



# BSM Higgs Searches in Tau Final States at DØ

Les Rencontres de Physique de la Vallée d'Aoste

Louise Suter
University of Manchester
For the DØ Collaboration



## 8

## The Fermi National Accelerator Laboratory





Tevatron collided protons and antiprotons from 1985 to 2011

2 general purpose detectors DØ and CDF

Over 10 fb<sup>-1</sup> recorded



#### DØ luminosity





Showing results with up to 7.0 fb<sup>-1</sup>





#### BSM Higgs with tau leptons

- Various BSM models predict tau decay modes to be important.
  - MSSM can have enhanced down-type coupling.

BR(
$$\varphi \rightarrow bb$$
) ~ 90%  
BR( $\varphi \rightarrow \tau\tau$ ) ~ 10%

 NMSSM suggested to have very light pseudo-scalar Higgs then decays to tau avoiding the LEP limits.



 The results I am showing today is looking for a less well known Higgs, a doubly charged Higgs.







#### Higgs triplet models

Extensions to SM with a Higgs triplet result in a Higgs with double charge.



M. Kadastik, M. Raidal, and L. Rebane, Phys. Rev. D 77, 115023 (2008)

Left Right Symmetry models: Symmetry between left and right handed particles.

Predict both  $H_L^{++}, H_R^{++}$ 

Cross section for right-handed Higgs is predicted to be about half that of left-handed.

See-Saw mechanism: Higgs triplet as a production mechanism of the neutrino masses. Predict equal BR to  $\mu\mu$ , $\tau\tau$ , $\mu\tau$  for masses < 10meV and normal hierarchy of neutrino masses

(3-3-1) gauge symmetric models: Predict heavy exotic leptons and quarks providing anomaly cancellations.

Predicts that tau decays dominate.





#### Object identification: Taus

- Tau lepton heaviest of leptons with M = 1777 MeV and lifetime of just  $2.9 \times 10^{-13}$  s, so one just sees it decay products.
- We use different tools for leptonic and hadronic tau decay



- For μ,e use standard leptonic identification tools
- Hadronic tau decay suffers from large jet background

Specific identification tools created to deal with this





### Object identification: Taus

#### Define 3 types of hadronic taus



Type 1  $\tau^{\pm}$ 

Type 2  $\tau^{\pm}$   $\pi^{0}$   $\tau^{\gamma}$ 

1 Track Calorimeter cluster

1 Track
Calorimeter cluster
> 0 EM sub-cluster



Efficiency = 65% Fake rate = 2.5%

- Neutral Network trained for each type
- Trained on Z → ττ to differentiate real taus from jets







### Doubly charged Higgs

 Look for pair produced H<sup>++</sup> decaying into tau and muon final states

$$H^{++}H^{--} \to l^+l^+l^-l^-$$
$$l^+l^+ = \tau^+\tau^+, \mu^+\mu^+, \tau^+\mu^+$$

 Flavor violating decay, but has advantage of no neutrinos so one can reconstruct whole event.







#### Model dependence of limits

- Not known how the H<sup>++</sup> decays, dependent on model chosen.
- Limits set for 4 model independent and 1 model specific decay channels.



2. 
$$B(H^{\pm\pm} \rightarrow \mu^{\pm} \tau^{\pm}) = 1$$

3. 
$$B(H^{\pm\pm} \rightarrow \tau^{\pm}\tau^{\pm}) + BR(H^{\pm\pm} \rightarrow \mu^{\pm}\mu^{\pm}) = 1$$

4. 
$$B(H^{\pm\pm} \rightarrow \tau^{\pm}\tau^{\pm}) = BR(H^{\pm\pm} \rightarrow \mu^{\pm}\mu^{\pm}) = BR(H^{\pm\pm} \rightarrow \mu^{\pm}\tau^{\pm}) = 1/3$$

• For points 1 and 3 this was the first time these limits had been set at a Hadron collider.





#### $B(H^{++} \rightarrow \mu^{+}\mu^{+})=1$ Combination

- For Points 3 and 4 we need a  $B(H^{++} \rightarrow \mu^+ \mu^+) = 1$  limit.
- Combine with 1fb<sup>-1</sup> DØ result.
  - At least 3 isolated muons
  - $M(\mu,\mu)$  of leading  $p_T$  muons used as discriminant
  - 3 candidate events with 2.3±0.2 background expected.



Phys. Rev. Lett. 101, 071803 (2008)







## The analysis selection

#### Selection

- Using 7.0 fb<sup>-1</sup> of integrated luminosity
- Select the two taus with highest transverse momentum,  $p_{T_j}$  and the highest  $p_T$  muon.
- Neural Net,  $NN_{\tau_i}$  is used to discriminate taus from jets.
- Unusual final state composition used to optimize selection

#### Main Backgrounds

- $Z(\rightarrow \tau\tau) + jets$
- $Z(\rightarrow \mu\mu) + jets$
- Diboson (WZ, WW, ZZ)



P<sup>H</sup><sub>T</sub>, Higgs P<sub>T</sub>, calculated from selecting same sign pair from 3 final state objects







#### Final discriminants

Split into four sub samples

based on charge and lepton multiplicity.

These are sensitive to different signals and have different background compositions

1. 
$$N(\mu) = 1$$
,  $N(\tau) = 2$ ,  $q(\tau 1) = q(\tau 2)$ 

2. 
$$N(\mu) = 1$$
,  $N(\tau) = 2$ ,  $q(\tau 1) = -q(\tau 2)$ 

3. 
$$N(\mu) = 2$$
,  $N(\tau) = 2$ 

4. 
$$N(\mu) = 1$$
,  $N(\tau) = 3$ 







#### Doubly charged Higgs limits

| Decay                                                              | $ m H_L^{\pm\pm}$ (GeV) |          | $H_R^{\pm\pm}$ (GeV)       |          |
|--------------------------------------------------------------------|-------------------------|----------|----------------------------|----------|
|                                                                    | expected                | observed | expected                   | observed |
| $\mathcal{B}(	extstyle H^{\pm\pm} 	o 	au^\pm 	au^\pm) = 1$         | 116                     | 128      | no limit set               |          |
| $\mathcal{B}(	extstyle{H}^{\pm\pm} ightarrow\mu^{\pm}	au^{\pm})=1$ | 149                     | 144      | 119                        | 113      |
| Equal ${\cal B}$ into                                              |                         |          |                            |          |
| $\tau^{\pm}\tau^{\pm}, \mu^{\pm}\mu^{\pm}, \mu^{\pm}\tau^{\pm}$    | 130                     | 138      | no $H_R^{\pm\pm}$ in model |          |
| $\mathcal{B}(H^{\pm\pm}  ightarrow \mu^{\pm}\mu^{\pm}) = 1$        | 180                     | 168      | 154                        | 145      |

Set limits let for both left and right handed Higgs Predicted cross section for  $H_R^{++}$  is about half cross section for  $H_L^{++}$ 





#### Doubly charged Higgs limits



Set limits let for both left and right handed Higgs Predicted cross section for  $H_L^{++}$  is about half cross section for  $H_L^{++}$ 







#### Summary

- Results were presented on a recent search for pair produced doubly charged Higgs decaying to muons and tau leptons at DØ.
  - Phys.Rev.Lett. 108 (2012) 021801
- Limits set for three model independent benchmark points and one model specific one.
- Results were combined with a previous 1fb<sup>-1</sup> result from DØ to produce limits at additional benchmark points.
- First time limits set for 100% BR to a tau final state at a Hadron collider.