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The θ parameter

The Euclidean version of the QCD Lagrangian is

Lθ =
1

4
F a
µν(x)F

a
µν(x)− iθq(x); q(x) =

g2

64π2
ǫµνρσF

a
µν(x)F

a
ρσ(x)

θ is a dimensionless RG-invariant parameter and a nonzero θ value would
violate P and CP . Experimentally its value is bounded by |θ| . 10−9

(Reasons for θ = 0? Strong CP problem)

Nevertheless θ related physics is interesting from various point of view:

theoretical: the θ dependence is completely nonperturbative

practical: some features of the hadron spectrum are related to θ
(e.g. Witten, Veneziano 1979)

phenomenologial: e.g. axions to resolve the strong CP problem
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The θ dependence of the free energy

Since F (θ,T ) = F (−θ,T ), the free energy can be parametrized as

F (θ,T )− F (0,T ) =
1

2
χ(T )θ2

[

1 + b2(T )θ2 + b4(T )θ4 + · · ·
]

where (Q =
∫

q(x)dx ∈ Z is the topological charge)

χ =
1

V4
〈Q2〉θ=0; b2 = −〈Q4〉θ=0 − 3〈Q2〉2θ=0

12〈Q2〉θ=0

General properties:

F (0,T ) is an absolute minimum of F (θ,T )

if ψj → e iαγ5ψj and ψ̄j → ψ̄je
iαγ5 then θ → θ − 2αNf

and mj → mje
2iα (thus θ ∼ complex mass for fermions)

Q is related to the zero modes of /D with given chirality by the
Atiyah-Singer index theorem: Q = N0

R − N0
L
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Analytical approaches

Large number of colors N (low temperature), Witten 1980

Assume that θ-dependence survives for N → ∞. This requires both
λ = g2N → const and θ̄ = θ/N → const in the large N limit and

χ = χ̄+ o(1); b2n = b̄2n/N
2n
(

1 + o(1)
)

Dilute instanton gas (high temperature) Gross, Pisarski, Yaffe 1981

b2 = − 1

12
; b4 =

1

360
; χ(T ) ∼ T 4

(m

T

)Nf

exp
[

− S0
]

From perturbation theory S0 = 8π2/g2(T ) ≈ (113 N − 2
3Nf ) log(T/Λ) and

χ(T ) ∼ mNf T 4− 11
3
N− 1

3
Nf

ChPT (low temperature) Di Vecchia, Veneziano 1980

χ =
z

(1 + z)2
m2

πf
2
π ; b2 = − 1

12

1 + z3

(1 + z)3
; z =

mu

md
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Axion solution of the strong CP problem

Add to SM a pseudoscalar field a with coupling a
fa
F F̃ and only derivative

interactions. Since the free energy has a minimum at θ = 0, a will acquire
a VEV such that θ + 〈a〉

fa
= 0. The simplest possibility is to think of a as

the GB of some U(1) axial symmetry (Peccei-Quinn symmetry). The
effective low-energy lagrangian is thus

L = Lθ=0
QCD +

1

2
∂µa∂

µa+
a(x)

fa
q(x) +

1

fa

(

model dependent
terms

)

Experimental bounds: fa & 109GeV. We can thus neglect axion loops and
use the substitution rule θ → a/fa:

ma(T ) =

√

χ(T )

fa
; ma(T = 0) =

mπfπ
√
z

(1 + z)fa
≈ 5.70µeV

(

1012GeV

fa

)

Axions behave as cold dark matter, thus we have the constraint axion
density ≤ dark matter density. This gives an upper limit for fa provided we
know fa(T ), i.e. during the evolution of the universe.
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Topology on the lattice (1)

The topological charge is well defined only for smooth enough gauge
configuration, so its definition on the lattice require some care.

Several methods have been devised during the years to study topology on
the lattice:

Field theoretical methods (i.e. take care of finite renormalizations)

Fermionic methods (overlap fermions)

Smoothing methods (cooling, smearing, gradient-flow)

All these methods have advantages and drawbacks, nevertheless they have
been proven to give compatible results for topological observables
(see e.g. Panagopoulos, Vicari 0803.1593, Bonati, D’Elia 1401.2441).

Physical reason: asymptotic freedom (thus relevant distances are
∼ 1/Λ ≫ a) and topology (once short distance fluctuations are removed
the result is stable “whatever you do”).
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Topology on the lattice (2)

The topological charge is well defined for smooth enough gauge fields and
Monte Carlo updates are almost smooth: as the continuum limit is
approached it gets increasingly difficult to correctly sample the different
topological sectors (∼ exponential critical slowing down).
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Several algorithmic proposals exist to improve the scaling of
autocorrelation times towards the continuum but by now no definitive
solution exists. This limit from above the temperatures that can be
explored.
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SU(N) gauge theory without quarks
C = χ/σ2, T = 0

Del Debbio, Panagopoulos, Vicari 0204125
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QCD with 2 + 1 physical flavours

Check of the method: χ at T = 0
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Large cut-off effects but continuum limit compatible with ChPT
(73(9)MeV against 77.8(4)MeV)
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QCD with 2 + 1 physical flavours
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Cut-off effect strongly reduced in the ratio χ(T )/χ(T = 0), moreover
χ(T ) ∝ 1/T b with b = 2.90(65) (DIGA prediction: b = 7.66÷ 8)
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QCD with 2 + 1 physical flavours
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Deviations from DIGA much larger than in pure gauge theories and of
opposite sign. Quark mediated instanton interactions?
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Axion misalignment contribution to dark matter
Initial condition? If PQ symmetry breaks before inflaction the initial value
is constant, otherwise an average on the initial value has to be performed.

Using the DIGA exponent for χ(T ) the upper bound on fa is
underestimated:

fa(DIGA,Ωmis
a = ΩDM) ≈ fa(LQCD,Ωmis

a = 0.1ΩDM)
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Conclusions

We have shown that by using Lattice QCD simulations we can reliably
estimate χ(T ) and b2(T ) at the physical point for T . 600MeV.

Several important differences emerges with respect to the case of SU(N)
gauge theories without fermions, in particular:

deviations from DIGA in b2(T ) (which cannot be ascribed to a failure
of perturbation theory) are much larger and of opposite sign, i.e. the
convergence is from above instead of from below.

χ(T ) is well described by a behaviour ∼ 1/T b with exponent b ∼ 3,
more than a factor 2 smaller than the commonly adopted DIGA value.
This has to be taken into account in computations of the
cosmological upper bounds on fa.

For T large enough we enter the perturbative regime in which DIGA
becomes a robust approximation. At which temperature does this happen?
It is possible to find lattice evidences of this?
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Thank you for your attention!
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Backup slides with something more

C. Bonati (INFN) θ dependence in QCD Cortona @ GGI 2016 14 / 14



Large-N argument

F a
µνF

a
µν and ǫµνρσF

a
µνF

a
ρσ scale as N2

To have a nontrivial θ dependence in the large-N limit we have to keep
θ̄ ≡ θ/N fixed, in such a way that θg2 does not scale with N

(fermions are subdominant in the large-N limit).

The large-N scaling form of the free energy is thus (Witten 1980)

F (θ,T )− F (0,T ) = N2F̄ (θ̄,T )

where F̄ is generically nontrivial for N → ∞:

F̄ (θ̄,T ) =
1

2
χ̄θ̄2

[

1 + b̄2θ̄
2 + b̄4θ̄

4 + · · ·
]

By matching the powers of θ we obtain

χ = χ̄+ · · ·
b2n = b̄2n/N

2n
c + · · ·
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Semiclassical approximation (1)
In general one has (e.g. Coleman “The uses of instantons”)

semiclassical approximation ∼ weak coupling approximation

Slightly broader perspective:

possibility that a system can be described by means of weakly interacting
classical configurations even if the “elementary” coupling is not small

For weakly interacting instantons we have (DIGA, Gross, Pisarski, Yaffe 1981)

Zθ = Tre−Hθ/T ≈
∑ 1

n+!n−!
(V4D)n++n

−e−S0(n++n
−
)+iθ(n+−n

−
)

= exp
[

2V4De
−S0 cos θ

]

where 1/D is a typical 4−volume. Thus

F (θ,T )− F (0,T ) ≈ χ(T )(1− cos θ)
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Semiclassical approximation (2)

From semiclassical behaviour in the broad sense, using also the leading
order suppression due to light fermions and zero modes one gets:

b2 = − 1

12
b4 =

1

360
b2n = (−1)n

2

(2n + 2)!

χ(T ) ∼ T 4
(m

T

)Nf

exp
[

− S0
]

Using also perturbation theory S0 =
8π2

g2(T )
≈ (113 N − 2

3Nf ) log(T/Λ)

χ(T ) ∼ mNf T 4− 11
3
N− 1

3
Nf

(Gross, Pisarski, Yaffe 1981)
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Chiral perturbation theory
The θ angle can be eliminated by an U(1)A rotation at the expense of
introducing a complex mass matrix. Chiral perturbation theory can then
be applied as usual. The result for the ground state energy is (T = 0)

E0(θ) = −m2
πf

2
π

√

1− 4mumd

(mu +md)2
sin2

θ

2

(Di Vecchia, Veneziano 1980) thus

χ =
z

(1 + z)2
m2

πf
2
π , b2 = − 1

12

1 + z3

(1 + z)3
, z =

mu

md

Explicitly, taking into account also NL effects
Grilli di Cortona, Hardy, Vega, Villadoro 2016

z = 0.48(3) χ1/4 = 75.5(5)MeV b2 = −0.029(2)

z = 1 χ1/4 = 77.8(4)MeV b2 = −0.022(1)
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Axions as dark matter
Cosmological sources of axions: 1) thermal production 2) decay of
topological objects 3) misalignment mechanism

Idea of the misalignment mechanism: the EoM of the axion is

ä(t) + 3H(t)ȧ(t) +m2
a(T )a(t) = 0

at T ≫ ΛQCD the second term dominates and we have a(t) ∼ const

(assuming ȧ ≪ H initially); when ma ∼ H the field start oscillating arount
the minimum. When ma ≫ H a WKB-like approx. can be used

a(t) ∼ A(t) cos

∫ t

ma(t̃)dt̃;
d

dt
(maA

2) = −3H(t)(maA
2)

and thus the number of axions in the comoving frame Na = maA
2/R3 is

conserved.

Overclosure bound: axion density ≤ dark matter density
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Comparison between smoothing algorithms

Bonati, D’Elia 1401.2441
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b2 in SU(3) pure gauge theory

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

b 2

Del Debbio
Panagopoulos
Vicari ’02

D’Elia ’03

Giusti 
Petrarca
Taglienti ’07

Panagopoulos 
Vicari ’11

Ce’ 
Consonni 
Engel 
Giusti ’15

Bonati 
D’Elia 
Scapellato ’16

C. Bonati (INFN) θ dependence in QCD Cortona @ GGI 2016 14 / 14



Comparison with χ(T ) from other groups
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non-physical quark masses. Data rescaled according to DIGA relation
χ(T ) ∝ m2
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π ≈ 370MeV) .
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Virial-like corrections to DIGA
F (θ,T ) is an even function of period 2π, thus

F (θ,T )− F (0,T ) =
∑

n>0

an [1− cos(nθ)] =
∑

n>0

c2(n−1) sin
2n(θ/2)

Developing in series we obtain

χ = c0/2; b2 = − 1

12
+

c2

8χ
; b4 =

1

360
− c2

48χ
+

c4

32χ

and c2n contributes only to b2m with m ≥ n. This is a virial-like expansion
and it is reasonable to assume

c2(n−1) = d2(n−1)
χn

χn−1(T = 0)
.

The first correction to DIGA is thus

F (θ) = χ(1− cos θ) + d2
χ2

χ(T = 0)
sin4(θ/2)

b2 = − 1

12
+

d2

8

χ

χ(T = 0)
, d2 = 0.80(16) .
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