TeV gamma-ray variability and duty cycle of Mrk 421 as determined by 3 Years of Milagro monitoring

Barbara Patricelli

Magdalena González for the Milagro collaboration

Astronomy Institute - UNAM

RICAP-13 May 22 - 24, 2013 Rome

Summary

Markarian 421: generalities

2 The Milagro detector

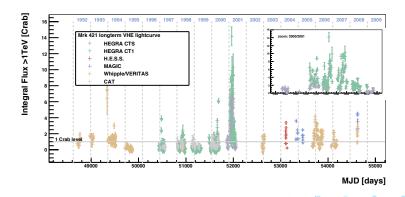
Mrk 421 observation by Milagro

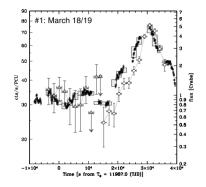
Mrk 421 light curve

• The γ -ray Duty Cycle

Conclusions

Markarian 421 (Mrk 421): generalities

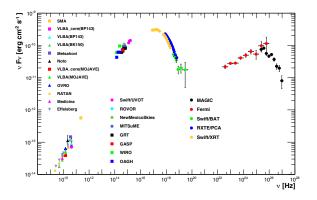

- R.A=166.11 deg, Dec=38.21 deg
- It is the closest blazar known, with z=0.03 (de Vaucouleurs et al. 1991)
- It was the first extragalactic object detected at VHE (Punch et al. 1992)


- < ∃ →

Mrk 421: the light curve

It presents major outbursts accompanied by rapid flares with timescales from tens of minutes to several days (see e.g. Tluczykont et al. 2010)

A correlation has been observed between the X-ray and the TeV emissions (Fossati et al. 2008)...



...although not all X-ray flares have been associated with a simultaneous increase in the TeV flux (Rebillot et al. 2006), and a possible orphan TeV flare has been detected on 2004 (Blazejowski et al. 2005)

Markarian 421: generalities

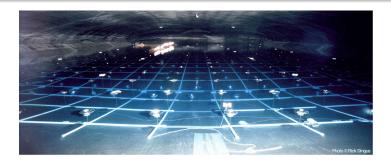
The Milagro detector Mrk 421 observation by Milagro Conclusions

Mrk 421: the spectrum

Multiwavelength campain from January to June 2009: both leptonic and hadronic models describe well the spectrum (Abdo et al. 2011)

The Milagro detector - I

- Milagro was a water Cherenkov detector designed for VHE gamma-ray astronomy
- It was located near Los Alamos, New Mexico, USA, at an elevation of 2630 meters a.s.l.
- It operated from 2000 to 2008



同 ト イ ヨ ト イ ヨ ト

The Milagro detector - II

 Central 80 m x 60 m x 8 m water reservoir, containing two layers of PMTs:

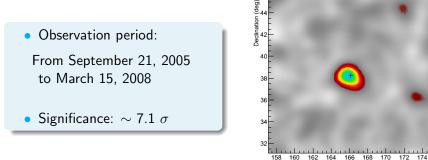
450 PMTs at 1.4 m below the surface (top layer) 273 PMTs at 6 m below the surface (bottom layer)

同 ト イ ヨ ト イ ヨ ト

The Milagro detector - III

• From 2004: Outrigger Array, consisting of 175 tanks filled with water and containing one PMT, distributed on an area of 200 m × 200 m around the central water reservoir.

Milagro reached its final configuration in September 2005

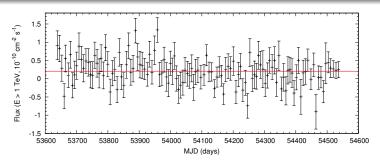

The Milagro detector - V

- Detector Performances:
 - It operated with a duty cycle \geq 90 %
 - Its field of view was of \sim 2 sr
 - It was sensitive between 100 GeV to 100 TeV
- These characteristics made Milagro well suited to study the VHE emission from
 - Extended sources
 - Transient sources (GRBs, AGN flares)
 - Sun

.

Mrk 421 light curve The γ -ray Duty Cycle

Mrk 421 observation by Milagro



Significance

RA (deg)

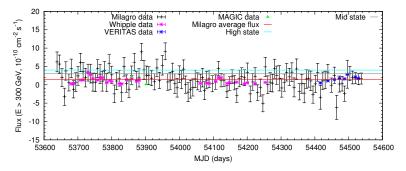
Mrk 421 light curve The γ -ray Duty Cycle

Light curve above 1 TeV

Abdo et al., submitted to ApJ

Milagro flux consistent with being constant along the 3-year monitoring period:

$$\bar{f}(\mathsf{E} > 1 \text{ TeV})=(2.052 \pm 0.304) \times 10^{-11} \, \mathrm{cm}^{-2} \, \mathrm{s}^{-1}=$$
 0.85±0.13 Crab*
 $\chi^2=$ 134 for 122 degrees of freedom


* Crab flux measured by Milagro, Abdo et al. 2012

B.Patricelli

Mrk 421 light curve The γ -ray Duty Cycle

Light curve above 300 GeV

Comparison with Whipple, VERITAS and MAGIC (Acciari et al. 2011, Aleksíc et al. 2010)

Abdo et al., submitted to ApJ

All the data have a significance above \bar{f} less then 3 σ

Mrk 421 light curve The γ -ray Duty Cycle

The γ -ray Duty Cycle

• The duty cycle *DC* gives an estimate of the level of activity of the source:

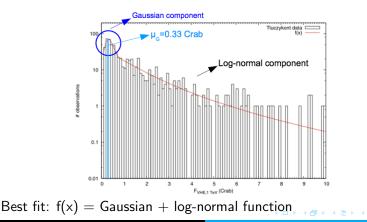
$$DC = \frac{\sum_{i} t_{i}}{\sum_{i} t_{i} + T_{\text{baseline}}} = \frac{T_{\text{flare}}}{T_{\text{flare}} + T_{\text{baseline}}}$$

- For Mrk 421 the X-ray duty cycle has been estimated to be in the range between 22 % (Krawczynski et al. 2004) and 27.3 % (Wagner 2008)
- …a comparison with the TeV duty cycle is useful to test the correlation of the TeV emission with the X-ray emission ⇒ constraints about the emission mechanisms

(日) (同) (三) (三)

Mrk 421 light curve The γ -ray Duty Cycle

• Milagro average flux \overline{f} results from the composition of the flux of Mrk 421 in the low baseline state and the flux in any other higher state i:


$$\bar{f} \times T_{\text{Milagro}} = F_{\text{baseline}} \times T_{\text{baseline}} + \sum_{i} f_{\text{flare},i} t_i$$

- the same high state fluence could be obtained by considering many long-duration low-flux flares or a few short-duration high-flux flares
- \Rightarrow To estimate $T_{\text{flare}} = \sum_i t_i$ and then the duty cycle $DC = \frac{T_{\text{flare}}}{T_{\text{Millagro}}}$ also the distribution of flux states of Mrk 421 is needed

Mrk 421 light curve The γ -ray Duty Cycle

Distribution of VHE flux states

Tluczykont et al. 2010 collected data taken by different VHE experiments (IACT: Whipple, VERITAS, MAGIC, HESS, HEGRA, CAT) from 1992 to 2009

B.Patricelli

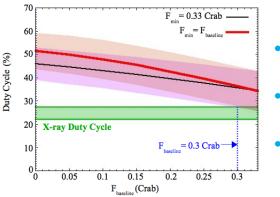
Mrk 421 light curve The γ -ray Duty Cycle

The γ -ray Duty Cycle

With f(x) we can calculate the average flare flux as:

$$< f_{\text{flare}} >= \frac{\int_{F_{\min}}^{F_{\lim}} x f(x) dx}{\int_{F_{\min}}^{F_{\lim}} f(x) dx}$$

$$\Rightarrow DC = \frac{(\bar{f} - F_{\text{baseline}})}{< f_{\text{flare}} > -F_{\text{baseline}}}$$


I calculated DC for:

a) different values of F_{baseline} b) different values of F_{\min} ($< f_{\text{flare}} >$) i $F_{\min} = F_{\text{baseline}}$

i
$$F_{
m min} =$$
 0.33 Crab (< $f_{
m flare}$ >=1.84 Crab)

Mrk 421 light curve The γ -ray Duty Cycle

The γ -ray Duty Cycle

- TeV DC between $34^{+9}_{-8}\%$ and $51^{+8}_{-7}\%$
- X-ray DC between 22% and 27.3%
- $F_{\text{baseline}} < 0.3$ Crab: <u>TeV</u> DC > X-ray DC

A B > A B >

Abdo et al., submitted to ApJ

Conclusions

- \bullet For almost all value of $F_{\rm baseline}$ the TeV $\gamma\text{-ray}\ DC$ is higher than the X-ray DC
- → not all TeV γ-ray flares are associated with a corresponding X-ray flare (orphan TeV flares)
- \implies There should be a mechanism, additional to SSC, responsible for the extra VHE emission, likely to be hadronic

伺 ト イ ヨ ト イ ヨ ト

Future: from Milagro to HAWC

HAWC (High Altitude Water Cherenkov Observatory)

- Higher altitude: from 2630 to 4100 mt a.s.l.
- Larger area: from 4000 to 20000 m²
- 300 individual tanks instead of a big water reservoir

with its higher sensitivity (10-15 times the sensitivity of Milagro) HAWC will be able to better measure the fluxes of AGN flares

See talks by A. Marinelli (Parallel Session E, today, h:15:05) and G. Sinnis (Plenary Session, Friday, h:9:40)

Backup slides

B.Patricelli TeV variability and γ -ray duty cycle of Mrk 421 with Milagr

The distribution of flux states of Mrk 421

$$f(x) = f_{\rm G}(x) + f_{\rm ln}(x)$$

with
$$f_{\rm G}(x) = \frac{N_{\rm G}}{\sigma_{\rm G}\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu_{\rm G}}{\sigma_{\rm G}}\right)^2\right]$$
and
$$f_{\rm ln}(x) = \frac{N_{\rm ln}}{x\,\sigma_{\rm ln}\sqrt{2\pi}} \exp\left[-\frac{(\log(x)-\mu_{\rm ln})^2}{2\sigma_{\rm ln}^2}\right]$$

The duty cycle calculation

$$\bar{f} \times T_{\text{Milagro}} = F_{\text{baseline}} \times T_{\text{baseline}} + \sum_{i} f_{\text{flare},i} t_{i}$$

We can rewrite this equation as:

$$\bar{f} \times T_{\text{Milagro}} = F_{\text{baseline}} \times (T_{\text{Milagro}} - T_{\text{flare}}) + T_{\text{flare}} \times \langle f_{\text{flare}} \rangle,$$

with $T_{\rm Milagro} = T_{\rm baseline} + T_{\rm flare}$

$$\Rightarrow T_{\text{flare}} = \frac{\left(\bar{f} - F_{\text{baseline}}\right) T_{\text{Milagro}}}{< f_{\text{flare}} > -F_{\text{baseline}}}$$

$$DC = \frac{T_{\text{flare}}}{T_{\text{Milagro}}} = \frac{\left(\bar{f} - F_{\text{baseline}}\right)}{\langle f_{\text{flare}} \rangle - F_{\text{baseline}}}$$