Outline

- book content
- motivations
- storyline

Content

- history from 1968 (Veneziano amplitude) to 1984 (first string revolution)
- 7 parts with introductions, 35 contributors and 5 appendices:

I. Overview	(Veneziano, Schwarz, E. Castellani)
II. The prehistory: the analytic S-matrix	(Ademollo, Rubinstein, Freund, Gell-Mann)
III. The Dual Resonance Model	(Di Vecchia, Shapiro, Amati, Clavelli, Lovelace, Musto, Nicodemi, Sciuto)
IV. The string	(Goddard, Susskind, Nielsen, Nambu, Fairlie, Mandelstam, Brower)
V. Beyond the bosonic string	(Olive, Ramond, Neveu, Corrigan, Bardakci & Halpern, Gervais, Montonen)
VI. The superstring	(Gliozzi, Yoneya, Brink, Di Vecchia, Cremmer, Schwarz)
VII. Preparing the string renaissance	(Green, Polyakov, Cappelli & Colomo)

Motivations

seminar on history & philosophy of physics in Florence

 workshop on string history at the Galileo Galilei Institute in May 2007 within the first string program:

- main points:
 - a "scientific saga", a choral work and a history with many twists
 - the <u>right time</u> to put it on record (2008-11)
 - for physicists: great ideas that were fully developed later and also found application in many other domains
 - for historians/philosophers: first-hand data for studying theory development and scientific method `a case study'
 - introductory material for a wider readership

1968		Veneziano amplitude Veneziano
1969		Virasoro amplitude Spectrum of DRM Fubini, many others
1970		string idea & action Nielsen, Nambu, Susskind
1971	DRM	fermionic string Ramond, Neveu & Schwarz
1972		physical states Di Vecchia, Fubini, many others
1973	STRING	light-cone quantization Goddard, Goldstone, of string action Rebbi, Thorn
1974		interacting strings Ademollo et al., etc.

1968		Veneziano amplitude	Veneziano
1969		Virasoro amplitude spectrum of DRM	Virasoro, Shapiro Fubini, many others
1970		string idea & action	Nielsen, Nambu, Susskind
1971 1972	DRM	<pre>extra dimensions world-sheet supersymn</pre>	Ramond, Neveu & Schwarz Lovelace netry Gervais & Sakita ecchia, Fubini, many others
1973	STRING	field-theory limit light-cone quantization of string action	Scherk, Neveu, Yoneya
1974		interacting strings	Ademollo et al., etc.

Hadronic string

- Reasons to be born (1968)
 - Veneziano amplitude: simple closed-form solution to S-matrix bootstrap
 - initial phenomenological appeal was replaced by fascination for the beautiful structure of the theory (stemming from two-dimensional conformal symmetry)

- Reasons to die (1974)
 - D = 26
 - $\alpha_0=1,2$ i.e. massless particles with spin 1 and 2
 - soft scattering
 Deep Inelastic Scattering & QCD

Superstring unification (1974)

- the $\alpha' \to 0$ limit shows that string theory is an extension of field theory rather then an alternative to it
- the remaining particles are massless with spin one and two
- the superstring is consistent quantum mechanically
- dynamics of massless particles is uniquely determined:
 - non-Abelian gauge theories for spin one
 - gravity for spin two

string theory unifies (predicts) gauge theories and gravity

1974		gauge & gravity unif		Scherk & Schwarz, Yoneya Wess & Zumino
1976	—	Kaluza-Klein compac open superstring (ty		Cremmer, Scherk Gliozzi, Scherk, Olive
1970	—	RNS string action	Brink, Di V	ecchia, Howe; Deser, Zumino
1978		supergravity d=11 supergravity	rreeaman,	Van Nieuwenhuizen, Ferrara Cremmer, Julia, Scherk
1980				
1982				
1902				
1984				

1974		gauge & gravity unif space-time supersyn		Scherk & Schwarz, Yoneya Wess & Zumino
	-	Kaluza-Klein compac	tification	Cremmer, Scherk
1976	—	open superstring (ty	rpe I)	Gliozzi, Scherk, Olive
	—	RNS string action	Brink, Di Ve	ecchia, Howe; Deser, Zumino
		supergravity	Freedman,	Van Nieuwenhuizen, Ferrara
1978		d=11 supergravity		Cremmer, Julia, Scherk
1980				
	—	modern convariant q	•	Polyakov
1982	—	IIA & IIB closed su	perstrings	Green & Schwarz
		gravitational anoma	lies	Alvarez-Gaumé & Witten
1984	—	anomaly cancellation heterotic strings	• •	Green & Schwarz oss, Harvey, Martinec, Rohm
	—	Calabi-Yau compacti		Candelas, Horowitz,
		•		Strominger, Witten

Superstring

Reasons to be reborn (1984)

Unification of gauge theories and gravity beyond the Standard Model, with:

- chiral fermions without chiral anomalies
- supergravity without infinities
- five (six) consistent theories

A source of many ideas

supersymmetry and extra dimensions

theoretical physics — many areas of mathematics

conformal field theory
 gauge/gravity correspondence
 statistical mechanics
 & condensed matter

NEW TOOLS in theoretical physics

A source of many ideas

supersymmetry and extra dimensions

theoretical physics — many areas of mathematics

conformal field theory
gauge/gravity correspondence
 statistical mechanics
 & condensed matter

"Rock & Roll \saved my \life" (Wim Wenders)

String theory physicist's physicist's

A Case Study

- <u>Historians and philosophers of science</u> want to understand/categorize how research in (recent) theoretical physics is done:
 - characterize `models' vs `theories'
 - role of experiments
 - interplay with mathematics
 - generalizations, analogies, conjectures
 - research networks
 - interplay with society and the cultural and political period

Bibliography

- Book web page: http://theory.fi.infn.it/colomo/string-book/
- Three choral books on history of fundamental interactions:
 - The Rise of the Standard Model (1997) Hoddeson, L., Brown, L. M., Riordan, M., Dresden, M. eds.
 - Pions to Quarks: Particle Physics in the 50s (2009) Brown, L. M., Dresden, M., Hoddeson, L. eds.
 - The Birth of Particle Physics (2009) Brown, L. M., Hoddeson., L. eds.
- Other volumes on history & philosophy of string theory (no pop science):
 - Forty Years of String Theory:

 Reflecting on the Foundations

 (2013) De Haro, S., Dieks, D.,

 't Hooft, G., Verlinde, E. eds.,

Foundations of Physics 43

- A Brief History of String Theory:
from Dual Models to M-Theory (2014) Rickles D., Springer

About history

"The garbage of the past often becomes the treasure of the present (and vice versa)"

A. M. Polyakov

"When a good idea is around, many people have it at the same time: the credit goes to the one that explains it better"

"...although to study the history of physics and to distribute credits is an interesting enterprise, I am not yet prepared for it"

A. M. Polyakov

S. Fubini