
The FairShareScheduler

Lisa Zangrando
INFN Padova

CCR Workshop, December 15-17 2014, Naples Lisa Zangrando <lisa.zangrando@pd.infn.it> 2/16

A problem 20 years old reappears today

● Usually our requests for resources is much greater than the amount of
the available resources

● it becomes necessary to seek to maximize their utilization by adopting a
proper resource sharing model

● The solution comes with the batch system adoption: dynamic partitioning
● provision of an average computing capacity to be guaranteed during a long

period (~1 year)
● advanced scheduling algorithms (i.e. fair-share)

● Before the batch system affirmation (~20 years ago) our
resources were partitioned only statically

● agreed amount of resources always available

CCR Workshop, December 15-17 2014, Naples Lisa Zangrando <lisa.zangrando@pd.infn.it> 3/16

Partitioning model in OpenStack

● Currently OpenStack allows just the static partitioning model

● resource allocation can be done only by granting fixed quotas

● one project cannot exceed its own quota even if there are unused resources
allocated to other projects

● low global efficiency and increased cost in terms of resource usage

● it doesn't allow continuous full utilization of all available resources

● in a scenario of full resource usage for a specific project, new requests
are simply rejected

● we need to find a better approach to enable a more effective and
flexible resource allocation and utilization in OpenStack

CCR Workshop, December 15-17 2014, Naples Lisa Zangrando <lisa.zangrando@pd.infn.it> 4/16

 Our proposal: the FairShareScheduler

● We (INFN-PD) started to address the problem by developing a pluggable
scheduler, named FairShareScheduler, as extension of the current
OpenStack scheduler (i.e FilterScheduler)

● FairShareScheduler provides:
● queuing mechanism for handling the user requests

● fair-share algorithm based on the SLURM Priority MultiFactor strategy

CCR Workshop, December 15-17 2014, Naples Lisa Zangrando <lisa.zangrando@pd.infn.it> 5/16

 Nova, keystone Nova, keystone

FairShareScheduler

nova-computenova-compute

AMQP clientAMQP client

filtering + weighting phasesfiltering + weighting phases

PQueuePQueue

PriorityQueue
Manager

PriorityQueue
Manager

FairShare
Manager

FairShare
Manager

...

nova.conf

AMQP

1

2

3

4

5

6

7

8
9

10

0

FairShareScheduler: the high level architecture

To each user request is assigned
a proper priority value

CCR Workshop, December 15-17 2014, Naples Lisa Zangrando <lisa.zangrando@pd.infn.it> 6/16

 Nova, keystone Nova, keystone

FairShareScheduler

nova-computenova-compute

AMQP clientAMQP client

filtering + weighting phasesfiltering + weighting phases

PQueuePQueue

PriorityQueue
Manager

PriorityQueue
Manager

FairShare
Manager

FairShare
Manager

...

nova.conf

AMQP

1

2

3

4

5

6

7

8
9

10

0

FairShareScheduler: the high level architecture

To each user request is assigned
a proper priority value

The requests are inserted
in a persistent priority queue

CCR Workshop, December 15-17 2014, Naples Lisa Zangrando <lisa.zangrando@pd.infn.it> 7/16

 Nova, keystone Nova, keystone

FairShareScheduler

nova-computenova-compute

AMQP clientAMQP client

filtering + weighting phasesfiltering + weighting phases

PQueuePQueue

PriorityQueue
Manager

PriorityQueue
Manager

FairShare
Manager

FairShare
Manager

...

nova.conf

AMQP

1

2

3

4

5

6

7

8
9

10

0

FairShareScheduler: the high level architecture

To each user request is assigned
a proper priority value

The requests are inserted
in a persistent priority queue

… then they are dequeued by a pool of
Workers and processed asynchronously
(filtering + weighting phase) when compute
resources are available

CCR Workshop, December 15-17 2014, Naples Lisa Zangrando <lisa.zangrando@pd.infn.it> 8/16

 Nova, keystone Nova, keystone

FairShareScheduler

nova-computenova-compute

AMQP clientAMQP client

filtering + weighting phasesfiltering + weighting phases

PQueuePQueue

PriorityQueue
Manager

PriorityQueue
Manager

FairShare
Manager

FairShare
Manager

...

nova.conf

AMQP

1

2

3

4

5

6

7

8
9

10

0

FairShareScheduler: the high level architecture

To each user request is assigned
a proper priority value

The requests are inserted
in a persistent priority queue

… then they are dequeued by a pool of
Workers and processed asynchronously
(filtering + weighting phase) when compute
resources are available

the failed requests may be
enqueued again for n-times

CCR Workshop, December 15-17 2014, Naples Lisa Zangrando <lisa.zangrando@pd.infn.it> 9/16

FairShareScheduler: the high level architecture

 Nova, keystone Nova, keystone

FairShareScheduler

nova-computenova-compute

AMQP clientAMQP client

filtering + weighting phasesfiltering + weighting phases

PQueuePQueue

PriorityQueue
Manager

PriorityQueue
Manager

FairShare
Manager

FairShare
Manager

...

nova.conf

AMQP

1

2

3

4

5

6

7

8
9

10

0

● no new states have been added
● this prevents any possible interaction issue with the OpenStack clients
● from the client point of view the queued requests remain in “Scheduling”

state till the compute resources are available
● the priority of the queued requests is periodically recalculated

● no new states have been added
● this prevents any possible interaction issue with the OpenStack clients
● from the client point of view the queued requests remain in “Scheduling”

state till the compute resources are available
● the priority of the queued requests is periodically recalculated

CCR Workshop, December 15-17 2014, Naples Lisa Zangrando <lisa.zangrando@pd.infn.it> 10/16

Current status

● Prototype ready for HAVANA and IceHouse

● source code available in our github repository:
https://github.com/CloudPadovana/openstack-fairshare-scheduler

● Testing in progress at:

● University of Victoria

● BILS (Bioinformatics Infrastructure for Life Sciences)

https://github.com/CloudPadovana/openstack-fairshare-scheduler

CCR Workshop, December 15-17 2014, Naples Lisa Zangrando <lisa.zangrando@pd.infn.it> 11/16

Integration in OpenStack

● We wish to join the OpenStack development team in

order to integrate our work in the official distribution

● Started interaction with NOVA, GANTT and BLAZAR teams

● not an easy task address our needs with such groups

● At the OpenStack Summit 2014 (Paris) the Nova-Scheduler leader suggested
us to consider the FairShareScheduler as an external manager which
interacts with Nova-Scheduler

● this approach should simplify the integration process

● architecture redesign and redevelopment work required

● new stackforge project creation

CCR Workshop, December 15-17 2014, Naples Lisa Zangrando <lisa.zangrando@pd.infn.it> 12/16

FairShareScheduler: architecture redesign

 Nova, keystone Nova, keystone

FairShareScheduler

nova-schedulernova-scheduler

AMQP clientAMQP client

PQueuePQueue

PriorityQueue
Manager

PriorityQueue
Manager

FairShare
Manager

FairShare
Manager

...

nova.conf

AMQP

nova-computenova-compute

CCR Workshop, December 15-17 2014, Naples Lisa Zangrando <lisa.zangrando@pd.infn.it> 13/16

The evolution

● The possibility of designing the FairShareScheduler as indipendent project
allows us to evolve it a little bit more as a new OpenStack service which
handles pluggable managers

● APIs for interacting with the service and the managers

● a manager is a specific and independent task executed periodically or interactively

– you can implement your manager by using the provided API

– one manager will provide the same capabilities of the current FairShareScheduler

nova-scheduler

PQueue manager

FairShare manager

CCR Workshop, December 15-17 2014, Naples Lisa Zangrando <lisa.zangrando@pd.infn.it> 14/16

The manager interface

class Manager(Thread):

def getName(self): # return the manager name

def getStatus(self): # return the manager status

def isAutoStart(self): # is AutoStart enabled or disabled?

def setup(self): # allows custom initialization

def destroy(self): # invoked before to destroy the manager

def execute(self, cmd): # executes user command synchronously

def task(self): # executed periodically at fixed rate

CCR Workshop, December 15-17 2014, Naples Lisa Zangrando <lisa.zangrando@pd.infn.it> 15/16

The evolution: status

● Development started (IceHouse, Juno)

● foreseen two months of work for the first prototype

● New project at StackForge as soon the prototype is ready

● interaction with other OpenStack projects not required

● StackForge provides a place for OpenStack contributors to create and
maintain unofficial projects using the same tools and procedures as the
official ones

● it includes: Gerrit code review, Jenkins CI, GitHub repository, IRC...

● it is a good first step for exposing new projects but doesn't guarantee eventual
OpenStack incubation and integration

● the new project must be self sufficient

● Incubation and integration phases need the approval of the OpenStack
reviewers

● University of Victoria available to help with testing

CCR Workshop, December 15-17 2014, Naples Lisa Zangrando <lisa.zangrando@pd.infn.it> 16/16

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

