering Matrix
- non-vanishing matrix elements

$$\mathbf{S}_{3p} = \begin{pmatrix} \eta_{2}e^{i\phi_{2}} & \eta_{1}e^{i\phi_{1}} & \eta_{0}e^{i\phi_{2}} \\ \eta_{1}e^{i\phi_{1}} & \rho_{0}e^{i\phi_{0}} & \eta_{1}e^{i\phi_{1}} \\ \eta_{0}e^{i\phi_{0}} & \eta_{1}e^{i\phi_{1}} & \eta_{2}e^{i\phi_{0}} \end{pmatrix}$$

$$\eta_{n} \neq 0$$

3-PORT GRATING CAVITY

- Coupling via 1st order
- low coupling -> high finesse
- Two correlated Ports C1 and C3

Grating design defines ratio of the radiation at the two output ports

2nd order Littrow

$$\sin \alpha + \sin \beta_m = \frac{m\lambda}{d}$$

3-PORT GRATING CAVITY

Grating with minimal η_2 -value

- Constructive interference at C1 and destructive interference at C3
- Light is retro reflected towards the laser source
- 'Modecleaner in reflection'

3-PORT GRATING CAVITY WITH PR

E

- Comparison with 'three-mirror cavity'
- Power build-up depends on two degrees of freedom (cavity tunings Φ1 and Φ2)
- Destructive interference at port C₃
- No additional loss channel

SIGNAL RESPONSE

Second detection port required to gain full signal information

TWO DETECTION PORTS

SETUP

Cavity lock with standard PDH

Main IFO lock with internal modulation

Contrast = 98% Contrast = 80%

Signal adjustment for both cavities

Structure-on-top grating characterized and split

Grating	$\eta_0^2 [\%]$	$\eta_1^2 [\%]$	$\eta_2^2 [\%]$
$G0.035_{3.1}$	$96,24 (\pm 2,3)$	$3,04 (\pm 0,23)$	$0,04 (\pm 0,02)$
$G0.035_{3.2}$	$96,01 (\pm 2,3)$	$3,30 (\pm 0,23)$	$0,04 (\pm 0,02)$

FIRST RESULTS

- Side motion induced phase noise
- Additional noise source
- Experimental verification in Glasgow

see following talk by Bryan Barr!

Lateral Displacement noise 'Uninvite the uninvited guest'

- Alternative read-out scheme at IFO
- GW signals are correlated
- Displacement induces anti-correlated signals
- Current investigations

TO DO

Reduce the scattered light and losses

- current losses ≈ 0.2%
- have to improve the fabrication process (new EBL facility in Jena)

9"x 9" substrate with 3-port grating structure

Analysis of the component by means of:

- Homogeneity
- Loss
- Wave front distortion
- Scattered light

AFM measurement: depth = $45 (\pm 5)$ nm

SUMMARY

- Gratings avoid transmission induced thermal effects in the substrates (and only the substrates!)
- 3-port grating cavity (η2-min) retro-reflects the light field towards the source
- 3-port arm cavities require 2nd detection port
- IFO with signal injection realized
- Challenges:
 - Lateral displacement noise
 - Improve the fabrication process

3P-GRATING CAVITIES FOR OPTICAL FEEDBACK TO LASER DIODES

- Prototype set-up with alignment mirror

- elliptical profile at Port C3

...uses:

- constructive interference towards the source for optical feedback
- combines external and extended cavity
- mode selectivity of grating cavity

...provides:

- frequency selectivity of a grating
- high finesse external cavity
- high spatial mode quality
- round beam profile at output port
- low complexity

